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Future directions in breeding for disease resistance in aquaculture species
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ABSTRACT - Infectious disease is a major constraint for all species produced via aquaculture. The majority of farmed 
fish and shellfish production is based on stocks with limited or no selective breeding. Since disease resistance is almost
universally heritable, there is huge potential to select for improved resistance to key diseases. This short review discusses the 
current methods of breeding more resistant aquaculture stocks, with success stories and current bottlenecks highlighted. The 
current implementation of genomic selection in breeding for disease resistance and routes to wider-scale implementation and 
improvement in aquaculture are discussed. Future directions are highlighted, including the potential of genome editing tools for 
mapping causative variation underlying disease resistance traits and for breeding aquaculture animals with enhanced resistance 
to disease.
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Introduction

Fish and shellfish production through aquaculture is a
major source of high-quality protein for human diets, with 
a worldwide production of 73.8 million tonnes in 2014 
(FAO, 2016). Improvements in the scale and efficiency of
aquaculture are essential to meet the nutritional requirements 
of a rapidly growing global population, particularly in 
developing countries. Selective breeding programmes have 
great potential to help address this challenge via cumulative 
improvements in key production traits, such as resistance to 
disease. Currently, less than 10% of aquaculture production 
derives from selectively bred stocks (Gjedrem et al., 2012), 
lagging significantly behind the terrestrial animal and plant
farming industries (Gjedrem et al., 2012; Yáñez et al., 2015; 
Robledo et al., 2017). Encouragingly, genetic gains for 
aquatic species are generally higher than that of terrestrial 
farm animals (Gjedrem et al., 2012; Nguyen, 2016; 
Gjedrem and Rye, 2016). However, the status of breeding 
programmes and the level of technology used for aquatic 

species production are wide-ranging, from use of wild seed 
stocks through to family-based selection incorporating 
genomic tools (Yáñez et al., 2015).

Infectious diseases present a major constraint on 
aquaculture production, causing high mortality levels and 
impaired growth due to infection. Particularly in marine 
aquaculture species that are exposed to the open-ocean 
environment, disease prevention through management 
and biosecurity is challenging (Lafferty et al., 2015). 
Indeed, many diseases in farmed hosts are transmitted 
from wild hosts in the surrounding waters and vice versa 
(Lafferty et al., 2015). For several farmed aquatic species, 
particularly finfish, there are vaccines and medicines which
aid in the prevention and control of disease. However, 
these are often expensive and only partially effective and 
obtaining regulatory approval is often challenging (Lafferty 
et al., 2015). Further, blanket treatments are often used (e.g. 
in feed), which can lead to evolution of resistance in the 
pathogen. An example of this is the emergence of drug-
resistant strains of ectoparasitic copepod sea lice, due to 
extensive use of medicines (Aaen et al., 2015). Therefore, 
a major and increasingly important component of disease 
control is selective breeding to produce stock with 
improved resistance to key pathogens, exploiting naturally-
occurring genetic variation (heritability) for resistance in 
farmed aquaculture populations. Virtually all well-powered 
studies examining the genetic basis of disease resistance 
in aquaculture species have detected significant heritability
for these traits (e.g. Yáñez et al., 2014; Gjedrem, 2015) 
Therefore, in conjunction with other prevention and control 
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strategies, effective selective breeding programmes can offer 
cumulative and permanent improvements in host resistance 
(Bishop and Woolliams, 2010; Yáñez et al., 2014). This 
short review will highlight methods currently applied to 
tackle disease resistance by selective breeding and discuss 
future possibilities enabled by technological developments 
in genomics and genome-editing technologies.

What is disease resistance?

Disease resistance is often used as a generic term to 
describe the ability of the host to limit infection, or the 
consequences of infection, by reducing pathogen replication 
(Råberg et al., 2007; Doeschl-Wilson et al., 2012; Bishop 
and Woolliams, 2014), and the opposite can be considered 
as susceptibility. However, several terms related to traits 
connected to broad-sense disease resistance have been 
defined and are typically context-dependent. For example,
“tolerance” can refer to the ability of the host to reduce the 
impact of pathogens on performance (without necessarily 
affecting pathogen load) (Doeschl-Wilson et al., 2012) and 
“infectivity” is the propensity of transmitting infection 
upon contact with a susceptible individual (Lipschutz-
Powell et al., 2012). For the purposes of this review, 
disease resistance will be used in the broadest sense, 
referring to all disease traits in which genetic improvement 
will lead to a reduction in disease incidence or severity. 
Disease resistance has been a target trait for aquaculture 
breeders for over 20 years and the first salmon breeding
programmes have focused on disease resistance since 1993 
(Gjoen and Bentsen, 1997). However, selective breeding 
for resistance to certain diseases is challenging; in part, due 
to the need for capturing accurate and informative disease 
resistance measures or correlates (Bishop and Woolliams, 
2010; see below). To avoid compromising biosecurity 
within the breeding nucleus, advanced breeding schemes 
rely on disease data collected from relatives of the selection 
candidates (as opposed to the candidates themselves) as 
measured by experimental challenge or “field” data (Bishop 
and Woolliams, 2014).

Highly pathogenic viral and bacterial diseases 
impacting on aquaculture species are often the easiest to 
tackle from a practical breeding perspective by defining
resistance as survival (and/or mortality) of individuals 
during an outbreak or a deliberate challenge (Ødegård 
et al. 2011). This binary trait has been shown to have a 
moderate to high heritability for a number of important 
infectious diseases (Ødegård et al. 2011, Yáñez et al. 2014; 
Gjedrem 2015). Therefore, disease-challenge testing can 
be applied to test relatives of the selection candidates in a 

breeding scheme, particularly for advanced finfish breeding 
programmes such as salmonids and tilapia (Ødegård et al., 
2011; Yáñez et al., 2014; LaFrentz et al., 2016). These 
typically involve infecting tagged individual juvenile fish
in a standardized tank environment with a pathogen strain 
that is similar to those causing disease outbreaks in the 
field. Mortality or survival until the end of the test (when
mortality returns to baseline level) is recorded and this trait 
can be an excellent indicator of disease resistance in the 
field setting, as shown by high genetic correlations between
trait measures in both environments (e.g. Ødegård et al., 
2007). Alternative measures of disease resistance include 
pathogen or parasite load measured by cell culture or 
qPCR (e.g. for viral disease in shrimp; Phuthaworn et al., 
2016) or biomarkers of the host immune response (Yáñez 
et al., 2014). For certain ectoparasites (e.g. salmon lice), 
simply counting the number of parasites attached to the fish
represents the primary disease-resistance phenotype used 
for selection (e.g. Tsai et al., 2016).  

An alternative to artificial challenge testing is collection
of disease data and samples from field outbreaks, which
can be used opportunistically to quantify genetic resistance 
to infectious diseases and calculate breeding values. A 
pre-requisite for this is the establishment of pedigree and 
family assignment in this scenario typically uses genetic 
markers. However, it is often difficult to discern the cause
of mortality in natural outbreaks and obtaining high-quality 
samples from mortalities can be challenging. Furthermore, 
certain diseases (such as sea lice in salmon) are required 
to be controlled by other means (e.g. culling of stock 
for notifiable viral diseases or chemotherapeutants for
parasites) before the fish become sufficiently infected to
obtain meaningful resistance phenotypes.

Current methods of breeding for disease resistance

The selective breeding techniques applied to improve 
resistance of aquaculture species to infectious diseases 
depend on the structure and technology used in the breeding 
programme. Due to the highly fecund nature of most 
aquaculture species, and the typically low economic value 
of juveniles, simple approaches such as mass selection can 
be applied. The resulting high selection intensity could 
enable rapid genetic progress for resistance traits (Gjedrem 
and Baranski, 2009). Mass selection produced greater than 
60% increase in Oyster Herpes Virus survival compared 
with controls after four generations of selection (Dégremont, 
et al. 2015b) and has also been successfully applied to Taura 
Syndrome Virus in Panaeid shrimps (Cock et al., 2009). 
However, mass selection in advanced commercial breeding 
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schemes is not practical, because the risk of inbreeding 
depression (albeit this has not been widely observed in 
bivalve mass selection experiments; Dégremont et al. 2015b) 
and breeding from broodstock, which have previously been 
exposed to a disease outbreak, can present a biosecurity risk 
to hatcheries, particularly if the pathogen can be vertically 
transmitted.

The state of the art for the majority of advanced 
selective breeding schemes for aquaculture species is the 
use of family selection. Aquaculture species are particularly 
amenable to this structure due to the possibility of obtaining 
high numbers of full siblings and other close relatives of 
the selection candidates for testing (Gjedrem and Baranski, 
2009). Family selection involves the maintenance of a 
breeding nucleus with candidate parental broodstock 
from a high number of genetically diverse families. Full 
siblings of these animals can be placed into field conditions
or sent for experimental disease challenge testing to 
obtain family-level data on disease resistance. Accurate 
tracking of families and pedigree is achieved by tagging 
or genetic markers. Advances in genotyping technology, 
such as development of high-throughput genotyping for 
single-nucleotide polymorphism (SNP) multiplexes, have 
enabled rapid and accurate family assignment (Vandeputte 
and Haffray, 2014). Family selection for disease 
resistance has been highly successful for several species 
and diseases (Yáñez et al., 2014; Bishop and Woolliams, 
2014). However, it does suffer some drawbacks, such as 
the cost of routine disease challenge data collection and 
the lack of opportunity to capitalise on half of the genetic 
variation (the within-family component). An additional 
challenge for breeding programmes of many aquaculture 
species is genotype by environment interaction, in 
which the performance of the selected animals can vary 
markedly across diverse production environments (e.g. in 
tilapia breeding; Sae-Lim et al., 2016). This results in re-
ranking of genotypes across environments and effectively 
reduces the overall response to selection within a breeding 
programme (Sae-Lim et al., 2016).  

Marker-assisted selection is one route to building on 
family selection and gaining information on the comparative 
disease resistance of selection candidates from within a full 
sibling family (i.e. the within-family genetic variation; 
Sonesson, 2007). Marker-assisted selection is based on the 
principle of detecting quantitative trait loci (QTL) affecting 
the trait of interest and selecting animals based on whether 
they carry favourable alleles at the QTL. Mapping of 
QTL has been a major goal for aquaculture genetics and 
breeding research and has yielded some successful practical 
results. Aquaculture species are typically close to their 

wild ancestors and the relatively new selection and disease 
pressures in the farm environment raise the possibility 
that major-effect loci segregate within the populations. A 
successful example of QTL analyses applied to selective 
breeding is the case of infectious pancreatic necrosis 
resistance in Atlantic salmon, in which a major QTL 
explains the majority of the genetic variance for resistance 
(Houston et al., 2008; Houston et al., 2010; Moen et al., 
2009) and has been demonstrated as a successful means of 
controlling the disease (Moen et al., 2015). Selected other 
examples of QTL-affecting resistance to disease include 
the cases of salmonid alphavirus (Gonen et al., 2015), 
ISAV (Moen et al., 2007), and Gyrodactylus salaris (Gilbey 
et al., 2006) in salmon, lymphocystis disease in Japanese 
flounder (Fuji et al., 2006), Bonamiosis in the European 
Flat Oyster (Lallias et al., 2009), and Flavobacterium 
psychrophilum in rainbow trout (Vallejo et al., 2014). 
However, marker-assisted selection based on single QTL 
has not been routinely successful in animal breeding, 
partly because most economically important traits have a 
polygenic genetic architecture (Meuwissen et al., 2013). 
While recent domestication of aquaculture species may 
result in an oligogenic architecture for disease resistance 
traits, it is also important to consider that the effect of any 
given QTL may differ according to the environment and the 
genetic background of the population. 

Genomic selection (GS) is the state-of-the-art for 
modern selective breeding schemes in aquaculture. In 
GS, genome-wide markers are used to calculated genomic 
breeding values without prior knowledge of the underlying 
QTL affecting the trait of interest (Meuwissen et al., 2001). 
The premise of GS is that marker effects are estimated 
in a “training” population, which has been measured for 
both phenotypes (e.g. disease resistance) and genotypes, 
and the developed model is then used to generate genomic 
breeding values on selection candidates with genotypes 
only. While the initial concept of GS was to detect and 
utilise population-wide linkage disequilibrium between 
genome-wide markers and QTL (Meuwissen et al., 2001), 
the benefits of genomic selection also include a more
accurate estimate of the genetic relationship between any 
two individuals than could be given by pedigree records 
alone, particularly within families (Meuwissen et al., 
2013). In all studies of aquaculture species to date, the 
use of GS has resulted in higher prediction accuracy of 
breeding values than the use of pedigree information alone 
(Odegård et al., 2014; Tsai et al., 2015; Dou et al., 2016). A 
prerequisite for genomic selection is a platform to generate 
high-density SNP marker genotypes across populations of 
animals and SNP arrays have been developed for several 
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aquaculture species, including Atlantic salmon (Houston 
et al., 2014; Yáñez et al., 2016), rainbow trout (Palti et al., 
2015), common carp (Xu et al., 2014), and catfish (Liu 
et al., 2014). A major downside to GS is the cost, due to 
the expense of high-density genotyping in large numbers 
of individuals. In addition, while GS is effective wherein 
the training and test populations are closely related (e.g. 
within a year group of a breeding programme), the ability 
to predict breeding values in animals more distantly related 
to the training population is rather limited (Meuwissen et al., 
2014; Tsai et al., 2016). 

Future directions

Due to the diversity of species that are grouped together 
as “aquaculture”, both in terms of biology and production 
technology, it is challenging to make generalized predictions 
about the future of breeding for disease resistance. For 
example, the route to improved disease resistance in the vast 
majority of the farmed fish in the world is to work towards
implementation of selective breeding (with ~90% of world 
aquaculture relying on unimproved stock). However, often 
the catalyst for driving the implementation or improvement 
of organised breeding schemes can be a major production 
issue, such as mortality due to disease. For example, 
previously uncontrollable outbreaks of viral disease have 
been an important driver for the establishment of selective 
breeding schemes for oyster species (Dégremont, et al. 
2015a). For new and emerging aquaculture species, the steps 
taken to enable selective breeding for disease resistance 
may change with technological advances. For example, 
reference genome sequences, SNP genotyping platforms, 
and other genomic tools can now be generated rapidly 
from the beginning. This can inform the composition of the 
base population from which to begin a breeding scheme 
(Fernández et al., 2014) and can enable rapid progression to 
family or even marker-based selection techniques to ensure 
rapid gain and minimal inbreeding, once suitable selection 
goals have been established. 

For certain aquaculture species with more advanced 
breeding schemes (e.g. based on family selection 
with sib-testing), improving response to selection in 
multiple environments will be a major goal. This will be 
particularly relevant for species such as tilapia (especially 
Nile Tilapia, Oreochromis niloticus), in which major 
breeding programmes are underway, and stock is typically 
disseminated to several countries and diverse farming 
systems (Sae-Lim et al., 2016; Omasaki et al., 2016). 
Therefore, it is important to quantify and incorporate G × E 
interaction when optimising a breeding programme for 

these species and the high fecundity may facilitate trait 
recording in multiple environments (Sae-Lim et al., 2016). 

Genomic selection is routinely applied to target 
improvement of the most economically important traits 
in several aquaculture species. An obvious target trait in 
Atlantic salmon production is resistance to sea lice (L. 
salmonis in Europe and Caligus spp. in Chile). Progress 
in the next few years will be to tackle the aforementioned 
limitations of GS, namely cost and prediction accuracy in 
distant relatives. In aquaculture species with high fecundity 
and large full-sibling families, the marker density required 
for step changes in improvement in breeding value 
prediction over pedigree methods are relatively low (e.g. 
~5 K genome-wide SNP in a typical salmon breeding 
programme) and even lower using within-family selection 
(Sonesson and Meuwissen, 2009; Lillehammer et al., 
2013; Odegård et al., 2014; Tsai et al., 2015). The cost of 
generating SNP datasets of this magnitude will be driven 
lower by advances in genotyping by sequencing, which 
has great potential for genomic selection in farmed animals 
(Gorjanc et al., 2015; Robledo et al., 2017). Driven by the 
continuous reduction in cost per unit of next-generation 
sequencing data, allowing an increase in the number of 
animals that can be genotyped in a single lane of an Illumina 
sequencer, genotyping by sequencing is likely to overtake 
SNP arrays as the primary means of routine generation 
of population-level genotypes. While bioinformatics 
and data management challenges may hamper its routine 
implementation, technologies that combine targeted SNP 
probes with next-generation sequencing across many 
samples (e.g. Affymetrix’s Eureka platform) can overcome 
this obstacle. Imputation techniques are also likely to play 
a key role in improving the cost-effectiveness of genomic 
selection for disease resistance and other key traits. With 
ever-improving reference genome sequences and genetic 
maps (e.g. Lien et al., 2016), the opportunity now exists 
to genotype selected animals (e.g. parents) at high density 
and the others (e.g. the offspring) at very-low density, 
but impute to high density – a technique that is relatively 
commonplace in terrestrial livestock breeding (e.g. 
Wellmann et al., 2013) and has shown promise in Atlantic 
salmon breeding (Tsai et al., 2017).

While there are clear routes to improve the cost-
effectiveness of genomic prediction of disease resistance 
breeding values, improving the ability to predict 
across distantly related populations is likely to be 
more challenging. This is important for breeding for 
disease resistance in aquaculture, because it reduces the 
requirement for regular disease challenge and field testing.
The current implementation of GS relies on a combination 
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of linkage disequilibrium between markers and causative 
variants and estimation of realised relationships between 
relatives (Daetwyler et al., 2012). As such, accuracy of 
genomic prediction is highly dependent on the degree 
of relationship between the training population and the 
validation population and this accuracy is not persistent 
across generations (Daetwyler et al., 2012). To improve 
genomic prediction in distantly related populations (such 
as separate year groups of a salmon breeding programme), 
identification and utilisation of causative variants and/or
markers in linkage disequilibrium with causative variants 
is essential. For a typically polygenic trait, this is likely to 
require very large reference population sizes, genotyped at 
high density or fully sequenced (Hickey, 2013). Investment 
in gathering large-scale genetics datasets also leads to 
candidate genes and mutations for functional testing to 
inform the underlying biology of disease resistance. Further, 
functional annotation of the reference genomes will be key 
to prioritising putative causative variants and the recent 
Functional Annotation of All Salmonid Genomics initiative 
(MacQueen et al. 2017) will facilitate this.

Genome editing technology is likely to be a key tool 
in the identification of causative variation underlying
resistance to disease in farmed animals. In simple terms, 
genome editing enables the deletion, change, or addition 
of base pairs at highly specific and targeted locations. The
major techniques include zinc-fingernucleases, transcription
activator-like effector nucleases, and clustered regularly 
interspaced short palindromic repeats and all involve the 
induction of double-strand breaks in the genome followed 
by repair (Sander and Joung, 2014). Genome editing can be 
applied to test hypotheses of putative causative variation 
from genetics studies or can be used to exploit knowledge 
of the biology underlying the trait to induce new mutations 
into selected target loci, i.e., the case of the CD163 
locus conferring resistance to PRRS in pigs (Whitworth 
et al., 2015). The most obvious initial applications of 
GE in breeding for disease resistance are to increase the 
frequency of, and potentially fix, known resistance alleles
at major effect loci. However, the advances in large-scale 
genetics studies may allow this to be extended to facilitate 
modulation of multiple loci with a more moderate effect 
size (Jenko et al., 2015). Published studies of genome 
editing in aquaculture species remain sparse, although the 
successful CRISPR-Cas9-mediated knockout of the dnd 
locus to induce sterility in the F0 generation of Atlantic 
salmon highlights its feasibility (Wargelius et al., 2016). 
For viral and bacterial disease resistance traits, genome 
editing in cell line models (e.g. Zhou et al., 2014) may 
be an important intermediate step to target and validate 

putative causative genes. While the practical application 
of genome editing technology in breeding is also subject 
to societal and regulatory approval, it has huge potential 
to tackle problematic aquaculture diseases and inform the 
biology underlying disease resistance.

Conclusions

Aquaculture species are a diverse grouping and the 
majority of farmed fish and shellfish production is based on
unimproved stocks. Disease resistance is almost universally 
heritable and is a key goal of existing selective breeding 
schemes. Several success stories of mass selection, family 
selection, and marker-assisted selection are evident. 
Gathering appropriate phenotypes from disease challenge 
or field experiments is pertinent for making genetic
progress. Genomic selection is the state-of-the-art for 
modern aquaculture breeding schemes and offers substantial 
improvements in selection accuracy over pedigree-based 
methods. Driving down the cost of genomic selection, and 
specifically generation of genome-wide genetic marker
datasets, is a major current goal. Genotype imputation and 
low-cost genotyping by sequencing are likely to contribute. 
Predicting disease resistance of distantly related animals 
to those with trait records is a major future challenge, 
which is directly related to the identification of causative
variants. Genome editing technology is likely to play a key 
role in identifying causative variation and has potential for 
breeding disease-resistant animals in aquaculture.
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