Acessibilidade / Reportar erro

The neglected contribution of mound-building termites on CH4 emissions in Brazilian pastures

ABSTRACT

Based on previous reports, our study aimed to obtain the first estimate on the contribution of termite mounds to CH4 emissions in Brazilian Cerrado pastures. We estimated that termite mounds occupy an area larger than 200,000 ha in degraded pastures, an important loss of grazing area considering the current scenario of land-use change of pastures to other crops in Brazil. Moreover, mound-building termites in degraded pastures may be responsible for CH4 emissions greater than 11 Mt CO2 eq. yr−1, which would notably affect the greenhouse gases (GHG) balance of grass-fed cattle production in Brazil. In this sense, it is urgent to conduct field-scale studies about the CH4 emissions by mound-building termites in pastures and its contribution to the C footprint of Brazilian beef.

biogenic CH4; Brazilian Cerrado; greenhouse gases; pasture degradation

1. Introduction

Global average methane (CH4) concentrations in atmosphere reached ~1875 parts per billion at the end of 2019, more than 2.5 times that of preindustrial levels (Dlugokencky, 2020Dlugokencky, E. 2020. Carbon Cycle Greenhouse Gases: Trends in CH4. Global Monitoring Laboratory, National Oceanic and Atmospheric Administration. Available at: <www.esrl.noaa.gov/gmd/ccgg/trends_ch4/>. Accessed on: May 18, 2020.
www.esrl.noaa.gov/gmd/ccgg/trends_ch4/>...
). Unfortunately, CH4 presents a potential greenhouse effect 25 times higher than CO2 on a timespan of 100 years. Currently, more than 580 Tg yr1of CH4 are released into the atmosphere, with more than 70% of this value originating from biogenic sources (Saunois et al., 2020Saunois, M.; Stavert, A. R.; Poulter, B.; Bousquet, P.; Canadell, J. G.; Jackson, R. B.; Raymond, P. A.; Dlugokencky, E. J.; Houweling, S.; Patra, P. K.; Ciais, P.; Arora, V. K.; Bastviken, D.; Bergamaschi, P.; Blake, D. R.; Brailsford, G.; Bruhwiler, L.; Carlson, K. M.; Carrol, M.; Castaldi, S.; Chandra, N.; Crevoisier, C.; Crill, P. M.; Covey, K.; Curry, C. L.; Etiope, G.; Frankenberg, C.; Gedney, N.; Hegglin, M. I.; Höglund-Isaksson, L.; Hugelius, G.; Ishizawa, M.; Ito, A.; Janssens-Maenhout, G.; Jensen, K. M.; Joos, F.; Kleinen, T.; Krummel, P. B.; Langenfelds, R. L.; Laruelle, G. G.; Liu, L.; Machida, T.; Maksyutov, S.; McDonald, K. C.; McNorton, J.; Miller, P. A.; Melton, J. R.; Morino, I.; Müller, J.; Murguia-Flores, F.; Naik, V.; Niwa, Y.; Noce, S.; O’Doherty, S.; Parker, R. J.; Peng, C.; Peng, S.; Peters, G. P.; Prigent, C.; Prinn, R.; Ramonet, M.; Regnier, P.; Riley, W. J.; Rosentreter, J. A.; Segers, A.; Simpson, I. J.; Shi, H.; Smith, S. J.; Steele, L. P.; Thornton, B. F.; Tian, H.; Tohjima, Y.; Tubiello, F. N.; Tsuruta, A.; Viovy, N.; Voulgarakis, A.; Weber, T. S.; van Weele, M.; van der Werf, G. R.; Weiss, R. F.; Worthy, D.; Wunch, D.; Yin, Y.; Yoshida, Y.; Zhang, W.; Zhang, Z.; Zhao, Y.; Zheng, B.; Zhu, Q.; Zhu, Q. and Zhuang, Q. 2020. The global methane budget 2000–2017. Earth System Science Data 12:1561-1623. https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.5194/essd-12-1561-202...
). Among the biogenic sources of CH4, importance must be given to ruminants, waterlogged areas, peatlands, and termites (Saunois et al., 2020Saunois, M.; Stavert, A. R.; Poulter, B.; Bousquet, P.; Canadell, J. G.; Jackson, R. B.; Raymond, P. A.; Dlugokencky, E. J.; Houweling, S.; Patra, P. K.; Ciais, P.; Arora, V. K.; Bastviken, D.; Bergamaschi, P.; Blake, D. R.; Brailsford, G.; Bruhwiler, L.; Carlson, K. M.; Carrol, M.; Castaldi, S.; Chandra, N.; Crevoisier, C.; Crill, P. M.; Covey, K.; Curry, C. L.; Etiope, G.; Frankenberg, C.; Gedney, N.; Hegglin, M. I.; Höglund-Isaksson, L.; Hugelius, G.; Ishizawa, M.; Ito, A.; Janssens-Maenhout, G.; Jensen, K. M.; Joos, F.; Kleinen, T.; Krummel, P. B.; Langenfelds, R. L.; Laruelle, G. G.; Liu, L.; Machida, T.; Maksyutov, S.; McDonald, K. C.; McNorton, J.; Miller, P. A.; Melton, J. R.; Morino, I.; Müller, J.; Murguia-Flores, F.; Naik, V.; Niwa, Y.; Noce, S.; O’Doherty, S.; Parker, R. J.; Peng, C.; Peng, S.; Peters, G. P.; Prigent, C.; Prinn, R.; Ramonet, M.; Regnier, P.; Riley, W. J.; Rosentreter, J. A.; Segers, A.; Simpson, I. J.; Shi, H.; Smith, S. J.; Steele, L. P.; Thornton, B. F.; Tian, H.; Tohjima, Y.; Tubiello, F. N.; Tsuruta, A.; Viovy, N.; Voulgarakis, A.; Weber, T. S.; van Weele, M.; van der Werf, G. R.; Weiss, R. F.; Worthy, D.; Wunch, D.; Yin, Y.; Yoshida, Y.; Zhang, W.; Zhang, Z.; Zhao, Y.; Zheng, B.; Zhu, Q.; Zhu, Q. and Zhuang, Q. 2020. The global methane budget 2000–2017. Earth System Science Data 12:1561-1623. https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.5194/essd-12-1561-202...
). Although the less attention recently received, termites had been associated with about 15% of the entire CH4 emitted globally (Rasmussen and Khalil, 1983Rasmussen, R. A. and Khalil, M. A. K. 1983. Global production of methane by termites. Nature 301:700-702. https://doi.org/10.1038/301700a0
https://doi.org/10.1038/301700a0...
).

Nowadays, Brazil is the second biggest beef exporter and has the second largest herd in the world, only surpassed by India. Most livestock production is grass-fed, extensive, and spread across the Cerrado biome. Cerrado occupies an area of 204.7 million ha in central Brazil. Pastures are the main land use in this biome, occupying more than 54 million ha (Sano et al., 2008Sano, E. E.; Rosa, R.; Brito, J. L. and Ferreira, L. G. 2008. Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesquisa Agropecuária Brasileira 43:153-156. https://doi.org/10.1590/S0100-204X2008000100020
https://doi.org/10.1590/S0100-204X200800...
). It is estimated that 60% of Cerrado pastures are degraded in some level (Andrade et al., 2014Andrade, R. G.; Teixeira, A. H. C.; Leivas, J. F.; Bayma-Silva, G.; Nogueira, S. F.; Victoria, D. C.; Vicente, L. E. and Bolfe, E. L. 2014. EMBRAPA: Sistema de Observação e Monitoramento da Agricultura no Brasil. Pastagens degradadas no Cerrado – Cenário 3. Available at: <http://mapas.cnpm.embrapa.br/somabrasil/webgis.html>. Accessed on: Apr. 18, 2020.
http://mapas.cnpm.embrapa.br/somabrasil/...
). Generally, degraded pastures exhibit low plant and animal productivity, reduced soil cover, soil erosion and compaction, and invasion of weeds. Despite the contentious relationship between termite infestation and pasture degradation (Lima et al., 2011Lima, S. S.; Alves, B. J. R.; Aquino, A. M.; Mercante, F. M.; Pinheiro, E. F. M.; Sant’Anna, S. A. C.; Urquiaga, S. and Boddey, R. M. 2011. Relação entre a presença de cupinzeiros e a degradação de pastagens. Pesquisa Agropecuária Brasileira 46:1699-1706. https://doi.org/10.1590/S0100-204X2011001200016
https://doi.org/10.1590/S0100-204X201100...
), a high infestation of mound-building termites is certainly an indicator of pasture degradation (e.g., Spain and Gualdrón, 1988Spain, J. M. and Gualdrón, R. 1988. Degradación y rehabilitación de pasturas. p.269-283. In: VI Reunión del Comité Asesor de la Red Internacional de Evaluación de Pastos Tropicales. Centro Internacional de Agricultura Tropical, Cali.; Santos et al., 2007Santos, R. S. M.; Oliveira, I. P.; Morais, R. F.; Urquiaga, S. C.; Boddey, R. M. and Alves, B. J. R. 2007. Componentes da parte aérea e raízes de pastagens de Brachiaria spp. em diferentes idades após a reforma, como indicadores de produtividade em ambiente de Cerrado. Pesquisa Agropecuária Tropical 37:119-124. https://www.revistas.ufg.br/pat/article/view/1837
https://www.revistas.ufg.br/pat/article/...
; Miranda et al., 2012Miranda, C. S.; Lima, D. L. and Paranhos Filho, A. C. 2012. Diagnóstico dos níveis de degradação das pastagens com o uso geotecnologias. In: III Seminário de Gestão Ambiental na Agropecuária. Bento Gonçalves, RS.).

Enteric fermentation is the main source of CH4 in Brazil, being responsible for the emission of 246 million Gg CO2 eq yr1 (MCTI, 2014MCTI - Ministério da Ciência, Tecnologia e Inovação. 2014. Estimativas anuais de emissões de gases de efeito estufa no Brasil. MCTI, Brasília. Available at: <https://sirene.mctic.gov.br/portal/export/sites/sirene/backend/galeria/arquivos/2018/10/11/Estimativas_2ed.pdf>. Accessed on: June 1, 2020.
https://sirene.mctic.gov.br/portal/expor...
), whilst one of the main sources of N2O emissions is the deposition of urine and feces from cattle in pasture areas. Certainly, these sources are the most important in the fluxes of greenhouse gases (GHG) from pastures. However, is possible that C inventories have neglected the role of an important component in CH4 emissions from pastures: mound-building termites. The methanogenesis is beneficial to termites, by removing the H2 (intermediate in the fermentation process), which permits reduced cofactors to be re-oxidized, increasing the fermentation of cellulosic material (Grieco et al., 2013Grieco, M. A. B.; Cavalcante, J. J. V.; Cardoso, A. M.; Vieira, R. P.; Machado, E. A.; Clementino, M. M.; Medeiros, M. N.; Albano, R. N.; Garcia, E. S.; Souza, W.; Constantino, R. and Martins, O. B. 2013. Microbial community diversity in the gut of the South American termite Cornitermes cumulans (Isoptera: Termitidae). Microbial Ecology 65:197-204. https://doi.org/10.1007/s00248-012-0119-6
https://doi.org/10.1007/s00248-012-0119-...
). However, this process is responsible for CH4 production, the main negative outcome of termite-microbe symbiosis. Studies carried out in Africa (Brümmer et al., 2009Brümmer, C.; Papen, H.; Wassmann, R. and Brüggemann, N. 2009. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemestry Cycles 23:1-13. https://doi.org/10.1029/2008GB003237
https://doi.org/10.1029/2008GB003237...
) and Oceania Savana (Jamali et al., 2011a) highlighted the notable contribution of mound-building termites in CH4 emissions of these areas. In Brazil, oddly enough, there is no published study about the CH4 emissions by mound-building termites from Cerrado pastures.

Pasture recovery and deforestation reduction are goals reinforced in the Brazilian intended Nationally Determined Contribution (iNDC) set during the United Nations Conference on Climate Change (iNDC Brazil, 2015iNDC Brazil. 2015. Intended nationally determined contribution towards achieving the objective of the United Nations Framework Convention on Climate Change. Brazilian Ministry of Foreign Affairs, Brasília. Available at: <http://www.itamaraty.gov.br/images/ed_desenvsust/BRAZIL-iNDC-english.pdf>. Accessed on: May 18, 2020.
http://www.itamaraty.gov.br/images/ed_de...
). The Brazilian government has ambitious goals for the next years: reduce GHG emissions by 37% by 2025 and 43% by 2030, compared with 2005. To do so, one of the commitments of the Brazilian iNDC is to strengthen the Low Carbon Emission in Agriculture Program (ABC Program; Brasil, 2012Brasil. Ministério da Agricultura, Pecuária e Abastecimento. 2012. Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura. MAPA, Brasília. Available at: <https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/download.pdf>. Accessed on: Apr. 18, 2020.
https://www.gov.br/agricultura/pt-br/ass...
) as the main strategy for sustainable agriculture development, including restoration of additional 15 million ha of degraded pastures by 2030. Pasture recovery and sustainable intensification of cattle farming is well-known for reducing GHG emissions and the C footprint of Brazilian beef (Silva et al., 2016Silva, R. O.; Barioni, L. G.; Hall, J. A. J.; Matsuura, M. F.; Albertini, T. Z.; Fernandes, F. A. and Moran, D. 2016. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nature Climate Change 6:493-497. https://doi.org/10.1038/nclimate2916
https://doi.org/10.1038/nclimate2916...
). However, the magnitude of this mitigation could be greater if an important source of GHG in degraded pastures were accounted in inventories: mound-building termites.

In this sense, this study was the first attempt to obtaining an estimate regarding the contribution of mound-building termites in CH4 emissions of Cerrado pastures. Specifically, based on previous reports, we aimed to identify Cerrado pastures under different degradation levels, estimate the average infestation by mound-building termites associated with each degradation level, calculate the loss of grazing area due to mound termite infestation, and estimate CH4 emissions by termites in degraded pastures of Brazilian Cerrado.

2. Material and Methods

After a comprehensive literature review and using all available data from previous studies, our research estimated CH4 emissions by termites in pastures from Brazilian Cerrado. In each stage, a compilation, analysis, and extrapolation using all the available data were carried out. Initially, it was assumed that 60% of Cerrado pastures are degraded (Andrade et al., 2014Andrade, R. G.; Teixeira, A. H. C.; Leivas, J. F.; Bayma-Silva, G.; Nogueira, S. F.; Victoria, D. C.; Vicente, L. E. and Bolfe, E. L. 2014. EMBRAPA: Sistema de Observação e Monitoramento da Agricultura no Brasil. Pastagens degradadas no Cerrado – Cenário 3. Available at: <http://mapas.cnpm.embrapa.br/somabrasil/webgis.html>. Accessed on: Apr. 18, 2020.
http://mapas.cnpm.embrapa.br/somabrasil/...
). Then, from the few studies regarding this topic, the pasture area under different degradation levels was estimated (low to moderate, high, and very high). As observed in studies used in our assessment, the model proposed by Spain and Gualdrón (1988)Spain, J. M. and Gualdrón, R. 1988. Degradación y rehabilitación de pasturas. p.269-283. In: VI Reunión del Comité Asesor de la Red Internacional de Evaluación de Pastos Tropicales. Centro Internacional de Agricultura Tropical, Cali. is still applied as a reference for diagnosis and classification of the degradation process in pastures. In this model, the occurrence of termite mounds is one of the indicators for highest degradation levels. Thus, infestation by mound-building termites and its associated CH4 emissions were assumed as being significant only to pastures under high and very high degradation levels.

Split pastures by different degradation levels was very useful, considering that termite infestation is quite variable among areas. In this way, it was possible to associate a level of infestation by termites with a level of pasture degradation, as also proposed by Santos et al. (2007)Santos, R. S. M.; Oliveira, I. P.; Morais, R. F.; Urquiaga, S. C.; Boddey, R. M. and Alves, B. J. R. 2007. Componentes da parte aérea e raízes de pastagens de Brachiaria spp. em diferentes idades após a reforma, como indicadores de produtividade em ambiente de Cerrado. Pesquisa Agropecuária Tropical 37:119-124. https://www.revistas.ufg.br/pat/article/view/1837
https://www.revistas.ufg.br/pat/article/...
and Miranda et al. (2012)Miranda, C. S.; Lima, D. L. and Paranhos Filho, A. C. 2012. Diagnóstico dos níveis de degradação das pastagens com o uso geotecnologias. In: III Seminário de Gestão Ambiental na Agropecuária. Bento Gonçalves, RS.. The level of infestation by mound-building termites was estimated using different studies carried out across Brazilian Cerrado (Figure 1). Based on the approach proposed by Spain and Gualdrón (1988)Spain, J. M. and Gualdrón, R. 1988. Degradación y rehabilitación de pasturas. p.269-283. In: VI Reunión del Comité Asesor de la Red Internacional de Evaluación de Pastos Tropicales. Centro Internacional de Agricultura Tropical, Cali., we assumed infestations of 70 and 200 mounds ha1 as the bottom limit associated to high and very high levels of pasture degradation, respectively. To calculate the area occupied by termite mounds, seven studies were used, all carried out in Brazilian Cerrado (Figure 1). Moreover, it was assumed that 88% of termite mounds are active, according to Lima et al. (2015)Lima, S. S.; Ceddia, M. B.; Zuchello, F.; Aquino, A. M.; Mercante, F. M.; Alves, B. J. R.; Urquiaga, S.; Martius, C. and Boddey, R. M. 2015. Spatial variability and vitally of epigeous termite mounds in pastures of Mato Grosso do Sul, Brazil. Revista Brasileira de Ciência do Solo 39:49-58. https://doi.org/10.1590/01000683rbcs20150326
https://doi.org/10.1590/01000683rbcs2015...
, Senci and Junqueira et al. (2013), Lima et al. (2011)Lima, S. S.; Alves, B. J. R.; Aquino, A. M.; Mercante, F. M.; Pinheiro, E. F. M.; Sant’Anna, S. A. C.; Urquiaga, S. and Boddey, R. M. 2011. Relação entre a presença de cupinzeiros e a degradação de pastagens. Pesquisa Agropecuária Brasileira 46:1699-1706. https://doi.org/10.1590/S0100-204X2011001200016
https://doi.org/10.1590/S0100-204X201100...
, and Cunha and Morais (2010)Cunha, H. F. and Morais, P. P. A. M. 2010. Relação espécie-área em cupinzeiros de pastagem, Goiânia-GO, Brasil. EntomoBrasilis 3:60-63. https://doi.org/10.12741/ebrasilis.v3i3.102
https://doi.org/10.12741/ebrasilis.v3i3....
.

Figure 1
Pastures in Brazilian Cerrado (adapted from Andrade et al., 2014Andrade, R. G.; Teixeira, A. H. C.; Leivas, J. F.; Bayma-Silva, G.; Nogueira, S. F.; Victoria, D. C.; Vicente, L. E. and Bolfe, E. L. 2014. EMBRAPA: Sistema de Observação e Monitoramento da Agricultura no Brasil. Pastagens degradadas no Cerrado – Cenário 3. Available at: <http://mapas.cnpm.embrapa.br/somabrasil/webgis.html>. Accessed on: Apr. 18, 2020.
http://mapas.cnpm.embrapa.br/somabrasil/...
) and locations of the studies available in literature and used in each step of this assessment.

Studies carried out in other countries were used to estimate CH4 emissions by termites. The total lack of this type of research in Brazil justifies our approach. However, the values utilized were obtained from savanna areas with termite mounds of Termitideae family, conditions that most closely mimicked those in Brazilian Cerrado. Although the relation between termite population weight and CH4 emissions is widely used, estimates considering the CH4 emissions per area of mound are assumed more realistic (Brümmer et al., 2009Brümmer, C.; Papen, H.; Wassmann, R. and Brüggemann, N. 2009. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemestry Cycles 23:1-13. https://doi.org/10.1029/2008GB003237
https://doi.org/10.1029/2008GB003237...
; Jamali et al., 2011a). In this respect, we opted for studies with measurements by a unit of area.

3. Results

We estimated that 13.8±3.2 million ha of pastures in Brazilian Cerrado are low to moderately degraded, whilst 15.4±2.8 and 3.0±1.6 million ha are in high and very high degradation levels, respectively (Table 1). Thus, at least 50% of the degraded pastures are in advanced degradation stages. Levels of infestation by mound-building termites notably vary in degraded pastures of Brazilian Cerrado (Table 2). We assumed a bottom limit of 70 mounds ha1associated with a high degradation level, estimating an infestation of 145.1±48.3 mounds ha1. For degraded pastures in the very high level, a minimum number of 200 mounds ha1was assumed, with a mean infestation of 398.7±107.3 mounds ha1 (Table 2). The mean basal area of termite mounds in Brazilian Cerrado pastures is 0.59±0.33 m2 (Table 3). Thus, we estimated that in a high degradation level, termite mounds represent 0.9% of the total area, whilst in very high degradation level, they occupy 2.4% of the pasture area. Consequently, termite mounds could occupy 204,000 ha in severely degraded pastures from Brazilian Cerrado.

Table 1
Degradation levels in Cerrado pastures

Table 2
Levels of infestation by mound-building termites in Cerrado pastures in different degradation levels

Table 3
Mean basal area of termite mounds in Cerrado pastures

Mean annual CH4 emissions by mound-building termites are 0.311±0.17 kg m2 (Table 4). Using the previously mentioned results, we estimated that termites in degraded Cerrado pastures could emit 0.56 Tg CH4 yr1, 0.364±0.022 Tg CH4 yr1 from pastures in a high level and 0.195±0.028 Tg CH4 yr1 from pastures in a very high degradation level (Figure 2). The CH4 emissions by mound-building termites in degraded pastures from Cerrado could represent 3% of the GHG emissions of Brazilian agriculture (Figure 3), surpassing 11 Mt CO2 eq. yr1.

Table 4
Mean annual emissions of CH4 by mound-building termites

Figure 2
Step-by-step of the estimation of CH4 emissions by mound-building termites in degraded pastures of Brazilian Cerrado.

Figure 3
Greenhouse gas emissions from Brazilian agriculture by sources (Mt CO2 eq.).

4. Discussion

It was estimated that 46-63% of the degraded pastures in Brazilian Cerrado may be in a high or very high degradation level (Table 1). Pastures occupy 54 million ha in Cerrado (Sano et al., 2008Sano, E. E.; Rosa, R.; Brito, J. L. and Ferreira, L. G. 2008. Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesquisa Agropecuária Brasileira 43:153-156. https://doi.org/10.1590/S0100-204X2008000100020
https://doi.org/10.1590/S0100-204X200800...
), where approximately 60% is degraded (Andrade et al., 2014Andrade, R. G.; Teixeira, A. H. C.; Leivas, J. F.; Bayma-Silva, G.; Nogueira, S. F.; Victoria, D. C.; Vicente, L. E. and Bolfe, E. L. 2014. EMBRAPA: Sistema de Observação e Monitoramento da Agricultura no Brasil. Pastagens degradadas no Cerrado – Cenário 3. Available at: <http://mapas.cnpm.embrapa.br/somabrasil/webgis.html>. Accessed on: Apr. 18, 2020.
http://mapas.cnpm.embrapa.br/somabrasil/...
). Our assessment corroborates studies of Miranda et al. (2012)Miranda, C. S.; Lima, D. L. and Paranhos Filho, A. C. 2012. Diagnóstico dos níveis de degradação das pastagens com o uso geotecnologias. In: III Seminário de Gestão Ambiental na Agropecuária. Bento Gonçalves, RS. and Nascimento et al. (2006)Nascimento, M. C.; Riva, R. D. D.; Chagas, C. S.; Oliveira, H.; Dias, L. E.; Fernandes Filho, E. I. and Soares, V. 2006. Uso de imagens do sensor ASTER na identificação de níveis de degradação em pastagens. Revista Brasileira de Engenharia Agrícola e Ambiental 10:196-202. https://doi.org/10.1590/S1415-43662006000100029
https://doi.org/10.1590/S1415-4366200600...
, both concluding that about 65% of the evaluated pastures was moderate to highly degraded. Moreover, Moreira and Assad (2000)Moreira, L. and Assad, E. D. 2000. Segmentação e classificação supervisionada para identificar pastagens degradadas. In: II Workshop Brasileiro de Geoinformática. Pontifícia Universidade Católica, São Paulo. Available at: <http://mtc-m16c.sid.inpe.br/col/dpi.inpe.br/vagner/2000/07.04.15.16/doc/008.pdf>. Accessed on: June 1, 2020.
http://mtc-m16c.sid.inpe.br/col/dpi.inpe...
highlighted that at least 45% of the Brazilian Cerrado pastures were in advanced degradation stages. The severe degradation scenario observed in most pastures brought out concerns about the sustainability of livestock production in Brazilian Cerrado, besides reiterating the importance of national policies to improve pasture conditions, such as the ABC Program.

Defining whether a given pasture is degraded or not is based on a set of indicators about plant and soil. Currently, there is no agreement in relation to the trustworthiness and feasibility of these indicators, as well as the closeness of the association between them and the degradation process. Mound-building termites are consumers of dead grass residues. Thus, in pastures approaching the final degradation stages, an explosion in the termite population may occur (Oliveira et al., 2012Oliveira, L. B. T.; Santos, A. C.; Silva Neto, S. P.; Silva, J. E. C. and Paiva, J. A. 2012. Alterações físicas e químicas do solo em virtude de construções termíticas no norte de Tocantis. Revista Engenharia na Agricultura 20:118-130. https://doi.org/10.13083/reveng.v20i2.179
https://doi.org/10.13083/reveng.v20i2.17...
). Furthermore, there is a large incidence of termites in soils undergoing advanced degradation stages (Oliveira et al., 2012Oliveira, L. B. T.; Santos, A. C.; Silva Neto, S. P.; Silva, J. E. C. and Paiva, J. A. 2012. Alterações físicas e químicas do solo em virtude de construções termíticas no norte de Tocantis. Revista Engenharia na Agricultura 20:118-130. https://doi.org/10.13083/reveng.v20i2.179
https://doi.org/10.13083/reveng.v20i2.17...
). Boddey et al. (2004)Boddey, R. M.; Macedo, R.; Tarré, R. M.; Ferreira, E.; Oliveira, O. C.; Rezende, C. P.; Cantarutti, R. B.; Pereira, J. M.; Alves, B. J. R. and Urquiaga, S. 2004. Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agriculture Ecosystem and Environment 103:389-403. https://doi.org/10.1016/j.agee.2003.12.010
https://doi.org/10.1016/j.agee.2003.12.0...
suggested that at least 50% of Brazilian pastures were in advanced degradation stages, with low grass yield and soil cover, invaded by weeds, and in many cases densely occupied by termite mounds. In addition, in degraded Cerrado pastures, the mound-building termite population is usually high (Lima et al., 2015Lima, S. S.; Ceddia, M. B.; Zuchello, F.; Aquino, A. M.; Mercante, F. M.; Alves, B. J. R.; Urquiaga, S.; Martius, C. and Boddey, R. M. 2015. Spatial variability and vitally of epigeous termite mounds in pastures of Mato Grosso do Sul, Brazil. Revista Brasileira de Ciência do Solo 39:49-58. https://doi.org/10.1590/01000683rbcs20150326
https://doi.org/10.1590/01000683rbcs2015...
). According to Cunha and Morais (2010)Cunha, H. F. and Morais, P. P. A. M. 2010. Relação espécie-área em cupinzeiros de pastagem, Goiânia-GO, Brasil. EntomoBrasilis 3:60-63. https://doi.org/10.12741/ebrasilis.v3i3.102
https://doi.org/10.12741/ebrasilis.v3i3....
, the density increment of termite mounds in pastures could occur due to the homogeneity of the environment and less competitors/predators. Finally, the conversion of native vegetation to pastures, coupled with pasture aging and degradation, can create a favorable environment to drastically increase the population of some termite species in Brazilian Cerrado (Carrijo et al., 2009Carrijo, T. F.; Brandão, D.; Oliveira, D. E.; Costa, D. A. and Santos, T. 2009. Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). Journal of Insect Conservation 13:575-81. https://doi.org/10.1007/s10841-008-9205-y
https://doi.org/10.1007/s10841-008-9205-...
). Thus, despite the contentious relationship between termite infestation and pasture degradation (Lima et al., 2011Lima, S. S.; Alves, B. J. R.; Aquino, A. M.; Mercante, F. M.; Pinheiro, E. F. M.; Sant’Anna, S. A. C.; Urquiaga, S. and Boddey, R. M. 2011. Relação entre a presença de cupinzeiros e a degradação de pastagens. Pesquisa Agropecuária Brasileira 46:1699-1706. https://doi.org/10.1590/S0100-204X2011001200016
https://doi.org/10.1590/S0100-204X201100...
), all this evidence supports that termite infestation is a reliable indicator of pasture degradation in Brazilian Cerrado.

Severely degraded pastures in Brazilian Cerrado are densely infested by mound-building termites, which we estimate to have 145.1±48.3 and 398.7±107.3 mounds ha1 under high and very high degradation levels, respectively. Estimating the infestation level and number of mound-building termites in Cerrado pastures, Oliveira et al. (2011)Oliveira, M. I. L.; Brunet, D.; Mitja, D.; Cardoso, W. S.; Benito, N. P.; Guimarães, M. F. and Brossard, M. 2011. Incidence of epigeal nest-building termites in Brachiaria pastures in the Cerrado. Acta Scientiarum. Agronomy 33:181-185. https://doi.org/10.4025/actasciagron.v33i1.7075
https://doi.org/10.4025/actasciagron.v33...
evaluated areas of 5 ha and found between 195 and 672 mounds ha1. Lima et al. (2015)Lima, S. S.; Ceddia, M. B.; Zuchello, F.; Aquino, A. M.; Mercante, F. M.; Alves, B. J. R.; Urquiaga, S.; Martius, C. and Boddey, R. M. 2015. Spatial variability and vitally of epigeous termite mounds in pastures of Mato Grosso do Sul, Brazil. Revista Brasileira de Ciência do Solo 39:49-58. https://doi.org/10.1590/01000683rbcs20150326
https://doi.org/10.1590/01000683rbcs2015...
and Cunha (2011)Cunha, H. F. 2011. Distribuição espacial de cupinzeiros epígeos de pastagem no município de Iporá-GO, Brasil. EntomoBrasilis 4:45-48. https://doi.org/10.12741/ebrasilis.v4i2.116
https://doi.org/10.12741/ebrasilis.v4i2....
observed lower values, 68-127 and 196 mounds ha1, respectively. Finally, in a study carried out in 133 municipalities across Brazilian Cerrado, Czepak et al. (2003)Czepak, C.; Araújo, E. A. and Fernandes, P. M. 2003. Ocorrência de espécies de cupins de montículo em pastagens no estado de Goiás. Pesquisa Agropecuária Tropical 33:35-38. obtained a mean of 73 mounds ha1, with a minimum of 3 mounds ha1 and values reaching a maximum of 500 mounds ha1. The notable variability of infestation levels observed in these studies emphasize that the use of a general mean disregarding the degradation level would jeopardize the reliability of our assessment.

The basal area of termite mounds in degraded pastures of Brazilian Cerrado also notably fluctuate (Table 3). In a widespread assessment, Czepac et al. (2003) observed an average basal area of 0.53 m2. However, Cunha (2011)Cunha, H. F. 2011. Distribuição espacial de cupinzeiros epígeos de pastagem no município de Iporá-GO, Brasil. EntomoBrasilis 4:45-48. https://doi.org/10.12741/ebrasilis.v4i2.116
https://doi.org/10.12741/ebrasilis.v4i2....
concluded that the mean basal area of termite mound was 1.05 m2. More recently, Lima et al. (2015)Lima, S. S.; Ceddia, M. B.; Zuchello, F.; Aquino, A. M.; Mercante, F. M.; Alves, B. J. R.; Urquiaga, S.; Martius, C. and Boddey, R. M. 2015. Spatial variability and vitally of epigeous termite mounds in pastures of Mato Grosso do Sul, Brazil. Revista Brasileira de Ciência do Solo 39:49-58. https://doi.org/10.1590/01000683rbcs20150326
https://doi.org/10.1590/01000683rbcs2015...
published a value of 0.71 m2 for basal area of the termite mounds in degraded pastures. Factors that influence variations in the basal area of termite mounds in pastures are not well established. However, in more mature pastures, which commonly are in a more advanced degradation stage, termite mounds are usually older and have a larger basal area. Accordingly, as well as with the infestation level, the basal area of the termite mound may be used as an indicator of pasture degradation in further assessments.

Besides CH4 emissions, impacts associated with the presence of termites in pastures range from the fact that the mounds could be shelters for venomous animals to damage associated with grazing area losses. However, several studies have reported that infestation by mound-building termites does not significantly affect the grazing area. Area losses associated with termite infestations vary among 0.1% (Lima et al., 2011Lima, S. S.; Alves, B. J. R.; Aquino, A. M.; Mercante, F. M.; Pinheiro, E. F. M.; Sant’Anna, S. A. C.; Urquiaga, S. and Boddey, R. M. 2011. Relação entre a presença de cupinzeiros e a degradação de pastagens. Pesquisa Agropecuária Brasileira 46:1699-1706. https://doi.org/10.1590/S0100-204X2011001200016
https://doi.org/10.1590/S0100-204X201100...
) to 2.06% (Cunha, 2011Cunha, H. F. 2011. Distribuição espacial de cupinzeiros epígeos de pastagem no município de Iporá-GO, Brasil. EntomoBrasilis 4:45-48. https://doi.org/10.12741/ebrasilis.v4i2.116
https://doi.org/10.12741/ebrasilis.v4i2....
) of the total grazing area. Considering the estimates from Table 3, termites are associated with grazing area losses of 132,628±7,892 ha under a high degradation level and 71,281±10,163 ha in pastures under a very high degradation level. Therefore, termite mounds could occupy an area larger than 200,000 ha in degraded pastures of Brazilian Cerrado, a remarkable loss that deserves more attention. In addition, in a scenario of land-use change of pastures to other crops, such as sugarcane and soybean (Lapola et al., 2014Lapola, D. M.; Martinelli, L. A.; Peres, C. A.; Ometto, J. P. H. B.; Ferreira, M. E.; Nobre, C. A.; Aguiar, A. P. D.; Bustamante, M. M. C.; Cardoso, M. F.; Costa, M. H.; Joly, C. A.; Leite, C. C.; Moutinho, P.; Sampaio, G.; Strassburg, B. B. N. and Vieira, I. C. G. 2014. Pervasive transition of the Brazilian land-use system. Nature Climate Change 4:27-35. https://doi.org/10.1038/nclimate2056
https://doi.org/10.1038/nclimate2056...
), any loss of grazing area must be considered.

Emissions of CH4 by mound-building termites are determined by the balance between CH4 production and CH4 oxidation after release. Considering that there is no evidence that the intestines of these insects contain microbes that oxidize CH4 (methanotroph), the CH4 produced is directly released to the environment. However, the microbes present in the material that makes up the termite mound can act as a CH4 sink, by the oxidation of this GHG (Brümmer et al., 2009Brümmer, C.; Papen, H.; Wassmann, R. and Brüggemann, N. 2009. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemestry Cycles 23:1-13. https://doi.org/10.1029/2008GB003237
https://doi.org/10.1029/2008GB003237...
; Nauer et al., 2018Nauer, P. A.; Hutley, L. B. and Arndt, S. K. 2018. Termite mounds mitigate half of termite methane emissions. Proceedings of the National Academy of Sciences 115:13306-13311. https://doi.org/10.1073/pnas.1809790115
https://doi.org/10.1073/pnas.1809790115...
). Thus, CH4 emissions could be greater if these methanotrophic organisms were not present in termite mounds, although the dynamics of this process, as well as the community responsible for the phenomenon, are not yet fully known (Chiri et al., 2020Chiri, E.; Greening, C.; Lappan, R.; Waite, D. W.; Jirapanjawat, T.; Dong, X.; Arndt, S. K. and Nauer, P. A. 2020. Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations. The ISME Journal 14:2715-2731. https://doi.org/10.1038/s41396-020-0722-3
https://doi.org/10.1038/s41396-020-0722-...
). In this way, estimates that consider the balance of CH4 fluxes at the surface of the termite mounds assessed by chambers (e.g., studies of Table 4) are much more realistic when compared with emissions by a mass of termites under incubation in artificial conditions (Brümmer et al., 2009Brümmer, C.; Papen, H.; Wassmann, R. and Brüggemann, N. 2009. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemestry Cycles 23:1-13. https://doi.org/10.1029/2008GB003237
https://doi.org/10.1029/2008GB003237...
; Jamali et al., 2011a).

Termite species from the Cornitermes genus are the main responsible for the construction of epigeal mounds in Brazilian pastures, occupying 94% of the termite mounds in Cerrado (Valério et al., 2006Valério, J. R.; Barbosa, L. R.; Pereira, A. A. and Oliveira, M. C. M. 2006. Percentual de cupinzeiros abandonados em pastagens de Brachiaria decumbens altamente infestadas por Cornitermes cumulans (Kollar) (Isoptera: Termitidae). In: Anais da 43ª Reunião Anual da Sociedade Brasileira de Zootecnia. Sociedade Brasileira de Zootecnia, João Pessoa.). The predominant species of mound-building termites are Cornitermes cumulans, C. bequaerti, C. silvestrii, and Syntermes Holmgren, all included in the Termitidea family. In Brazil, studies have estimated CH4 emissions by termites after deforestation in Amazonia (e.g., Martius et al., 1993Martius, C. R.; Wassmann, R.; Thein, U.; Bandeira, A.; Rennenberg, H.; Junk, W. and Seiler, W. 1993. Methane emission from wood-feeding termites in Amazonia. Chemosphere 26:623-632. https://doi.org/10.1016/0045-6535(93)90448-E
https://doi.org/10.1016/0045-6535(93)904...
). In these cases, termites are usually from other genera, consume the remaining biomass after burning, and do not build mounds. In this sense, using data from other savanna regions to estimate the CH4 emissions of mound-building termites in Cerrado pastures, within the options available, is the most feasible and realistic approach.

We estimated annual CH4 emissions of 0.311±0.17 kg m2 by mound-building termites in other savanna regions (Table 4). The amplitude of termite CH4 emissions are still debatable, and few estimates were carried out on national or biome scales. From the previous results mentioned, we estimated that termites present in degraded Cerrado pastures could emit 0.56 Tg CH4 yr1 (Figure 2). Because the large pasture area, coupled with the high level of infestation by mound-building termites, this first assessment of CH4 emissions by termites in degraded pastures of Brazilian Cerrado are comparable with those from the African (0.9 Tg CH4 yr1; Brümmer et al., 2009Brümmer, C.; Papen, H.; Wassmann, R. and Brüggemann, N. 2009. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemestry Cycles 23:1-13. https://doi.org/10.1029/2008GB003237
https://doi.org/10.1029/2008GB003237...
) and Australian (1.1 Tg CH4 yr1; Jamali et al., 2011b) savannas.

The inclusion of CH4 emissions by mound-building termites could impact GHG emissions by agriculture in Brazil (Figure 3). Disregarding emissions associated with deforestation and land-use change, Brazilian agriculture was responsible for the direct emission of 441 Mt CO2 eq. in 2012 (MCTI, 2014MCTI - Ministério da Ciência, Tecnologia e Inovação. 2014. Estimativas anuais de emissões de gases de efeito estufa no Brasil. MCTI, Brasília. Available at: <https://sirene.mctic.gov.br/portal/export/sites/sirene/backend/galeria/arquivos/2018/10/11/Estimativas_2ed.pdf>. Accessed on: June 1, 2020.
https://sirene.mctic.gov.br/portal/expor...
). However, this calculation did not consider the CH4 emissions by mound-building termites in degraded pastures, which in our assessment is associated to emissions greater than 11 Mt CO2 eq. yr1. When scenario A (without termite emission) is compared with scenario B (including termite emissions), it is possible to notice that GHG emissions by termites exceed those from rice cropping and residue burning in Brazil (Figure 3).

We are sure that the lack of experimental data and all assumptions through our calculations jeopardize the applicability of our findings. Similarly, using data from other countries and spatial extrapolations about CH4 emissions are prone to bias, since GHG emissions are known to be highly dependent on environmental constraints. In this sense, despite the limitations discussed above, the data presented in our research aim to show the likely direction and relative magnitudes of CH4 emissions by termites in Brazilian pastures. Moreover, it is an indisputable evidence about the need for carrying out studies regarding these emissions and their possible contribution to C footprint of Brazilian beef or even to C savings in recovered pastures. The CH4 emissions could be greater or smaller than estimated here, but this approximation would be a starting point for research development regarding the neglected contribution of mound-building termites on CH4 emissions in Brazilian pastures.

5. Conclusions

The large population of mound-building termites generally observed in degraded pastures must not be ignored. It is estimated that termite mounds occupy an area larger than 200,000 ha in Cerrado pastures, an important grazing area loss considering the current scenario of land-use change of pasture to other crops in Brazil. Additionally, based on previous reports, our estimates indicate that the degradation of pastures is associated with the inclusion of a new component in the C balance of these areas: termites. Mound-building termites in degraded pastures could be associated to CH4 emissions greater than 11 Mt CO2 eq. yr1, which can notably affect the GHG balance of grass-fed cattle production in Brazil. Therefore, it is urgent to conduct field-scale studies about CH4 emissions by mound-building termites and their contribution to C footprint of Brazilian beef or even to C savings in recovered pastures.

The large and increasing role CH4 plays in climate change, in particular on a shorter timescale, makes emission reductions imperative. Assuming the relationship between termite infestation and pasture degradation, CH4 emissions by mound-building termites in Cerrado pastures are mitigatable. In this sense, the restoration of additional 15 million ha of degraded pastures by 2030 suggested in the Brazilian iNDC would have an additional C saving. Pasture recovery drastically reduce the mound-building termite population and, therefore, the associated CH4 emissions. Better emission inventories are mandatory to include the role of termites in GHG emissions of Cerrado pastures or even to account for CH4 emissions mitigated by the reduction of mound-building termite population in recovered pastures. In the near future, we believe that CH4 termite emissions mitigated by pasture recovery may be accounted for Brazil to achieve the iNDC commitments.

Acknowledgments

The authors gratefully thank the Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano) for the financial support.

References

  • Andrade, R. G.; Teixeira, A. H. C.; Leivas, J. F.; Bayma-Silva, G.; Nogueira, S. F.; Victoria, D. C.; Vicente, L. E. and Bolfe, E. L. 2014. EMBRAPA: Sistema de Observação e Monitoramento da Agricultura no Brasil. Pastagens degradadas no Cerrado – Cenário 3. Available at: <http://mapas.cnpm.embrapa.br/somabrasil/webgis.html> Accessed on: Apr. 18, 2020.
    » http://mapas.cnpm.embrapa.br/somabrasil/webgis.html>
  • Benito, N. P.; Brossard, M.; Constantino, R. and Becquer, T. 2007. Densidade de ninhos epígeos de térmitas em uma área de Cerrado, Planaltina, DF. In: Anais do VIII Congresso de Ecologia do Brasil. Sociedade de Ecologia do Brasil, Caxambu. Available at: <http://www.seb-ecologia.org.br/revistas/indexar/anais/viiiceb/pdf/862.pdf> Accessed on: June 5, 2020.
    » http://www.seb-ecologia.org.br/revistas/indexar/anais/viiiceb/pdf/862.pdf>
  • Boddey, R. M.; Macedo, R.; Tarré, R. M.; Ferreira, E.; Oliveira, O. C.; Rezende, C. P.; Cantarutti, R. B.; Pereira, J. M.; Alves, B. J. R. and Urquiaga, S. 2004. Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agriculture Ecosystem and Environment 103:389-403. https://doi.org/10.1016/j.agee.2003.12.010
    » https://doi.org/10.1016/j.agee.2003.12.010
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. 2012. Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura. MAPA, Brasília. Available at: <https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/download.pdf> Accessed on: Apr. 18, 2020.
    » https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/download.pdf>
  • Brümmer, C.; Papen, H.; Wassmann, R. and Brüggemann, N. 2009. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochemestry Cycles 23:1-13. https://doi.org/10.1029/2008GB003237
    » https://doi.org/10.1029/2008GB003237
  • Carrijo, T. F.; Brandão, D.; Oliveira, D. E.; Costa, D. A. and Santos, T. 2009. Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). Journal of Insect Conservation 13:575-81. https://doi.org/10.1007/s10841-008-9205-y
    » https://doi.org/10.1007/s10841-008-9205-y
  • Chiri, E.; Greening, C.; Lappan, R.; Waite, D. W.; Jirapanjawat, T.; Dong, X.; Arndt, S. K. and Nauer, P. A. 2020. Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations. The ISME Journal 14:2715-2731. https://doi.org/10.1038/s41396-020-0722-3
    » https://doi.org/10.1038/s41396-020-0722-3
  • Cunha, H. F. 2011. Distribuição espacial de cupinzeiros epígeos de pastagem no município de Iporá-GO, Brasil. EntomoBrasilis 4:45-48. https://doi.org/10.12741/ebrasilis.v4i2.116
    » https://doi.org/10.12741/ebrasilis.v4i2.116
  • Cunha, H. F. and Morais, P. P. A. M. 2010. Relação espécie-área em cupinzeiros de pastagem, Goiânia-GO, Brasil. EntomoBrasilis 3:60-63. https://doi.org/10.12741/ebrasilis.v3i3.102
    » https://doi.org/10.12741/ebrasilis.v3i3.102
  • Czepak, C.; Araújo, E. A. and Fernandes, P. M. 2003. Ocorrência de espécies de cupins de montículo em pastagens no estado de Goiás. Pesquisa Agropecuária Tropical 33:35-38.
  • Dlugokencky, E. 2020. Carbon Cycle Greenhouse Gases: Trends in CH4 Global Monitoring Laboratory, National Oceanic and Atmospheric Administration. Available at: <www.esrl.noaa.gov/gmd/ccgg/trends_ch4/>. Accessed on: May 18, 2020.
    » www.esrl.noaa.gov/gmd/ccgg/trends_ch4/>
  • Grieco, M. A. B.; Cavalcante, J. J. V.; Cardoso, A. M.; Vieira, R. P.; Machado, E. A.; Clementino, M. M.; Medeiros, M. N.; Albano, R. N.; Garcia, E. S.; Souza, W.; Constantino, R. and Martins, O. B. 2013. Microbial community diversity in the gut of the South American termite Cornitermes cumulans (Isoptera: Termitidae). Microbial Ecology 65:197-204. https://doi.org/10.1007/s00248-012-0119-6
    » https://doi.org/10.1007/s00248-012-0119-6
  • iNDC Brazil. 2015. Intended nationally determined contribution towards achieving the objective of the United Nations Framework Convention on Climate Change. Brazilian Ministry of Foreign Affairs, Brasília. Available at: <http://www.itamaraty.gov.br/images/ed_desenvsust/BRAZIL-iNDC-english.pdf> Accessed on: May 18, 2020.
    » http://www.itamaraty.gov.br/images/ed_desenvsust/BRAZIL-iNDC-english.pdf>
  • Jamali, H.; Livesley, S. J.; Dawes, T. Z.; Cook, G. D.; Hutley, L. B. and Arndt, S. K. 2011a. Diurnal and seasonal variations in CH4 flux from termite mounds in tropical savannas of the Northern Territory, Australia. Agricultural and Forest Meteorology 151:1471-1479. https://doi.org/10.1016/j.agrformet.2010.06.009
    » https://doi.org/10.1016/j.agrformet.2010.06.009
  • Jamali, H.; Livesley, S. J.; Dawes, T. Z.; Cook, G. D.; Hutley, L. B. and Arndt, S. K. 2011b. Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behavior. Oecologia 167:525-534. https://doi.org/10.1007/s00442-011-1991-3
    » https://doi.org/10.1007/s00442-011-1991-3
  • Khalil, M. A. K.; Rasmussen, R. A.; French, J. R. J. and Holt, J. A. 1990. The influence of termites on atmospheric trace gases: CH4, CO2, CHCL3, N2O, CO, H2, and light hydrocarbons. Journal of Geophysical Research: Atmospheres 95:3619-3634. https://doi.org/10.1029/JD095iD04p03619
    » https://doi.org/10.1029/JD095iD04p03619
  • Lapola, D. M.; Martinelli, L. A.; Peres, C. A.; Ometto, J. P. H. B.; Ferreira, M. E.; Nobre, C. A.; Aguiar, A. P. D.; Bustamante, M. M. C.; Cardoso, M. F.; Costa, M. H.; Joly, C. A.; Leite, C. C.; Moutinho, P.; Sampaio, G.; Strassburg, B. B. N. and Vieira, I. C. G. 2014. Pervasive transition of the Brazilian land-use system. Nature Climate Change 4:27-35. https://doi.org/10.1038/nclimate2056
    » https://doi.org/10.1038/nclimate2056
  • Lima, S. S.; Alves, B. J. R.; Aquino, A. M.; Mercante, F. M.; Pinheiro, E. F. M.; Sant’Anna, S. A. C.; Urquiaga, S. and Boddey, R. M. 2011. Relação entre a presença de cupinzeiros e a degradação de pastagens. Pesquisa Agropecuária Brasileira 46:1699-1706. https://doi.org/10.1590/S0100-204X2011001200016
    » https://doi.org/10.1590/S0100-204X2011001200016
  • Lima, S. S.; Ceddia, M. B.; Zuchello, F.; Aquino, A. M.; Mercante, F. M.; Alves, B. J. R.; Urquiaga, S.; Martius, C. and Boddey, R. M. 2015. Spatial variability and vitally of epigeous termite mounds in pastures of Mato Grosso do Sul, Brazil. Revista Brasileira de Ciência do Solo 39:49-58. https://doi.org/10.1590/01000683rbcs20150326
    » https://doi.org/10.1590/01000683rbcs20150326
  • Martius, C. R.; Wassmann, R.; Thein, U.; Bandeira, A.; Rennenberg, H.; Junk, W. and Seiler, W. 1993. Methane emission from wood-feeding termites in Amazonia. Chemosphere 26:623-632. https://doi.org/10.1016/0045-6535(93)90448-E
    » https://doi.org/10.1016/0045-6535(93)90448-E
  • MCTI - Ministério da Ciência, Tecnologia e Inovação. 2014. Estimativas anuais de emissões de gases de efeito estufa no Brasil. MCTI, Brasília. Available at: <https://sirene.mctic.gov.br/portal/export/sites/sirene/backend/galeria/arquivos/2018/10/11/Estimativas_2ed.pdf> Accessed on: June 1, 2020.
    » https://sirene.mctic.gov.br/portal/export/sites/sirene/backend/galeria/arquivos/2018/10/11/Estimativas_2ed.pdf>
  • Miranda, C. S.; Lima, D. L. and Paranhos Filho, A. C. 2012. Diagnóstico dos níveis de degradação das pastagens com o uso geotecnologias. In: III Seminário de Gestão Ambiental na Agropecuária. Bento Gonçalves, RS.
  • Moreira, L. and Assad, E. D. 2000. Segmentação e classificação supervisionada para identificar pastagens degradadas. In: II Workshop Brasileiro de Geoinformática. Pontifícia Universidade Católica, São Paulo. Available at: <http://mtc-m16c.sid.inpe.br/col/dpi.inpe.br/vagner/2000/07.04.15.16/doc/008.pdf> Accessed on: June 1, 2020.
    » http://mtc-m16c.sid.inpe.br/col/dpi.inpe.br/vagner/2000/07.04.15.16/doc/008.pdf>
  • Nascimento, M. C.; Riva, R. D. D.; Chagas, C. S.; Oliveira, H.; Dias, L. E.; Fernandes Filho, E. I. and Soares, V. 2006. Uso de imagens do sensor ASTER na identificação de níveis de degradação em pastagens. Revista Brasileira de Engenharia Agrícola e Ambiental 10:196-202. https://doi.org/10.1590/S1415-43662006000100029
    » https://doi.org/10.1590/S1415-43662006000100029
  • Nauer, P. A.; Hutley, L. B. and Arndt, S. K. 2018. Termite mounds mitigate half of termite methane emissions. Proceedings of the National Academy of Sciences 115:13306-13311. https://doi.org/10.1073/pnas.1809790115
    » https://doi.org/10.1073/pnas.1809790115
  • Oliveira, L. B. T.; Santos, A. C.; Silva Neto, S. P.; Silva, J. E. C. and Paiva, J. A. 2012. Alterações físicas e químicas do solo em virtude de construções termíticas no norte de Tocantis. Revista Engenharia na Agricultura 20:118-130. https://doi.org/10.13083/reveng.v20i2.179
    » https://doi.org/10.13083/reveng.v20i2.179
  • Oliveira, M. I. L.; Brunet, D.; Mitja, D.; Cardoso, W. S.; Benito, N. P.; Guimarães, M. F. and Brossard, M. 2011. Incidence of epigeal nest-building termites in Brachiaria pastures in the Cerrado. Acta Scientiarum. Agronomy 33:181-185. https://doi.org/10.4025/actasciagron.v33i1.7075
    » https://doi.org/10.4025/actasciagron.v33i1.7075
  • Rasmussen, R. A. and Khalil, M. A. K. 1983. Global production of methane by termites. Nature 301:700-702. https://doi.org/10.1038/301700a0
    » https://doi.org/10.1038/301700a0
  • Sano, E. E.; Rosa, R.; Brito, J. L. and Ferreira, L. G. 2008. Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesquisa Agropecuária Brasileira 43:153-156. https://doi.org/10.1590/S0100-204X2008000100020
    » https://doi.org/10.1590/S0100-204X2008000100020
  • Santos, R. S. M.; Oliveira, I. P.; Morais, R. F.; Urquiaga, S. C.; Boddey, R. M. and Alves, B. J. R. 2007. Componentes da parte aérea e raízes de pastagens de Brachiaria spp em diferentes idades após a reforma, como indicadores de produtividade em ambiente de Cerrado. Pesquisa Agropecuária Tropical 37:119-124. https://www.revistas.ufg.br/pat/article/view/1837
    » https://www.revistas.ufg.br/pat/article/view/1837
  • Saunois, M.; Stavert, A. R.; Poulter, B.; Bousquet, P.; Canadell, J. G.; Jackson, R. B.; Raymond, P. A.; Dlugokencky, E. J.; Houweling, S.; Patra, P. K.; Ciais, P.; Arora, V. K.; Bastviken, D.; Bergamaschi, P.; Blake, D. R.; Brailsford, G.; Bruhwiler, L.; Carlson, K. M.; Carrol, M.; Castaldi, S.; Chandra, N.; Crevoisier, C.; Crill, P. M.; Covey, K.; Curry, C. L.; Etiope, G.; Frankenberg, C.; Gedney, N.; Hegglin, M. I.; Höglund-Isaksson, L.; Hugelius, G.; Ishizawa, M.; Ito, A.; Janssens-Maenhout, G.; Jensen, K. M.; Joos, F.; Kleinen, T.; Krummel, P. B.; Langenfelds, R. L.; Laruelle, G. G.; Liu, L.; Machida, T.; Maksyutov, S.; McDonald, K. C.; McNorton, J.; Miller, P. A.; Melton, J. R.; Morino, I.; Müller, J.; Murguia-Flores, F.; Naik, V.; Niwa, Y.; Noce, S.; O’Doherty, S.; Parker, R. J.; Peng, C.; Peng, S.; Peters, G. P.; Prigent, C.; Prinn, R.; Ramonet, M.; Regnier, P.; Riley, W. J.; Rosentreter, J. A.; Segers, A.; Simpson, I. J.; Shi, H.; Smith, S. J.; Steele, L. P.; Thornton, B. F.; Tian, H.; Tohjima, Y.; Tubiello, F. N.; Tsuruta, A.; Viovy, N.; Voulgarakis, A.; Weber, T. S.; van Weele, M.; van der Werf, G. R.; Weiss, R. F.; Worthy, D.; Wunch, D.; Yin, Y.; Yoshida, Y.; Zhang, W.; Zhang, Z.; Zhao, Y.; Zheng, B.; Zhu, Q.; Zhu, Q. and Zhuang, Q. 2020. The global methane budget 2000–2017. Earth System Science Data 12:1561-1623. https://doi.org/10.5194/essd-12-1561-2020
    » https://doi.org/10.5194/essd-12-1561-2020
  • Senci, M. C. G. and Junqueira, L. K. 2013. Identificação da entomofauna co-habitante em ninhos de térmitas do gênero Cornitermes em Campinas, São Paulo. In: Anais do XVIII Encontro de Iniciação Científica da Pontifícia Universidade Católica. Pontifícia Universidade Católica, Campinas. Available at: <https://www.puc-campinas.edu.br/websist/Rep/Sic08/Resumo/2013820_10133_375705409_resahy.pdf> Accessed on: June 5, 2020.
    » https://www.puc-campinas.edu.br/websist/Rep/Sic08/Resumo/2013820_10133_375705409_resahy.pdf>
  • Silva, R. O.; Barioni, L. G.; Hall, J. A. J.; Matsuura, M. F.; Albertini, T. Z.; Fernandes, F. A. and Moran, D. 2016. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nature Climate Change 6:493-497. https://doi.org/10.1038/nclimate2916
    » https://doi.org/10.1038/nclimate2916
  • Spain, J. M. and Gualdrón, R. 1988. Degradación y rehabilitación de pasturas. p.269-283. In: VI Reunión del Comité Asesor de la Red Internacional de Evaluación de Pastos Tropicales. Centro Internacional de Agricultura Tropical, Cali.
  • Valério, J. R. 1995. Ocorrência, danos e controle de cupins de montículo em pastagens. p.52-57. In: V Reunião Sul-Brasileira de Insetos de Solo. EMBRAPA-CPAO, Dourados. (EMBRAPA-CPAO. Documentos, 8). Available at: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/38991/1/DOC8-1995.pdf> Accessed on: June 5, 2020.
    » https://ainfo.cnptia.embrapa.br/digital/bitstream/item/38991/1/DOC8-1995.pdf>
  • Valério, J. R.; Barbosa, L. R.; Pereira, A. A. and Oliveira, M. C. M. 2006. Percentual de cupinzeiros abandonados em pastagens de Brachiaria decumbens altamente infestadas por Cornitermes cumulans (Kollar) (Isoptera: Termitidae). In: Anais da 43ª Reunião Anual da Sociedade Brasileira de Zootecnia. Sociedade Brasileira de Zootecnia, João Pessoa.

Publication Dates

  • Publication in this collection
    29 Mar 2021
  • Date of issue
    2021

History

  • Received
    14 Aug 2020
  • Accepted
    5 Nov 2020
Sociedade Brasileira de Zootecnia Universidade Federal de Viçosa / Departamento de Zootecnia, 36570-900 Viçosa MG Brazil, Tel.: +55 31 3612-4602, +55 31 3612-4612 - Viçosa - MG - Brazil
E-mail: rbz@sbz.org.br