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Soybean meal from damaged grains 
replacing standard soybean meal in 
diets of feedlot lambs

ABSTRACT - Two studies were carried out to evaluate the effects of levels of soybean 
meal produced from damaged soybean grains replacing normal soybean meal on in 
vitro and in situ digestibility of ruminant diets as well as on intake, digestibility, and 
animal performance of growing/finishing lambs. In trial 1, we evaluated the in vitro 
digestibility of each soybean meals (normal and damaged), as well as diets containing 
levels of the damaged replacing the normal (0, 333, 667 and 1,000 g.kg−1) soybean 
meal on kinetic parameters of in vitro cumulative gas production, in vitro dry matter 
and crude protein digestibility, in situ rumen-degradable protein, rumen-undegradable 
protein, and in vitro intestinal digestibility of rumen-undegradable protein. In trial 
2, we used 48 growing/finishing lambs to evaluate the effects of damaged soybean 
meal levels (0, 333, 667, and 1,000 g.kg−1) replacing normal soybean meal in feedlot 
diets (20:80 roughage:concentrate ratio) on intake and digestibility of nutrients and 
on animal performance. The damaged soybean meal presented lower values for total 
gas production and in vitro dry matter digestibility than normal soybean meal. Higher 
rumen-undegradable protein was estimated for damaged soybean meal than for the 
normal and consequently lower rumen-degradable protein for damaged compared 
to normal. Because of the lower rumen-degradable protein, damaged soybean meal 
promoted lower in vitro ammonium nitrogen (NH3-N) concentrations than the normal 
in feedlot diets. In the in vivo trial, there were no effects of damaged soybean meal  
levels in the diets on intake and digestibility of nutrients (dry matter, organic  
matter, crude protein, and fiber) as well as on total weight gain, average daily gain, 
carcass yield, or feeding efficiency. Thus, damaged soybean meal can fully replace  
the normal one in lamb feedlot diets (in up to of 1,000 g.kg−1 of the normal soybean 
meal) without causing adverse effects on intake and digestibility of nutrients and on 
animal performance.

Keywords: digestibility, degradable protein, gas production, intake, ruminal degradability,  
sheep

1. Introduction

Soybean grains and their byproducts, especially soybean meal (SBM), are the major protein sources 
worldwide for livestock, including monogastric and ruminant animals. For high-performance animals 
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such as dairy cows, replacing SBM for other protein sources causes a decrease in animal performance, 
because SBM presents simultaneously a high rumen-degradable protein, good amino acids (AA)  
profile, as well as high intestinal digestibility of its crude protein (CP; Santos et al., 1988). 

However, the chemical composition and quality of soybean grains and their byproducts is reduced by 
damage, which may be caused by many factors, including attack by insects and other causes occurring 
during planting, harvesting, or the drying process (Lehmkuhl, 2011). Soybean grains are classified 
by Brasil (2007), according to the main types of damage, as heat-damaged, moldy, fermented, 
germinated, and immature, in which the maximum tolerance limit for these types of damaged grains 
is 8%, above which the soybean producer is penalized, receiving a lower payment for soybean grains 
in the industry. 

Although every country where soybean is produced has its own rules for grain classification, it must 
be highlighted that all these rules try to ensure the production of high-quality grains, which includes 
aspects associated to appearance, composition, and safety of the grains (Brasil, 2007). 

According to companies which produce soybean oil and meal, this regulation is necessary because 
poor-quality soybean grain presents problems during its processing that affect its nutritive value for 
use in animal nutrition. However, Lehmkuhl (2011) and Andrade (2016) did not find any effect of 
damage in soybean grains on its oil and CP amount, which allowed us to create the hypothesis that 
damaged grains do not negatively affect the nutritive value of soybean and its byproducts for use in 
animal nutrition, such as for ruminant diets. 

Thus, the objective of this study was to determine the chemical composition and in vitro and in situ 
degradability of dry matter (DM) and CP of damaged soybean meal (79.7% damaged grains of which 
60.1% were fermented), its effects on feed intake and nutrient digestibility, as well as on animal 
performance, by replacing regular soybean meal in feedlot lamb diets. 

2. Material and Methods

This research was approved by the local Ethics Committee on the Use of Animals (case number 
23108.193858/2017-62).

The two types of soybean grains were obtained by the Associação dos Produtores de Soja e Milho do 
Estado de Mato Grosso (APROSOJA) and were classified at an oil and soybean production company, 
located in Cuiabá, as standard (normal), which contained less than 8% of damages (NSBG), while the 
second one was classified as damaged soybean grain (DSBG), presenting 79.7% of damages (60.1% 
fermented, 18.2% total of burnt and completely fermented, 1.4% moldy). Both soybean grains (normal 
and damaged) were processed to produce oil and soybean meal. These soybean meals (normal and 
damaged) were used in this study and are described as normal soybean meal (NSBM) and damaged 
soybean meal (DSBM).

2.1. Trial 1: In vitro digestibility

To determine the kinetic parameters of in vitro cumulative gas production as well as in vitro  
dry matter (IVDMD) and crude protein (IVCPD) digestibility, by the gravimetric method, both 
for experimental diets and for the two qualities of SBM, these two analyses were carried out  
simultaneously in two in vitro incubation runs; furthermore, in vitro assays of both experimental  
diets and two qualities of SBM (NSBM and DSBM) were carried out together. The four experimental 
diets were formulated, being one without adding DSBM and other three with levels (0, 333, 667,  
1,000 g.kg−1) of DSBM replacing NSBM (Table 1). The samples of the concentrate (Table 1) and corn 
silage were collected, and after that, approximately 0.5 g of mass composed of equivalent to 20% of 
corn silage and 80% of the concentrate were used, both previously pre-dried (55 °C in forced-air oven) 
and ground at 1 mm. All incubations were performed in amber glass flasks of 120 mL and water bath 
with automatic elliptical movement.
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Regarding the gravimetric assays of in vitro digestibility with SBM, NSBM, and DSBM, the incubations 
were carried out with nine replicates for each SBM and three pre-established observation times:  
24, 48, and 72 h throughout incubation. Six blanks for corrections were used in both assays (IVDMD 
and IVCPD). According to the recommendations of Cortés et al. (2009), each mass of incubated sample 
should contain at least 0.15 g of CP. Therefore, following this recommendation, 0.39 g of samples were 
used in the gravimetric incubations of the two tested soybeans grains. For the experimental diets, 
sixteen flasks were used, and 0.5 g of sample was weighed into each flask. 

For incubation, 40 mL of McDougall’s buffer was added into each flask (McDougall, 1948), which  
had a pH adjusted to 6.8 by CO2 flushing, and 10 mL of rumen fluid, which was collected from two 
rumen-cannulated sheep fed a diet based on Bermudagrass (Cynodon spp), hay (200 g.kg−1 of DM), 
concentrate (800 g.kg−1 of DM), and a mineral mixture. After inoculation, the flasks were sealed with 
rubber stoppers and aluminum seals and kept in a water bath at 39 °C.

Simultaneously with gravimetric in vitro digestibility assays, gas production was recorded at 6, 
12, 18, 24, 30, 36, and 48 h over the 72 h of incubation. From these records, the in vitro cumulative 
gas production profiles were obtained to estimate the kinetic parameters of in vitro cumulative  
gas production.

The quantification of in vitro gas production was carried out through systematic recording of  
pressure, in psi (pressure per square inch), using a pressure transducer device (Datalogger Pressure®, 
Press Data 800, LANA-CENA/USP, 116 Piracicaba-SP).

Conversion from psi to mL was carried out using the regression equation 𝑦 = 𝑎 + 𝑏𝑥, in which the 
coefficient 𝑏 of the equation allowed the correction and transformation of pressure (psi) into  
gas volume (mL) corrected for the barometric pressure of the day and ambient temperature. For 
this, a known gas volume was injected into a 120-mL flask and kept under the same conditions as the  
incubated samples. The pressure values corresponding to the known volumes of atmospheric air 
injected into the flasks, using graduated syringe, were used to obtain the first-order regression  
equation between gas pressure and volume.

The IVDMD and IVCPD were measured at 24 and 48 h of incubation for two qualities of SBM and 
only at 48 h for experimental diets with four levels of DSBM replacing NSBM, after inoculum 

Table 1 - Ingredients and chemical composition of the experimental diets (dry matter (DM) basis) containing 
damaged soybean meal (DSBM) replacing normal (NSBM) soybean meal

Item
DSBM level replacing NSBM 

(g.kg−1 of NSBM)

0 333 667 1,000

Ingredient (g.kg−1 DM in the diet)

Corn silage 200.0 200.0 200.0 200.0

Ground corn 630.0 630.0 630.0 630.0

NSBM 140.0 93.8 47.6 0.0

DSBM 0.0 46.2 92.4 140.0

Mineral mixture1 30.0 30.0 30.0 30.0

Chemical composition (g.kg−1)

Dry matter (DM) 946.4 951.3 950.2 962.8

Crude protein (CP) 157.7 151.7 155.9 156.6

Neutral detergent fiber (NDF) 116.1 127.7 126.2 126.1

Acid detergent fiber (ADF) 44.9 45.7 46.2 43.4

Indigestible NDF (iNDF) 61.1 64.9 63.5 69.8
1	 Mineral mixture commercial mix for sheep, guaranteed levels/kg: Ca, max 160 g, min 125 g; P, 33.5 g; Mg, 31 g; S, 33 g; Co, 122 mg; Fe,  

2,550 mg; I, 123 mg; Mn, 1,020 mg; Se, 15 mg; Zn, 6,121 mg; salinomycin, 112 mg; Na, 76 g; F, 335 mg; 506.7 g.kg−1 DM as CP from urea.
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addition. For these purposes, three, four, and two replicates (flasks) were taken, respectively, for  
in vitro degradability assay of the two qualities of SBM, experimental diets, and the blanks, and after 
ceasing the fermentation in ice bath, the residual content of each flask were filtered through filter 
crucibles and dried for 12 h at 105 °C to measure the DM and CP of the undigested residue by rumen 
microorganisms. After filtering the residues, 15 mL of filtrate from each flask was collected for NH3-N 
measurements, which were determined by the micro-Kjeldhal method after distillation with 50% 
NaOH solution and titration with 0.005 N HCl. Subsequently, these DM and nitrogen (CP) residues 
were quantified by the analytical methods described in subsection 2.3. Chemical analyses. After 48 h 
of incubation, three and four flasks for each quality of SBM were incubated for an additional 24 h 
(i.e., 72 h of incubation) with 6 mL of HCl solution (6.21N) and 2 mL of pepsin solution (50 g.L−1) 
to estimate total degradation of DM and CP according to Tilley and Terry (1963) with adaptations 
proposed by Cortés et al. (2009). Therefore, the residues were filtered into crucibles, dried, and 
weighed as previously described. 

The two qualities of soybean meal (NSBM and DSBM) were evaluated for an estimation of the intestinal 
digestibility of the rumen-undegradable protein (RUP) by the three-stage in vitro technique, according 
to Gargallo et al. (2006). Therefore, sample mass of approximately 5.0±0.005 g of each SBM ground 
with 2 mm sieves were weighed into non-woven textile bags and incubated in the rumen of two 
rumen-cannulated bulls for 27 h (assuming a fractional passage rate of 0.037 h for bulls on tropical 
pasture); the animas were kept grazing in paddocks of Marandu grass (Urochloa brizantha) pasture, 
with daily supplementation of concentrate at 1% of body mass. This concentrate supplementation  
was intended to maximize the diversification and quantity of the rumen microbiota.

After ruminal incubation, the bags were washed in tap water until the water became clear, and then 
they were pre-dried in a forced-air oven for 48 h at 55 °C and dried at 105 °C for 4 h to obtain the 
residues. The residual mass, approximately 0.250±0.050 g from each bag, were weighed for analysis 
of residual protein and 0.5±0.005 g was weighed into non-woven textile bags and incubated in a 
bottle in a Daisy incubator Ankom with a preheated 0.1 N HCl solution (pH 1.9) containing 1 g.L−1 
of pepsin (P-7000, Sigma, St. Louis, MO) at 39 °C for 1 h. Subsequently, the bags were incubated 
with preheated pancreatin solution (0.5 M KH2PO4 buffer, pH 7.75, containing 50 ppm of thymol and  
3 g.L−1 of pancreatin; Sigma P-7545) for 24 h at 39 °C, and the N in the residues was measured. These 
analyses made it possible to estimate rumen-digestible protein (RDP) and RUP, both in g.kg−1 CP. 
From the sequential incubations in pepsin-HCl and pancreatin, the digestible RUP was estimated in 
relation to RUP (ID; g.kg−1 RUP) and digestible and indigestible RUP based on CP (RUPCP; g.kg−1 CP) 
and DM (RUPDM; g.kg−1 DM) incubated.

2.2. Trial 2: Intake and performance

The in vivo field trial was carried out from August to October 2017 in Santo Antônio de Leverger,  
MT, Brazil, located 30 km from the state Capital, Cuiabá. During the study, the average temperature  
was 27 °C, and average humidity and precipitation were 67% and 2.8 mm, respectively. 

The experimental diets were composed of corn silage (20% DM basis) and concentrate (80% DM 
basis), the latter composed of ground corn, mineral mixture, and levels of DSBM replacing NSBM.  
The replacement levels applied were 0, 333, 667, and 1,000 g.kg−1 NSBM (Table 1). 

Forty-eight three-month-old crossbreed lambs (Santa Inês × Dorper), non-castrated males, with an 
initial body weight of 25.20±2.46 kg, were distributed in 24 pens (two lambs per pen) of 4.1 m2 and 
concrete floor, containing a feed bunk and water fountains. Initially, the animals were vaccinated 
against clostridium, weighed, identified by ear tags, and treated against worms. The experiment 
was carried out using a completely randomized block design with the initial body weight as block 
criteria; hence, two blocks were formed. The experimental diets were formulated with a 20:80 
roughage:concentrate ratio (DM basis) using corn silage as roughage source. Such experimental diets 
were formulated to contain 14% CP considering the nutrient requirements for growing crossbreed 
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lambs with a potential of average daily gain (ADG) of 250 g.day−1, according to equations suggested 
by Cabral et al. (2008a).

The study lasted 90 days, with the initial 30 days used to adapt the animals to the experimental diets 
(20:80 roughage:concentrate ratio) and pens, and the remaining 60 days to evaluate feed intake, 
digestibility, and animal performance. The meals were offered twice per day (08.00 and 15.00 h) as 
total mixed diet. Furthermore, daily intake was monitored and regulated daily to contain between 10 
to 15% of orts during all experimental phases. Thus, DM intake (DMI) was obtained by the difference 
between the amount of DM offered and respective orts. 

The measurements of nutrient intake and digestibility were performed in two sampling periods. The 
components of the total mixed diet (silage corn, concentrates), orts, and feces were sampled. The first 
sampling period was done between the 32nd and 34th days, and the second was between the 55th and 
57th days of the experiment phase. Throughout the sampling period, samples of orts were collected 
daily from each pen, prior to the morning meals, while fecal samples were obtained individually from 
each animal directly from the rectum at 09.00 and 16.00 h. To estimate the digestibility of nutrients, 
indigestible neutral detergent fiber (iNDF) in feces was used as an internal indicator to estimate fecal 
excretion according to Cabral et al. (2008b).

All samples collected were kept at −20 °C until analysis. Samples of corn silage, orts, and feces were  
pre-dried in a forced-air oven at 55±5 °C for 72 h and then ground in a Wiley mill using a 1-mm sieve. 
Fecal samples were analyzed individually per animal and per period.

Samples (ingredients, orts, and feces) were collected and placed in plastic bags. In the case of SBM,  
a grain sampler was used at different points in the bag to obtain a composite sample from each SBM, 
then they were homogenized, identified, and sent for analysis.

To evaluate the animal performance in terms of total body weight gain (TBWG) and ADG, all lambs 
were weighed at the beginning (initial body weight; IBW) and the end (final body weigh; FBW) of  
the experiment (60-day duration), after fasting from solid feed for 16 h. In addition, to monitor the 
animal growth, the animals were weighed every 30 days but without subjecting them to fasting. The  
TBWG was calculated as the difference between the IBW and FBW, while ADG was calculated by  
dividing the TBWG by the duration of the experiment (60 days). Feed efficiency (FE) was calculated 
as the ratio between TBWG and DMI, considering the data collected during the last 60 days of the 
experimental period. 

At the end of the experimental phase, all lambs were slaughtered, and the carcass weight was used  
to calculate carcass yield (CY), which was calculated considering the ratio between the hot carcass 
weight (HCW) and FBW.

2.3. Chemical analyses 

The AA profiles of the NSBM and DSBM were assayed using Near Infrared Reflectance Spectrophotometer 
(NIRS) (Table 2). The quantitative analyses of aflatoxins B1, B2, G1, G2, and M1 were carried out by a 
specialized laboratory (Samitec – Soluções Analíticas Microbiológicas e Tecnológicas Ltda).

The contents of DM (method 967.03; AOAC, 1990) and ash (method 942.05; AOAC, 1990) were 
determined. Organic matter (OM) was determined by the difference between DM and ash. In CP 
content determination, some adaptations were adopted: the sample mass (0.25 g) was digested  
with 5 mL of H2SO4 and 1 g of a 56:1 mixture of Na2SO4 and Cu2SO4.5H2O in micro-Kjeldhal  
tubes using aluminum digestion blocks according to the guidelines outlined in method 984.13  
(AOAC, 1990). The evaluations of neutral detergent fiber (NDF) were performed according to 
procedure “B” suggested by Van Soest et al. (1991) (Table 3). The iNDF was calculated according to 
Valente et al. (2011).
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2.4. Statistical analysis 

The gas production profiles were analyzed using the NLIN procedure of SAS (Statistical Analysis  
System, version 9.2), in which we used the GOMPERTZ (Gompertz, 1825; Schofield et al., 1994) 
nonlinear model to estimate the kinetic parameters of each soybean meal (DSBM and NSBM), and for 
the diets in function of the DSBM levels included in the diet replacing NSBM. 

The in vitro incubation data of cumulative gas production and gravimetric technique (IVDMD and 
IVCPD) were analyzed using the PROC MIXED of SAS. The in vitro cumulative gas production assay 
was the second step of a two-step analytical procedure (PROC NLIN and MIXED, respectively), which 
is described in Eq. 1, while the in vitro gravimetric analysis was considered as a repeated measure 
in Eq. 2. The treatments (NSBM and DSBM) were considered fixed effects and incubations random 
effects (Eqns. 1 and 2). The significance level of P<0.05 was considered to assume a difference 
between the treatments.

θij = μ + τi + rj + eij,                                                                          (1)

Table 2 - Amino acid profile of normal (NSBM) and damaged (DSBM) soybean meal 
Amino acid NSBM (%DM) DSBM (%DM) NSBM (%CP) DSBM (%CP) Difference (%DM)

Methionine 0.668 0.659 1.279 1.272 −1.347

Cystine 0.712 0.690 1.363 1.332 −3.089

Met+Cys1 1.356 1.324 2.597 2.557 −2.359

Lysine 2.990 2.951 5.726 5.700 −1.304

Threonine 1.986 1.950 3.803 3.766 −1.812

Tryptophan 0.657 0.654 1.258 1.263 −0.456

Arginine 3.690 3.694 7.067 7.135 0.108

Isoleucine 2.388 2.360 4.573 4.558 −1.173

Leucine 3.959 3.898 7.582 7.529 −1.540

Valine 2.457 2.427 4.705 4.688 −1.221

Histidine 1.327 1.303 2.541 2.516 −1.808

Phenylalanine 2.688 2.660 5.148 5.138 −1.041

Glycine 2.191 2.160 4.196 4.172 −1.414

Serine 2.595 2.565 4.970 4.954 −1.156

Proline 2.579 2.552 4.939 4.929 −1.046

Alanine 2.229 2.216 4.269 4.280 −0.583

Aspartic acid 5.949 5.889 11.39 11.375 −1.008
1	 Estimated by specific calibration equation. NIRS Calibration equation.

Table 3 - Chemical composition of normal (NSBM) and damaged (DSBM) soybean meal, ground corn (GC),  
and corn silage (CS)

Item NSBM DSBM GC CS

Dry matter (DM; g.kg−1 as fed) 932.3 937.1 944.3 309.0

Ash (g.kg−1 DM) 75.0 77.0 13.0 69.0

Organic matter (g.kg−1 DM) 857.2 859.6 987.0 931.0

Crude protein (g.kg−1 DM) 501.6 506.7 76.9 77.1

Crude fat (g.kg−1 DM) 8.6 9.3 86.97 82.56

NDF (g.kg−1 DM) 143.8 144.1 131.4 450.1

iNDF (g.kg−1 DM) 27.4 24.02 66.7 359.7

NDIN (g.kg−1 CP) 57.70 75.70 85.40 157.7

NDF - neutral detergent fiber; iNDF - indigestible NDF; NDIN - neutral detergent insoluble nitrogen.
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yijk = μ + τi + rj + δij + tk + (τ × t)ik + eijk,                                                      (2)

in which θij and yijk correspond to the estimated values for each parameter of the in vitro cumulative 
gas production model (Vf  in mL and k in h−1) and in vitro digestibility by gravimetric technique (IVDMD 
and IVCPD; g.kg−1), respectively. The Greek letters μ and τi represent the fixed parameters such that 
the mean for the i-th treatment was μi = μ + τi, in which i = 1 to 2, and δij is the random error between 
experimental units (incubation) within treatment or the covariance between repeated measurements 
within incubation; hence, we tested the first-order autoregressive covariance structure (AR (1)), 
compound symmetry (CS), unstructured (UN), and variance components (VC) as candidate structures 
and variance components (VC) as candidate structure, and the AICc values were adopted as selection 
method of the most likelihood covariance structure. The Latin letters rj, tk, eij, and eijk are random effects, 
the first being associated with the j-th (j = 1 to 2) incubation run, the second letter assigned to the 
effect of the k-th incubation times (h), and the third and fourth letters were considered random errors 
associated with the flasks in the j-th run (experimental unit) that received the i-th treatment between 
measurements within experimental units.

The statistical model for estimation of RDP and RUP using the three-step technique was:

yij = μ + τi + aj + eij,                                                                          (3)

in which yij denotes an observation in treatment i and animal j; the Greek letters μ and τi represent 
the fixed effects such that the first letter is the constant inherent in the model and the second is the 
treatment, in which i = 1 to 2 (following the explanation given in Eq. 1); the two rumen-cannulated 
animals (aj) were considered random effects (j = 1 and 2), and eij is the random error.

The data on TBWG, ADG, HCW, CY, DMI, and FE were analyzed using the PROC MIXED of the SAS, 
considering a randomized block design (Eq. 4). In contrast, diet responses were determined by linear, 
quadratic, and cubic effects. Because no cubic effects were presented among the evaluated variables, 
this effect was not shown in the results. Statistical effects were declared at P<0.05.

yijk = μ + τi + βj + τβij + eijk,                                                                  (4)

in which yijk is assigned as the performance and intake variables in the k-th animal (ADG, HCW, and CY, 
in this case k = 1, ..., 48) or pen (DMI, for this variable, k = 1, ..., 24) in the i-th treatment (τi; i = 1 to 2) 
and j-th block (βj; j = 1 to 2). The interaction between treatment × block was assigned by the expression 
τβij. The letters μ and eijk represent the constant inherent in the model and the random error assigned 
to each observation, respectively.

3. Results

For the AA profile, similar values were obtained for the two types of SBM (Table 2); however, some 
numerical differences were observed; thus, the DSBM presented a lower percentage for 16 AA  
out of the 17 that were measured compared with NSBM, which ranged from −0.456 to −3.089% for 
tryptophan and cystine, respectively. None of the aflatoxins B1, B2, G1, G2, and M2 were detected  
in either the normal and damaged soybean meals. In addition, the nutritional compositions of the  
NSBM and DSBM (DM, ash, OM, CP, CF, NDF, iNDF, and NDIN) were similar (Table 3). 

The total in vitro gas production and the in vitro cumulative gas production at 12, 24, 36, and 48 h of 
incubation estimated for NSBM was higher (P<0.05) than those estimated for DSBM. The ammoniacal 
nitrogen content (NH3-N) at 48 h of in vitro incubation was not different between NSBM and DSBM, 
since the P-value was ≥0.05 (Table 4). Furthermore, we must emphasize that the standard error value 
for NH3-N represented 30.56% of the mean (13.71 mg.dL−1) taking into account both soybean meals.

Statistical analyses of IVDMD and IVCPD assigned as repeated measures over time had the variance 
components among the other tested candidate structures (AR (1), CS, and UN) as the most likelihood 
covariance structure, using the lowest AICc value as the selection method. Henceforth, the DSBM 
showed lower IVDMD than NSBM, which was about 5% lower at 24 and 48 h (P>0.05), while the IVCPD 
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showed difference only at 24 h (P<0.05). After addition of pepsin-HCl into the flasks, to simulate the 
digestion occurring in the abomasum, there was no difference between the two types of SBM related to 
IVDMD or IVCPD (Figures 1a and 1b).

The DSBM presented higher RUP (P<0.05) and RUPCP RUPDM (P<0.05) when compared with NSBM  
that presented higher content of RDP (P<0.05). The digestible (ID) and indigestible (RUPu) fractions  
in the intestine were not different for the two qualities of SBM (P>0.05) (Table 5). 

The replacement levels of NSBM by DSBM in the diet caused a quadratic effect on the digestion rate 
as well as on in vitro cumulative gas production at each incubated time, except at 48 h (Table 6). The 
variables that had a quadratic effect showed β2 > 0, i.e., data behavior with upward-facing concavity.  
On the other hand, the DSBM levels did not affect total gas production or latency (Table 6). 

Table 4 - Kinetic parameters and in vitro cumulative gas production at specific incubation times for normal 
(NSBM) and damaged (DSBM) soybean meal

Item
Type of soybean meal

SE P-value
NSBM DSBM

TGP (mL) 106.0 103.2 11.8 0.008

K (mL.h−1) 0.0812 0.0800 0.0023 0.708

Gas 6 h (mL)1 22.7 22.5 1.4 0.827

Gas 12 h (mL)1 41.9 39.8 4.2 0.048

Gas 24 h (mL)1 69.9 66.5 6.0 0.046

Gas 36 h (mL)1 89.4 85.6 9.4 0.002

Gas 48 h (mL)1 98.0 94.2 10.6 0.001

NH3-N 48 h (mg. dL−1)2 17.38 10.04 4.19 0.050

TGP - total gas production; k - gas production rate; SE - standard error.
1	 In vitro gas production at times 6, 12, 24, 36, and 48 h.
2	 Ammoniacal-nitrogen content at 48 h of in vitro incubation.

Downward bars represent standard errors.

Figure 1 - Means for dry matter and crude protein digestibility at 24 and 48 h of in vitro incubation by rumen  
microbial population; total in vitro of dry matter (tdDM - a) and crude protein (tdCP - b) digestibility 
after digestion by rumen microbial during 48 h, following 24 h with pepsin-HCl incubation for both 
qualities of soybean meal: normal (NSBM; trt0) and damaged (DSBM; trt80).
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Table 5 - In situ and in vitro digestibility technique results for contents of crude protein (CP; g.kg−1 DM); rumen-
degradable protein (in situ step, RDP; g.kg−1 CP); rumen-undegraded protein (in situ step, RUP; g.kg−1 CP); 
intestinal digestibility of RUP (ID; g.kg−1 RUP), i.e., digestibility of the RUP that are subjected to treatment 
with pepsin-HCl and then pancreatin (in vitro steps); digestible RUP in in vitro steps as a function of dry 
matter (RUPDM g.kg−1 DM) and of CP (RUPCP g.kg−1 CP); and undigestible RUP as a function CP (RUPu g.kg−1 
CP) with CP for normal (NSBM) and damaged (DSBM) soybean meal 

SBM CP RDP RUP ID RUPCP RUPu RUPDM

NSBM 501.6 502.5 487.4 735.6 367.3 130.1 184.2

DSBM 501.7 428.3 571.6 761.4 435.3 136.4 220.5

P-value 0.183 <0.001 <0.001 0.497 0.017 0.760 0.012

Table 6 - Kinetic parameters of in vitro cumulative gas production from diets containing damaged soybean  
meal (DSBM) replacing normal (NSBM) soybean meal in diets of feedlot lambs

Item
DSBM level replacing NSBM (g.kg−1 of NSBM)

SE
P-value

0 333 667 1,000 L Q

TGP (mL) 182.5 174.9 177.8 175.1 6.8 0.446 0.660

k (mL.h−1) 0.100 0.079 0.088 0.090 0.003 0.016 <0.001

Lag (h)1 0.92 1.63 1.07 1.16 0.35 0.872 0.111

Gas 6 h (mL)2 39.0 28.8 32.8 32.7 1.391 0.266 0.001

Gas 12 h (mL)2 77.4 56.3 64.5 64.7 2.4 0.010 0.002

Gas 24 h (mL)2 136.9 108.4 122.0 123.6 3.6 0.115 0.004

Gas 36 h (mL)2 161.0 138.2 144.0 147.5 5.3 0.158 0.021

Gas 48 h (mL)2 178.8 163.3 168.6 167.8 5.3 0.254 0.177

NH3-N 48 h (mg. dL−1)3 7.43 5.47 5.55 4.73 0.529 <0.001 0.128

TGP - total gas production; k - gas production rate; L - linear effect; Q - quadratic effect.
1	 Latency time.
2	 In vitro gas production at times 6, 12, 24, 36, and 48 h.
3	 Ammoniacal-nitrogen content at 48 h of in vitro incubation.

Table 7 - Intake and digestibility of nutrients of growing-finishing lambs fed diets containing damaged soybean 
meal (DSBM) replacing normal (NSBM) soybean meal 

Item
DSBM level replacing NSBM (g.kg−1 of NSBM)

SE
P-value

0 333 667 1,000 L Q

Intake (kg.day−1)

DMI 1.35 1.31 1.36 1.43 0.042 0.120 0.188

DMIBW 3.82 3.73 3.71 3.81 0.081 0.898 0.245

OMI 1.27 1.23 1.28 1.35 0.039 0.120 0.187

CPI 0.181 0.177 0.182 0.191 0.005 0.156 0.201

NDFI 0.239 0.230 0.243 0.250 0.011 0.374 0.447

 Digestibility (g.kg−1 of DM)

DMDa 734.2 753.3 744.1 760.8 9.68 0.144 0.706

OMDa 768.4 783.4 771.0 784.0 8.00 0.334 0.862

CPDa 649.8 705.1 679.1 704.2 1.786 0.087 0.378

NDFD 339.7 390.1 328.9 390.9 2.299 0.379 0.802

DMI - dry matter intake; DMIBW - DMI expressed as % of body weight; OMI - organic matter intake; CPI - crude protein intake; NDFI - neutral 
detergent fiber intake; DMDa - apparent digestibility of dry matter; OMDa - apparent digestibility of organic matter; CPDa - apparent digestibility 
of crude protein; NDFD - neutral detergent fiber digestibility; SE - standard error; L - linear effect; Q - quadratic effect.
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Regarding the in vitro digestibility, the DSBM levels did not affect IVDMD or IVCPD at 48 h of incubation, 
which showed mean values of, respectively, 826.8 g.kg−1 (P = 0.471) and 935.7 g.kg−1 (P = 0.523).  
The increase of DSBM levels in diets caused a linear decrease (P<0.05) on ammonia concentration in 
fluid from the flasks at 48 h of in vitro incubation (Table 6).

In the in vivo trial, there was no effect (P>0.05) of DSBM levels in the diets on DMI and on apparent 
digestibility of DM, OM, CP, and NDF digestibility (Table 7). Consequently, the inclusion of the 
DSBM levels replacing NSBM in the diets did not cause effect (P>0.05) on TBWG, ADG, CG, DMI, FE,  
or CY (Table 8).

4. Discussion

Soybean and SBM are important sources of protein for human and animal nutrition worldwide, and 
thus there is a great interest in producing high quality grains to meet this demand and to preserve  
the grains and their byproducts to meet nutritional and food safety characteristics.

The occurrence of damages in soybean grains could cause many issues associated to chemical changes 
and toxins accumulation; however, some researchers (Lehmkuhl, 2011; Andrade, 2016) did not find 
any important changes in chemical composition or the presence of toxins in damaged soybean grains 
produced in Mato Grosso State. According to Lehmkuhl (2011), the presence of damage and the 
incidence of fungi do not have any influence on the nutritional composition of soybean grains in terms 
of oil and CP content.

In this study, the chemical composition between NSBM and DSBM (79.7% of damaged soybeans) 
was numerically similar (Table 3), an observation also verified by Lehmkuhl (2011). Additionally, the 
average values found for both types of SBM are close to those presented on CQBAL 3.0 (Valadares Filho 
et al., 2016) for DM, OM, ash, and CP of 886.3, 933.9, 64.7, and 489.0 g.kg−1, respectively. These results 
indicate that even when presenting a high percentage of damage (79.7%), soybean grains used to 
produce soybean meal did not change the major chemical compounds such as OM, CP, and NDF. 

Because SBM presents a high CP content, even when included in a small percentage of the diet as in this 
study (14% DM basis), its CP represents at least 50% of total CP in the diet. In this way, for ruminants, 
every CP source needs to be evaluated considering three different aspects: its proportion of RDP and, 
consequently, of RUP, the intestinal digestibility of RUP, and its AA profile (Santos et al., 1998). Thus,  
any change in composition of its CP can affect the N availability for the rumen microbial population 
(RDP) or AA absorption in the small intestine (RUP) (Van Soest, 1994; Broderick, 2018). 

Table 8 - Animal performance estimates of growing-finishing lambs fed diets containing damaged soybean  
meal (DSBM) replacing normal (NSBM) soybean meal 

Item
DSBM level replacing NSBM (g.kg−1 of NSBM)

SE
P-value

0 333 667 1,000 L Q

IBW (kg) 25.21 24.83 25.60 25.32 0.376 0.516 0.894

FBW (kg) 42.56 42.54 41.77 44.23 1.096 0.392 0.263

TBWG (kg) 17.35 17.70 16.16 18.90 1.026 0.498 0.251

ADG (g.d−1) 284.6 290.3 264.9 310.0 0.016 0.502 0.248

WCW (kg) 21.64 21.08 21.04 21.60 0.574 0.952 0.341

CY (%) 50.83 50.00 50.49 48.82 0.702 0.085 0.557

CG (kg) 8.48 7.92 7.88 8.44 0.574 0.952 0.341

FE (dmls) 0.219 0.236 0.214 0.237 0.009 0.429 0.716

IBW - initial weight; FBW - final weight; TBWG - total weight gain; ADG - average daily gain; WCW - warm carcass weight; CY - carcass yield;  
CG - carcass gain; FE - feed efficiency (dmls - dimensionless); SE - standard error; L - linear effect; Q - quadratic effect.
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Thus, to evaluate the effects of damage occurring in soybean grains used for producing SBM, the 
objective of this study was to evaluate DSBM to try to find any change in its chemical composition, but 
especially some alteration related to its CP, by determining the in vitro and in situ rumen degradability 
and estimating its RUP and intestinal digestibility, the AA profile of each SBM, as well as its effect on 
animal performance. 

When NSBM and DSBM were evaluated by in vitro incubation with rumen inoculum, we observed 
that DSBM was digested in rumen to a lesser extent compared with NSBM, which is confirmed by 
lower total gas production and IVDMD (Table 4 and Figure 1). However, when HCl-pepsin solution 
was added into the incubation flasks to simulate the effects of abomasum secretion, the differences 
(P>0.05) found using only rumen inoculum disappeared. This indicates that DSBM presents some 
compound that is difficult to digest or some negative effect on rumen microbial population compared 
with NSBM, which does not happen when DSBM was subjected to acid and enzymatic secretion  
from an animal. 

The same behavior observed in vitro was also found in situ when both types of SBM were incubated for 
27 h in the rumen of two beef cattle in grazing to estimate RDP and RUP. The DSBM presented a lower 
fraction of RDP (about 7%) and, consequently, a higher fraction RUP and digestible RUP (about 8%) 
when compared with the NSBM (Table 5). The RDP and RUP values estimated for NSBM are similar 
to those observed by Cabral et al. (2001) of 508.6 and 491.4 g.kg−1 of CP, but higher than the values 
estimated by Erasmus et al. (1994) of 462.0 and 532.0 g.kg−1 of CP, respectively. The similarity of values 
for RDP and RUP obtained in this study to values estimated by another author in Brazil (Cabral et al., 
2001) and the difference from values observed by authors (Erasmus et al., 1994) from other countries 
reflects some peculiarities associated to the type of soybean planted as well as to the processing 
methods used for producing SBM in each country.

Although the major type of damage in the soybean used for producing the DSBM in this study was 
fermented grains, the percentage of heat-damaged grains was 4.1%, which partially helps to explain 
the lower RDP observed for DSBM compared with NSBM. In the literature, the only type of damage that 
has been evaluated is the one caused by heating soybean or SBM to decrease RDP and to increase RUP, 
aiming to improve N efficiency use by the animal (Erasmus et al., 1994; Broderick, 2018).

Mjoun et al. (2010) estimated lower RDP for expeller SBM (463.0 g.kg−1 of CP) compared with 
solvent SBM (677.0 g.kg−1 of CP), while Demjanec et al. (1995) estimated RUP ranging from 349.0 
to 929.0 g.kg−1 of CP of SBM untreated or roasted at increased temperatures. The last authors 
suggested that RUP cannot be assumed as a fixed value, since it can be affected by the quality of 
the grain, processing method, method used for obtaining the estimate, and effect of incubation time 
and particle size. Bach et al. (2005) highlighted that many factors can affect the proportion of RDP 
and RUP of feeds used for ruminants such as protein solubility, AA profile, presence of sulfur bonds, 
previous treatment of feed with heating or formaldehyde, rumen pH, and digestion passage rate of 
the particles from the rumen. 

These results regarding the in situ and in vitro digestibility of DM and CP of DSBM are interesting 
because they can be interpreted from two different perspectives. The first one would be to consider the 
decrease in RDP, which can affect N (AA and NH3-N) availability for the rumen microbial population. 
However, considering that SBM frequently presents a CP that is quickly degraded in the rumen and, 
thus, can allow N losses by urinary excretion, the decrease in RDP can help improve N use efficiency  
by the animal (Van Soest, 1994).

To verify if the DSBM would cause a shortage of N availability in the rumen when incubated alone or as 
a part of the diet, the NH3-N concentration in the fluid from the in vitro incubation flasks was measured 
after 48 h of incubation with rumen inoculum. The linear drop in NH3-N content in 48 h of in vitro 
incubation (Table 6), as the level of DSBM was increased in the diets, is justified by the lower PDR 
content of DSBM in relation to NSBM that we found (Table 5), since the two variables in question have 
a direct relationship. It is also important to emphasize that the absence of effect of the NH3-N content  
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in SBM after 48 h of incubation (Table 4) could be because the method is highly variable, leading to 
large standard error of the values observed for NH3-N.

The in vitro NH3-N concentrations observed for experimental diets that had higher DSBM levels, 
4.73 mg.dL−1, seems to be close to the minimum concentration suggested by Satter and Slyter (1974) 
of 5 mg.dL−1 for maximizing microbial growth in vitro and, thus, it could be said that even presenting 
a lower RDP than NSBM, DSBM was able to maintain adequate ammonium concentration for rumen 
microbial growth. 

The amount of NH3-N in the rumen is a result of AA fermentation as well as urea hydrolysis (from the 
diet or endogenous origin) by rumen microorganisms and represents an important source of N for  
many organisms in the rumen, especially for fibrolytic ones that seem to use only NH3 as N source for 
growth (Russell et al., 1992). Thus, NH3-N concentrations are used as an indicator of N availability in the 
rumen, for which we intend to prevent too low (< 5 mg.dL−1) or too high (> 20 mg.dL1) concentrations, 
which are associated to shortage or excess of N in the rumen that can limit the microbial protein 
synthesis or increase the N losses from the diet by urine, respectively (Broderick, 2018).

Bach et al. (2005), by mixed model regression analysis using data from the literature (n = 285), pointed 
out that the efficiency of microbial protein synthesis (EMPS) was not affected by NH3-N concentration 
in the rumen. The same authors also highlighted this in a report of the NRC (2001), which suggested 
that with an abundance of N in the rumen, the EMPS tends to be lower than when N availability is 
limiting for bacterial growth. Taking all this information together, it would be good to remember  
that EPMS should not be confused with the flow of microbial protein synthesis, which represents the 
actual amount of microbial protein that the small intestine is able to digest by enzymatic secretion  
by the animal and that contributes to meeting the animal’s requirements of metabolizable protein  
(NRC, 2001). Although the terms apparently mean the same thing, it is not true, as often a higher 
microbial protein synthesis is not necessarily observed in higher EPMS.

The in vitro NH3-N concentrations are just an indicator of protein degradation and its use by rumen 
microorganisms, which needs to be interpreted carefully, because the N recycling from the liver, which 
happens in the animal, does not occur in the flasks, and can contribute a significant amount of N  
for microbial growth, which depends on N intake, assuming a higher percentage of N intake in low-CP 
diets and a lower percentage in high-CP diets (NRC, 1985).

The lower digestibility of DSBM by rumen microorganisms can also be related to lower AA  
content in DSBM compared with NSBM, especially for branched AA that, when fermented, produce 
branched-chain fatty acids, which are known to play an important role in the ruminal environment 
(Tedeschi et al., 2000), being considered essential for many rumen organisms, including most  
fiber-degrading microorganisms (Yang, 2002). 

When we evaluated the DSBM included in the diets and its effects on in vitro incubation (Table 6), 
we observed that the inclusion of DSBM levels up to 100% replacing NSBM had no effect on total  
in vitro gas production, but there was a quadratic effect on digestion rates and on gas production  
at specific reading times (from 6 until 36 h), but there was no effect of DSBM levels at 48 h (Table 6).  
It could be that negative effects of DSBM on gas production were observed only at initial digestion 
events, which disappeared at 48 h of incubation. In addition, IVDMD and IVCPD were not affected 
by DSBM levels in the diet, but were measured only at 48 h of incubation, coinciding with the same 
incubation times that DSBM levels did not affect gas production, suggesting that these events should  
be monitored at early incubation times as well. 

To measure the real effects of DSBM levels in the feedlot lamb diets, we fed 48 growing/finishing lambs 
over 60 days and measured DMI, nutrient digestibility, and animal performance. The DMI, expressed 
in both as kg.day−1 and percentage of BW, and apparent digestibility of DM were not affected by the 
inclusion of DSBM (Table 7), with the DMI values being similar to those predicted by Cabral et al. 
(2008a). Following the results of DM, we also did not find deleterious effect of DSBM levels on the 
intake and digestibility of other nutritional fractions analyzed (Table 7). Therefore, the nutritional value  
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of DSBM is no different than NSBM. It is important to note that the intake and digestibility of nutrients  
are elementary variables to estimate the nutritional value of a given feedstuff (Van Soest, 1994).

The DMI is the most important variable affecting animal productivity, since 60 to 90% of the variation 
observed in digestible energy intake was explained by DMI variation, while the digestibility only 
explains from 10 to 40% of this variation (Crampton et al., 1960; Reid, 1961; Mertens, 1987). Thus, the 
absence of a negative effect of DSBM on DMI is a good indicator related to its potential to be used in 
diets for ruminants.

It would be expected that replacement of NSBM by DSBM could cause negative effects on DMI,  
nutrient digestibility, or animal performance, considering its lower DM and CP digestibility in the 
presence of rumen microbial population in vitro or in situ. Considering that the rumen constitutes a 
major part of the gastrointestinal tract in ruminant animals, in which around 60 to 70% of all dietary 
compounds are digested by the rumen microbial population (Van Soest, 1994), any negative effect on 
rumen microbial population could affect total digestion of nutrients as well as animal performance. 

Additionally, the lower RDP estimated for DSBM could cause a shortage in N for microbial growth 
and, consequently, limit the flow of microbial protein to the duodenum. Considering that microbial 
growth is the major source of AA to ruminant animals, representing around 50 to 85% of metabolizable 
protein in the duodenum (Storm and Ørskov, 1983), a limitation of N availability in the rumen could 
present negative effects on animal performance. However, even presenting lower RDP, if the diets 
containing DSBM do not cause a shortage in N available in the rumen, the higher RUP of DSBM could 
improve the efficiency of N use by the animal assuming that more of its CP would be digested in the 
intestine than in the rumen, where significant losses of N associated with rumen fermentation of AA 
could occur (Broderick, 2018). In this way, Demjanec et al. (1995) highlighted that even using high 
temperatures for processing SBM that increase the RUP, if rumen NH3-N availability is not limiting  
for microbial growth, probably it will increase the N flow to the duodenum and, consequently, will 
increase animal performance, especially for animals presenting a high demand of metabolizable  
protein such as high-producing dairy cows and fast-growth animals.

Borucki Castro et al. (2007) evaluated four different methods (solvent-extracted SBM, expeller 
SBM, lignosulfonate SBM, and heat and soyhulls SBM) for treating SBM on rumen degradability  
and intestinal digestibility of AA by a combination of in situ and in vitro techniques and by mobile 
nylon bag technique using rumen- and duodenal-fitted dairy cows. Soybean meal subjected to 
expeller, lignosulfonate, and heat + soybean hulls treatment methods presented more CP and AA 
protected from ruminal degradation than solvent-extracted SBM, in which the RDP increased  
from 420.0 to 680.0 g.kg−1 of CP. The authors concluded that based on in situ (rumen and small 
intestine) procedures, heat and chemical treatment of SBM increased AA availability compared with 
solvent-extracted SBM, and thus these methods present a higher potential to enhance the AA supply 
to the small intestine of high-producing dairy cows.

It is also important to highlight that this is the first study that aimed to evaluate the effects of naturally 
caused damage of soybean grain and its effects on the nutritive value of SBM, considering that in the 
literature, there is some information related to damage caused by heating soybean or SBM to evaluate 
it to control protein degradation in the rumen (Van Soest, 1994; Broderick, 2018). 

In this study, we evaluated SBM produced from damaged grains by in vitro and in situ and in vivo 
studies and, even distinguishing between two types of SBM (DSBM and NSBM) related to in vitro or 
in situ degradability, in which the DSBM presented lower digestibility than NSBM, we did not find any 
effect when we evaluated the DSBM in lamb diets. Although it is known that SBM has been included 
in a small percent of the diet (14%), typical for CP sources, the CP from SBM contributes 51% of 
total CP in the diet. Thus, when we replaced CP from NSBM by CP from DSBM, its CP contributed  
0, 17, 34, and 51% of total CP in the diet, respectively, for diets containing 0, 333, 667, and 1,000 g.kg−1  
of NSBM replaced by DSBM. However, even replacing around 51% of dietary CP from NSBM  
with CP from DSBM, which presents lower RDP, we did not observe any negative effect on intake, 
digestibility, and animal performance. 
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5. Conclusions

Damaged SBM presents similar chemical composition, but lower rumen degradable protein, total  
gas production, and in vitro dry matter digestibility than normal SBM. However, considering the 
absence of negative effects of inclusion of levels 0, 333, 667, and 1,000 g.kg−1 of damaged SBM in  
feedlot diets on nutritional and animal performance variables, the same may replace normal soybean 
meal in feedlot diets for ruminants.
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