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ABSTRACT - We ensiled different levels of okara and ground corn to evaluate the effects 
on the fermentative pattern, aerobic stability, and chemical composition of resulting 
silages. The experimental design was completely randomized with four replicates per 
treatment. The okara levels were (dry matter basis): control (without okara) and 200, 
300, 400, and 500 g kg−1 okara, with four replicates per treatment. Control silage did 
not contain okara, but water was added to adjust the moisture content (400 g kg−1 
as fed). Mixtures were ensiled in lab-scale silos and stored for 150 days. Compared 
with the control silage, okara inclusion linearly increased crude protein (from 89.1 to 
251 g kg−1 DM), ether extract (from 39.6 to 136 g kg−1 DM), neutral detergent fiber (from 
79.9 to 174 g kg−1 DM), acid detergent fiber (from 22.4 to 119 g kg−1 DM), and ash (from 
12.2 to 32.4 g kg−1 DM), whereas decreased dry matter content and in vitro dry matter 
digestibility (from 830 to 730 g kg−1 DM). The use of okara linearly increased lactic acid 
concentration but also intensified secondary fermentation. On the other hand, aerobic 
stability of silages increased due to okara inclusion because of the higher amount of 
short-chain fatty acids, such as butyric and acetic acids, which accumulated during 
fermentation. Okara inclusion in corn grain silage must be conditioned to the dry matter 
content at ensiling, but must not exceed 200 g kg−1 on dry matter basis.
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Introduction

Okara is the main byproduct of soymilk and tofu manufacturing process, presenting low commercial 
value, but good nutritional quality (O’Toole, 2004; Bowles and Demiate, 2006). Of each 1000 L of 
soymilk manufactured, approximately 250 kg of okara are produced. In this way, about 14 million tons 
of okara are produced annually worldwide (Choi et al., 2015). 

During soymilk and tofu production, soybean grains are washed, macerated, and then ground and 
heated. Afterwards, the ground grains go through a filtration process that separates it in an aqueous 
extract (soymilk) and okara (Bowles and Demiate, 2006). Due to the soybean wet-grinding process, 
okara presents from 72 to 77% moisture; however, it contains 95% of the solid components of soybean 
(Perussello et al., 2012; Lee et al., 2019). Nevertheless, differently from other byproducts of soybean 
manufacturing (e.g., soybean meal, soybean hulls), the chemical composition of okara is variable and 
mainly influenced by soybean variety and extraction process (Redondo-Cuenca et al., 2008; Pauletto 
and Fogaça, 2012). 
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The crude protein (CP) content of okara ranges from 240 to 375 g kg−1 dry matter (DM), whereas ether 
extract (EE) content ranges from 93 to 223 g kg−1 DM (Jiménez-Escrig et al., 2008; Mateos-Aparicio et al., 
2010a; Mateos-Aparicio et al., 2010b; Diaz-Vargas et al., 2016). Due to the high moisture and nutrient 
content, okara is extremely prone to spoilage, increasing drying costs and limiting its commercial use 
in natura (Redondo-Cuenca et al., 2008; Li et al., 2013). Therefore, ensiling is a promising alternative 
to preserve its quality. 

Ensiling is natural acidification process through carbohydrate fermentation by lactic acid bacteria. 
However, excessive moisture (as observed in okara) leads to effluent production and clostridial 
fermentation (McDonald et al., 1991). In addition, the high CP content of okara increases the buffer 
capacity, and the high EE levels impair the development of lactic acid bacteria, hampering pH drop 
and adequate conservation (Rooke and Hatfield, 2003). An interesting alternative to reduce moisture 
content is the addition of dry grains (e.g., corn) to okara before ensiling, creating an easy mixture to 
ensile. In addition, the high-water level of okara might be used to rehydrate the corn grains, which 
could increase corn starch digestibility due proteolysis (Hoffman et al., 2011). However, there is a gap 
of information about the ideal ratio of okara and corn to ensile. 

Therefore, we aimed to evaluate different levels of okara inclusion in corn grain silage on the chemical 
composition, fermentative pattern, and aerobic stability in the respective silages. 

Material and Methods

The experiment was carried out in Maringá (23°25'38" S and 51°56'15" W), located in the state of 
Paraná, Brazil. 

For ensiling, flint corn grains (Zea mays) were ground in a stationary grinder (10-mm sieve). Before 
ensiling, the DM content of okara and corn were estimated using a microwave oven, for further 
calculations of okara inclusion in corn grain silage, based on DM of both ingredients. The DM estimated 
by microwave oven was 880 g kg−1 DM for okara and 190 g kg−1 DM for corn. The treatments consisted 
of mixing different levels of okara to ground corn in the levels (DM basis): 0 (control) and 200, 300, 
400, and 500 g kg−1 okara. The okara levels corresponded, in wet basis, to an inclusion of 534, 660, 
751, and 819 g kg−1 as fed. For each okara level, four piles (14 kg of fresh matter each) of a mixture of 
okara and corn were prepared per treatment. Thus, the water contained in okara was used to rehydrate 
the ground corn. All treatments were inoculated with the starter cultures Lactobacillus plantarum MA 
18/5U and Propionibacterium acidipropionici MA 26/4U (Lallemand Animal Nutrition) to achieve a 
theoretical dose of 1×105 cfu/g fresh matter. From each pile, an experimental PVC (polyvinyl chloride) 
silo (40 cm length × 20 cm diameter, 0.013 m3) was filled (11 kg per silo), aiming to reach a compaction 
density of 900 kg fresh matter m–3. For the treatment without okara (control), corn was rehydrated to 
reach a DM content of 600 g kg−1 as fed (moisture content of 400 g kg−1 as fed), inoculated and ensiled 
as aforementioned. All silos were sealed with white-on-black polyethylene film and stored for 150 days 
at room temperature (23.3±4 °C). 

Before ensiling (Table 1) and at silo opening, sub-samples were taken (500 g) and dried in a forced-air 
oven at 55 °C for 72 h. Dried sub-samples were ground in a Willey mill (1 and 2 mm-sieves) for 
further analyses. Dry matter (105 °Coven; method 967.03), CP (method 990.03), EE (method 920.39), 
and ash (method 942.05) were determined according to AOAC (1990); neutral detergent fiber, using 
thermostable alpha-amylase and ash inclusive (aNDF), and acid detergent fiber (ADF) were assessed 
according to Mertens (2002) and Van Soest (1963), respectively. 

In vitro DM digestibility (IVDMD) was determined as proposed by Holden (1999), using the artificial 
rumen developed by Ankom® (Ankom Technology, Macedon, NY). The rumen fluid (inoculum) was 
collected from a cannulated Holstein steer (480±20 kg body weight [BW]) fed a total mixed ration 
containing (DM basis) corn silage (600 g kg−1) and concentrate mixture (400 g kg−1) during 15 days 
before fluid sampling. Multilayer polyethylene polyester cloth bags (F57 filter bag; Ankom Technology, 
Macedon, NY) were used for incubation (0.25 g per bag) of ground samples (2 mm) and placed in 
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digestion jars. The incubation was carried out for 24 h, after which, jars were removed from the chamber 
and bags rinsed with distilled water for cleaning.

The fermentation parameters were evaluated in a water extract prepared from each silo, by mixing 
25 g fresh silage with 225 mL distilled water. The mixture was homogenized with an industrial blender 
(Model TA-02N; Skymsen, Brusque, SC, Brazil) during 1 min, and the extract was filtered with a 
cheesecloth. The pH in aqueous extracts was determined using a digital potentiometer (Digimed DM-22, 
São Paulo, Brazil). The supernatant (2 mL) was pipetted and stored in Eppendorf tubes at −20 °C for 
further analyses. Lactic acid concentration was determined by a colorimetric method (Pryce, 1969) 
in a MARCONI® Janway 6305 spectrophotometer, with λ = 565 nm. The ammonia content (NH3-N) 
was determined according to Detmann et al. (2012). Alcohol content, esters, and volatile fatty acids 
were determined by gas chromatography equipped with a mass-spectrophotometry detector (GCMS 
QP 2010 plus, Shimadzu®, Kyoto, Japan) and capillary column (Stabilwax, Restek®, Bellefonte, USA; M, 
0.25 mmø, 0.25 µm Crossbond Carbowax polyethylene glycol).

The aerobic stability trial was performed as described by Jobim et al. (2007). From each silo, 3 kg of 
loosely fresh silage were taken and placed in plastic buckets (20 L). Buckets were stored in a controlled 
temperature chamber during 168 h at 25 °C. The pH measurement was performed daily at 08.00 h 
according to Silva and Queiroz (2002) to evaluate aerobic deterioration intensity. 

All Statistical analysis was performed using the MIXED procedure of SAS (Statistical Analysis 
System, version 9.0). The experimental design was completely randomized, evaluating control silage 
(no okara addition) and four okara levels, with four replicates per treatment, resulting in 20 silos. The 
mathematical model adopted for mathematical procedures was: 

Yij = μ + Oj + εij,

in which Yij = observation of the j-th treatment in the i-th observation, µ = overall mean, Oj = effect 
of okara level j, and εij = random error associated with each observation Yij. Degrees of freedom for 
treatment were partitioned into two single degree of freedom orthogonal contrasts: linear effect 
and the quadratic effect of okara level. Contrasts were declared significant at P≤0.05. Coefficients of 
contrasts were generated using the IML procedure of SAS. For the linear contrast, the coefficients were 
−0.73, −0.21, +0.05, +0.31, and +0.57, whereas for the quadratic contrast, the coefficients were +0.49, 
−0.47, −0.46, −0.12, and 0.56.

Silage pH during aerobic exposure was analyzed as repeated measurements over time. The 
mathematical model adopted for mathematical procedures was: 

Yijk = μ + Oi + δij + Tk + (OT)ik + εijk,

in which Yijk = pH value at k-th aerobic exposure period, in j-th silo and i-th okara level; µ = overall 
mean; Oi = fixed effect of okara level i; δij = random effect of silo j in Okara level i; Tk = fixed effect of 
aerobic exposure period k; (OT)ik = interaction effect between okara level and aerobic exposure period; 
and εijk = random error associated with each observation Yijk. Covariance structure was chosen by 

Table 1 - Chemical composition of okara, corn grain, and mixtures before ensiling (g kg−1 DM unless stated)

Item Okara Corn grain
Okara level (g kg−1 DM)

0 200 300 400 500

Dry matter (g kg−1 as fed) 194 880 594 520 451 371 348

Organic matter 952 988 987 982 979 976 975

Crude protein 299 88.6 88.6 131 181 209 240

Neutral detergent fiber 277 79.9 132 133 159 163 176

Acid detergent fiber 176 26.5 26.5 44.8 53.5 79.6 90.8

Ether extract 181 39.5 40.6 66.5 94.9 111 136



R. Bras. Zootec., 49:e20190184, 2020

Effect of okara levels on corn grain silage
Tres et al.

4

considering the lowest Akaike Information Criterion (Littell et al., 1998). Structures of covariance tested 
included variance compounds (VC), compound symmetry (CS), first-order autoregressive (AR (1)), and 
unstructured (UN).

Results

A quadratic effect (P<0.01) was observed in pH values at silo opening due to okara inclusion (Table 2). 
Okara addition in silages linearly increased the contents of acetic (P<0.01), propionic (P<0.01), and 
valeric acids (P<0.01), ethanol (P<0.01), 2,3-butanediol (P<0.01), 1-propanol (P<0.01), methanol 
(P<0.01), ethyl acetate (P<0.01), 2-butanol (P<0.01), and propyl acetate (P<0.01). Okara addition 
linearly decreased the NH3-N content in silages (P<0.01), and a quadratic behavior was observed for 
lactic acid (P<0.05), butyric acid (P<0.01), and acetone (P<0.05). 

An interaction (P<0.01) between okara level and aerobic exposure was observed for silage pH during 
the aerobic stability trial (Figure 1). The corn grain silage without okara inclusion showed lower pH 
at the begging (0 h) of aerobic exposure; however, a rapid increase in pH was observed after 48 h 
of aerobic exposure. The silages containing 200 and 300 g kg−1 okara remained stable up to 96 and 
120 h after exposure, respectively. In silages prepared with 400 and 500 g kg−1 okara, the pH slightly 
increased after 168 h of aerobic exposure.

The DM (P<0.01) content and IVDMD (P<0.01) linearly decreased (Table 3) as Okara level increased in 
silages. An opposite effect was observed for CP (P<0.01), EE (P<0.01), aNDF (P<0.01), and ADF (P<0.01) 
and ash (P<0.01), which presented a positive linear slope as okara inclusion increased. 

Table 2 - pH values and fermentation profile of okara and corn grain-mixed silages

Item
Okara level (g kg−1 DM)

SEM
P-contrast1

0 200 300 400 500 L Q

pH 3.92 4.43 4.56 4.31 4.23 0.10 0.05 <0.01

NH3-N (g kg−1 N) 58.0 44.6 52.6 42.5 28.5 2.99 <0.01 0.07

Lactic acid (g kg−1 DM) 12.7 10.4 10.1 26.8 19.7 1.62 <0.01 0.01

Acetic acid (g kg−1 DM) 3.40 16.1 26.7 37.5 32.2 3.48 <0.01 0.20

Ethanol (g kg−1 DM) 1.90 1.30 3.60 6.60 6.90 0.81 <0.01 0.05

1,2-Propanediol (g kg−1 DM) 1.00 9.20 6.80 10.8 7.20 2.10 0.02 0.06

Butyric acid (g kg−1 DM) 0.80 0.40 3.60 6.10 24.8 2.89 <0.01 <0.01

2,3-Butanediol (g kg−1 DM) 0.20 0.90 2.90 4.80 4.20 0.48 <0.01 0.76

Propionic acid (g kg−1 DM) 0.10 1.30 6.00 11.9 9.80 1.31 <0.01 0.56

1-Propanol (mg kg−1 DM) 69.3 422 2419 5264 4643 6486 <0.01 0.30

Ethyl lactate (mg kg−1 DM) 42.5 8.75 9.50 26.8 17.0 8.07 0.10 0.03

Methanol (mg kg−1 DM) 17.0 41.5 94.0 131 125 12.0 <0.01 0.99

Isovaleric acid (mg kg−1 DM) 12.3 42.3 149 257 254 98.9 0.05 0.77

Ethyl acetate (mg kg−1 DM) 11.0 3.50 10.0 66.0 34.8 8.00 <0.01 0.19

Isobutyric acid (mg kg−1 DM) 10.0 46.5 111 169 191 60.3 0.02 0.76

Isopropyl alcohol (mg kg−1 DM) 9.50 10.0 39.0 162 467 112.9 0.01 0.07

Valeric acid (mg kg−1 DM) 7.25 25.3 305 615 2081 319 <0.01 0.01

Acetone (mg kg−1 DM) 6.25 29.5 59.8 32.8 42.8 6.96 <0.01 0.02

2-Butanol (mg kg−1 DM) 6.00 10.3 123 296 546 49.0 <0.01 <0.01

Propyl acetate (mg kg−1 DM) 1.00 3.75 23.8 119 53.3 14.1 <0.01 0.80

DM - dry matter; SEM - standard error of the mean. 
1	 L - linear effect; Q - quadratic effect.
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Discussion

The fermentation profile was affected by okara addition, mainly because of the reduction in DM 
content. Lactic acid content in our trial was within normally observed in rehydrated corn grain 
silage (from 5 to 20 g kg−1 DM) (Morais et al., 2017; Kung Jr. et al., 2018). Lactic acid is a strong acid 
(pKa 3.86) and mainly responsible for pH drop in silage. Since okara addition stimulated lactic acid 
synthesis, a reduction in pH values should be expected; however, an opposite behavior was observed. 
The increase in CP and ash contents (as observed in our trial) enhances buffer capacity in silage, 
which, coupled with high moisture might hamper the speed of pH drop, extending the fermentation 
process (Rooke and Hatfield, 2003). However, pH values at silo opening were within normally found 
in rehydrated grain silages (from 4.0 to 4.5) (Jobim et al., 2010; Tres et al., 2014; Kung Jr. et al., 2018). 
A rapid pH drop decreases the activity of spoilage microorganisms (e.g., enterobacteria, clostridia, 
bacilli, and fungi) and mitigates the negative effects of these microorganisms on the silage nutritional 
quality (Muck, 2010).

The butyric acid values found were higher than acceptable in rehydrated corn grain silage (below 
1 g kg−1 DM) (Mahanna and Chase, 2003), indicating clostridial activity due to the high-moisture 

Table 3 - Chemical composition of okara and corn grain-mixed silages (g kg−1 DM unless stated)

Item
Okara level (g kg−1 DM)

SEM
P-contrast1

0 200 300 400 500 L Q

Dry matter (g kg−1 as fed) 594 508 411 344 293 11.9 <0.01 0.26

Crude protein 89.1 136 173 209 251 7.09 <0.01 0.04

Ether extract 39.6 66.5 94.9 111 136 4.60 <0.01 0.12

Neutral detergent fiber 79.9 105 123 150 174 3.77 <0.01 <0.01

Acid detergent fiber 22.4 41.1 70.1 104 119 4.82 <0.01 0.01

Ash 12.2 18.3 24.0 27.1 32.4 0.80 <0.01 0.16

IVDMD 830 754 763 753 730 10.3 <0.01 0.08

IVDMD - in vitro dry matter digestibility; SEM - standard error of the mean.
1	 L - linear effect; Q - quadratic effect.

SEM = 0.332; P<0.01 for the interaction okara level × aerobic exposure.

Figure 1 - pH values during aerobic exposure in corn grain silages containing different okara levels.
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levels in silage (Jobim and Nussio, 2013). Another evidence of clostridial fermentation was the 
increase in valeric and isovaleric acids and acetone contents (Pahlow et al., 2003; Rooke and Hatfield, 
2003). Clostridia development is generally linked to high DM losses as well as synthesis of biogenic 
amines and even toxins (e.g., botulin toxin), reducing the silage hygienic quality (Pahlow et al., 2003; 
Scherer et al., 2015). On the other hand, ammonia synthesis was reduced due to okara inclusion, 
indicating a lower deamination activity in those silages (McDonald et al., 1991).

Acetic acid content was higher than lactic acid in our trial, showing a higher predominance of 
heterofermentative pathways in silages even with the inoculation of homofermentative bacteria. 
During the first stages of fermentation, enterobacteria play an important role in the acetic acid 
synthesis; however, other microorganisms such as heterofermentative bacteria can also produce acetic 
acid (McDonald et al., 1991). Moreover, Lactobacillus buchneri-like strains consume sugars and lactic 
acid, increasing acetic acid content in silage (Holzer et al., 2003). According to Li and Nishino (2011), 
low DM content and long storage periods (as observed in our trial) may intensify acetic acid formation; 
however, acetic acid is a strong antifungal compound, increasing aerobic stability during feed-out phase 
(McDonald et al., 1991; Danner et al., 2003). 

A significant accumulation of 1,2-propanediol was observed in okara silage, also demonstrating activity 
of Lactobacillus buchneri-like strains in silages (Oude Elferink et al., 2001). In addition, Lactobacillus 
diolivorans is capable of converting 1,2-propanediol to similar equimolar amounts of 1-propanol and 
propionic acid (Krooneman et al., 2002). However, the concentration of propionic acid was greater 
than 1-propanol in our study, suggesting that propionic acid might have been formed by other 
microorganisms, such as clostridia, yeasts, and propionibacteria (McDonald et al., 1991; Rooke and 
Hatfield, 2003).

Okara inclusion increased the concentration of all alcohols normally found in silage. Ethanol is the 
main alcohol produced during silage fermentation and normally observed in high-moisture corn grain 
silage from 2 to 20 g kg−1 DM (Kung Jr. et al., 2018). Enterobacteria, heterolactic bacteria, and yeast 
produce ethanol during silage fermentation (Rotz and Muck, 1994; Kung Jr. et al., 2018). However, 
according to Kung Jr. et al. (2018), ethanol content above 30-40 g kg−1 DM may be associated with high 
yeast development. Other alcohols such as 1-propanol and 2-butanol are also produced during yeast 
development (Kung Jr. and Shaver, 2001; Pahlow et al., 2003). Ethanol synthesis usually increases in 
moist silages (Buchman-Smith et al., 2003). Besides the high losses associated with ethanol synthesis, 
ethanol is also extremely volatile, enhancing DM losses during feed-out phase (Rooke and Hatfield, 
2003). Furthermore, the accumulation of 2,3 butanediol is also related to enterobacteria development, 
whereas methanol may be synthesized by clostridia or during pectin demetallation by plant enzymes 
(stimulated by low DM condition) (Hippe et al., 1992; Fall and Benson, 1996; Steidlová and Kalac, 2002; 
Rooke and Hatfield, 2003). In addition, alcohol formation is also linked to ester presence in silage 
(by abiotic esterification of carboxylic acids and alcohols under low pH conditions), as observed by 
higher contents of ethyl acetate (acetate plus ethanol) and propyl acetate (acetate plus n-propanol) in 
okara silages (Hangx et al., 2001; Weiss, 2017).

Rehydrated corn grain silage is highly prone to aerobic deterioration during feed out-phase (as 
observed in silage without okara) (Morais et al., 2017). According to Kung Jr. et al. (2018), silages 
with high butyric acid content (as observed in okara silages) are stable when exposed to air 
because of the strong antifungal characteristic of butyric acid. Moreover, other short-chain fatty 
acids are also related to lower spoilage during feed-out phase such as propionic acid and acetic 
acid (McDonald et al., 1991; Danner et al., 2003). However, this data must be interpreted with 
caution, since, besides beneficial organic compounds, (e.g., acetic acid), okara inclusion markedly 
increased other undesirable molecules (e.g., butyric acid, ethanol) associated with high DM losses 
and poorer hygienic quality. Aerobic deterioration is also dependent on the amount of soluble 
substrate (e.g., glucose, sucrose) not metabolized during fermentation. Therefore, an increase in 
secondary fermentation might reduce the amount of readily metabolizable substrate, constricting 
fungi development.  
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Dry matter content decreased in silages due to okara inclusion, representing a limitation to okara use. 
The higher CP, EE, aNDF, ADF, and ash values in silages were expected, since okara presented a higher 
content of these compounds compared with corn. On the other hand, the constituents of these fractions 
are not metabolized during fermentation (Rooke and Hatfield, 2003). Thus, an enhancement in these 
fractions might be related to a higher consumption of soluble substrate (as observed by the higher 
accumulation of volatile organic compounds) during fermentation (a concentration effect). 

Per unit of nutrient, protein is the most expensive in ruminant nutrition. Therefore, enhancing CP 
content in diet through okara inclusion might be economically advantageous, once okara has a low 
commercial price. However, from another perspective, increasing CP in silage enhances silage buffer 
capacity, reducing pH drop and increasing spoilage, as observed in our trial (Rooke and Hatfield, 2003). 
The increase in aNDF content is related to lower DM intake by ruminants; conversely, enhancing ADF 
content normally reduces DM digestibility, as observed for IVDMD in this trial (Van Soest, 1994; Casler 
and Jung, 2006). In fact, IVDMD decreased by 9.7%, on average, due to okara use. In addition, high EE 
levels (above 70 g kg−1 DM) are linked to a reduction in the ruminal fiber digestion due to fat attachment 
to fiber as well as the impairment in microbial activity (Van Soest, 1994; NRC, 2001).

Conclusions

Addition of okara to rehydrated corn grain silage improves the crude protein and ether extract contents 
but reduces silage dry matter digestibility. Besides, the high moisture content in silages containing 
okara stimulates secondary fermentation and accumulation of undesirable organic molecules. Okara 
inclusion in corn grain silage must be conditioned to the dry matter content at ensiling but should not 
exceed 200 g kg−1 on dry matter basis.
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