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ABSTRACT - Finite mixture modelsare hel pful for uncovering heterogeneity dueto hidden structure; for example,
unknown major genes. Thefirst part of thisarticle gives examplesand reviews quantitative geneticsissues of continuous
characters having a finite mixture of Gaussian components. The partition of variance in a mixture, the covariance
between relatives under the supposition of an additive genetic model and the offspring-parent regression are
derived. Formulae for assessing the effect of mass selection operating on a mixture are given. Expressions for
the genetic correlation between a mixture and a Gaussian trait are presented. If there is heterogeneity in a
population at the genetic or environmental levels, then genetic parameters based on theory treating distributions
as homogeneous can lead to misleading interpretations. Subsequently, methods for parameter estimation
(e.g., maximum likelihood) are reviewed, and the Bayesian approach is illustrated via an application to
somatic cell scores in dairy cattle.
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Introduction

Linear models with mixed effects have been
used extensively in animd breeding since the early
50"s(e.g., Henderson, 1973). Anaccount of thetheory
canbefoundin Searleet al. (1992), whereasBayesian
treatments are in Gianola & Fernando (1986) and
Sorensen & Gianola(2002). Mixed linear modelsare
flexible and can be fitted in cross-sectional,
longitudinal, spatial or multi-response settings. In
animal breeding, these models are used to infer
genetic parameters such as heritability and genetic
correlations, linear combinationsof fixed effects(e.g.,
diferences in mean value of cohorts born in
successive generations), and to predict breeding
vaues of candidates for selection. Animal breeding
implementations typically involve large data sets
and hundreds of thousands of correlated random
effects due to coancestry relationships between
animals(Gianola, 2001).

However, linear models do not accommodate
well discrete and censored variates and may not
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be robust enough when there is “ concealed”
structure in the data.

Finite mixture models, used in biology and in
genetics since Pearson (1894), are helpful for
uncovering heterogeneity due to hidden structure or
incorrect assumptions. The objective of this article
is to review some aspects related to analysis with
finite mixture modelsin animal breeding contexts.

Thepaper isorganized asfollows. First, examples
are presented where mixture model scan play auseful
role, followed by some basic statistical and
quantitative geneticsissues. Subsequently, maximum
likelihood estimation of parameters of a mixture is
discussed. Since use of Bayesian methods is
exploding in biology, a brief account of a Bayesian
gpplication of mixturesto dairy cettledataispresented.
The paper ends with concluding remarks.

Examples

Arguably, finite mixture models can play an
increasingly important rolein animal breeding. To
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illustrate, consider four problemsarisingin animal
genetics. Unknown loci with major effects can
create “ bumps’ (sometimes quite subtle) in a
phenotypic distribution, and this heterogeneity
may be resolved by fitting a mixture, i.e., by
calculating conditional probabilities that a datum
is drawn from one of the several potential, yet
unknown, genotypes. A brief review of the use of
mixtures for uncovering major genesisin Lynch
& Walsh (1998). Also, many quantitative trait loci
(QTL) detection procedures are based on ideas
from mixture models (Haley & Knott, 1992).
Basically, given marker and phenotypic data, one
computes the probability that an individual has
genotype QQ; Qg or qg at a putative QTL.

The second example is from dairy cattle
breeding. Mastitis is an infammation of the
mammary gland of cows associated with bacterial
infection. Genetic variation in susceptibility to the
disease exists, and genetic selection for resistance
is a feasible strategy (Heringstad et al., 2000).
However, routine recording of mastitis events is
not conducted in most nations. Instead, milk
somatic cell scores (SCS) measured in cows have
been used as a proxy for the disease in genetic
evaluation of artificial insemination bulls (with
Gaussian mixed effects models), much as the
prostate specific antigen is treated as a proxy for
prostatic cancer. It is not obvious how SCS
information should be treated optimally in genetic
evaluation, because normal, clinical and different
types of subclinical cases are hidden. Some of the
challenges may be met using finite mixture
models, as suggested by Detilleux & Leroy (2000),
@degard et al. (2003, 2005), Gianolaet al. (2004)
and Boettcher et al. (2005, 2007).

Another example is from transcriptional
analysis and genomics. In microarray studies,
messenger RNA samplesare collected from 2 target
tissues, converted into complementary DNA,
|abelled with dyes of different colors (typicaly red
and green), and hybridized against thousands of
known pieces of DNA (genes) spottedinadlide. If
ageneisexpressed in the targets, hybridization is
detected via fluorescence. Some spots are green,
others red, plus every color in between! Image
analysis is used for quantitating the extent of
hybridization and differential expression. Observed
expression may not reflect true differential
expression, however. One can think in terms of a
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mixture of at least 2 distributions:

1) if there is differential expression, the
distributions of measurements in the red
and green channelsfor agiven genewould
have different parameters, and

2) in the absence of differential expression,
these parameters should be equal.

Thefourth exampleisthat of assessing genetic
change in populations of animals subject to
artificial selection. Animals are born, die or are
culled at any point intime, so generations overlap.
Since many such animals have unknown parents,
it is difficult to give a crisp definition of
“generation”. Animal breeders “group”
individuals into more or less arbitrary cohorts
(Quaas, 1988; Westell et al., 1988). However, the
“true’ group structure might be finer or coarser.
An dternative to arbitrary grouping is to assume
that unobservable genetic effects of unknown
parents are drawn from amixture of distributions.

Satistical and quantitative genetic
ISSUES 100

Density, mean and variance. A random variate
y (the distinction between variables and realized
values is ignored in the notation) is drawn from
one of K mutually exclusive and exhaustive
distributions (groups), without knowing which of
these underliesthe draw. For instance, the observed
SCSin the milk of a cow may be from a healthy
or from an infected animal; if the disease is
mastitis, the case may be clinical or subclinical.
In the absence of a precise veterinary diagnosis,
there is uncertainty about to which group the
observed SCS score pertainsto. Here, K= 3and
the underlying groups are: uninfected, clinical
and sub-clinical. The density of y can bewritten
as

P(y|0)=XPp,(v!0)

where

K (assumed known) is the number of
components of the mixture; P, is the probability
that the draw is from the it component; pi (y|6,) is
the density of the distribution of y under
component i; 6 is a parameter vector indexing
suchdistribution,and @=[6,, 6 ,, ..., 0, P,, P,, ..
P«]" is the collection of all distinct parameters,
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subjecttoiezl. Ingeneral, y may beeither scalar

i=l

or vector valued, or may be discrete. Here, we
consider the situation where component
distributions are Gaussian. In what follows, the
notation N (y|i,02) will denote aunivariate normal
distribution or density with mean y and variance
02, whereas N (y|u,X) pertains to a multivariate
normal setting, where uisthe mean vector and X is
the variance covariance matrix.

The mean and variance of afinite mixture of K
Gaussian distributions, with now 6 = [P, P,, ...,

2 2 1-
P tyy oo Py 6 1, G 50 G 0 ] @€

E(y|0)=XPa,, ®
and

K K 3 B
var(y|0)=EPot + 5P —(SRw) @

The first term in (2) can be construed as the

i K 7 K 2
average variance, whereas > Pp; —(ZPAMA)
k=1 k=1

measures dispersion between group means; if the
W's are equal, this second term is null. Note that
the variance of the mixture depends not only on
the group variances, but on the group means as
well.

The additive genetic mixture model

The quantitative genetics of characters
distributed as mixtures has not been studied
extensively, athough the idea underlies work of,
e.g., Latter (1965) and Kimura & Crow (1978).
What follows is a summary of results in Gianola
et al. (2006). Suppose an observable random
variable(y;; phenotypeof individua i) isdrawn from
thefinite mixture of G Gaussian components

Gg
yi ‘pC’”C,Gi’ai ~ gPCkN(y] |lJ’k +ai’0(2:k)7 (3)

where p, is a vector containing the mixing
proportions P, . (summing to 1); p, and cj areeach
G¢ x 1 vectors of means and variances with typical
dementsy, and G :k respectively; a isthe genetic
valueof i. The mean and variance of thisconditional
(given the genetic effect) distribution are

G
E(yi|pc7u‘c70§’ai):kz:Fijck”k—}_ai’ (4)

and

GE
Var(y,[psm.,00a) = 2P, (o] +1))

g S ®)
_(kzzchkuk) :Gc’
respectively, where c;j is the residual or

environmental variance. Informally,

K K 2
Z@M:—[Z%HJ is the part of the
= k=1

k=1
environmental variance contributed by population
heterogeneity.

Assumethat the genetic effect g, isalso drawn
from the mixturewith G, components

Ga
a[ |pﬂ’a’ci ~ z_llPumN(ai ‘ am’cjm )7 (6)

where

P.=[Py o P 1 a=[0y,... 0, ], and

o2-l G’ .G jG ]” are the vectors of mixing
a ay A

proportions, component means and component
variances, respectively.

Gy
Then, E(a. pa,a,cj)=ZP a,, and

ap Pm

Var (a, |p

a’

PR 2 2
a,6,)=2P (o, + ol )—
m=1

Gy 2 s
(3ra] =o, ™

m=1

where Gf is the genetic variance, and

G, G 2
f&mai)—(fl’amam) is interpretable as
m=1

m=1
variance between genetic means. In Gaussian
linear model sthe distribution of the random genetic
effects is often taken to be N (¢, | 0,5 ?); where

cyj is the additive genetic variance, so it may be
reasonable to introduce the restriction CZAIP a,=0
inthe mixture (Verbeke & Lesaffre, 1996). Thejoint
density of a andy; isobtained by multiplication of
(3) and (6), yielding

p(y,.a, |p,.pn,,cl,p,, a0 =

2
m? Gam )

GE G4 )
22P P N(y|p, +a,0,)Na,|a

e’ q
i k- am

)

whichisafinite mixture of G.x G, bivariate normal
distributions, with mixing proportion Pe . F:, . for the
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kmh component; note that Z ZP P, =1. From

k=1 m=1
standard Gaussian linear models theory, given the
km component (let the indicator §,,, = 1 denote
such situation)

Yi 2 2
|Uksamscek ’Gamsakm =1
a

i

2 2
y P t O O, 70, Oy
NNZ 0 )
4 Om c, O,

where N, (.|.,.) denotes a bivariate hormal
distribution. Further

a!‘yi’p’k’a Gek’cﬂm’Bkm =

1~ N(a,

km ®

where
akm :(X‘m +bkm(yi - uk _am)’

and

b _ m
km 2 2
G +0
ek 7]

Under the standard additive genetic model, this
regression of “ genotype on phenotype” b, isthe
heritability of the character under the kmth
component of the bivariate mixture. The joint
density (8) isalso expressible as

2 2
a4, |p,,n,,0.,p,,®,0,)=

y3pp N, |k +a,.0, +0, )

er” a a
=l mel 'k dm m

N(ai | akm 2 Gam (1 - bkm ))'

9)

The marginal density of yi is arrived at by
integrating (9) over ai; yielding
p(y p..M,,0..P,,0,0,) =

ZZ ef nmN(y |u‘k+am’c +G )

a
k=1 m=1 m

(10)

This is a finite mixture of G.x G, univariate
normal distributions with mixing proportions
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P, P, Themean and variance of the phenotypic
distribution are

p..1,,0.,p,,0,6) = Z uﬁZP a,

(11)
and

Var(y,|p,.n,,0..p,,%,G,)
3 2 2 G i Z 2 2
=3P, +u) - LP w | +2P, (0, +ol)
= =] Ek m=| m
G4 ’ 2 2
—[ZP (xm) =0,+0,. (12)

A standard problem in quantitative geneticsis
that of inferring genetic values from phenotypes.
From (9) and (10), the density of the conditional
distribution of a giveny;is

(d ‘yap a“eacz P, 02)
—ZZkaN(a | d,,,c’ (1-0,,)) (13)

k=1 m=1

where

> P N(y, |, +a,,0, +0. )

km

ZZ PP N(y |u +a,0, +0,)

k=1 m=1

Hence, the conditional distribution of a given
y; is a mixture of the G¢ x G, normal distributions,

N(aq,|d,,,c; (1-b,)) where the mixing
proportion is Q,,, the conditional probability that
the datum is drawn from

N(y, |y, +a,,0. +0. ); given the observation
y.. The best predictor of genetic value is the
conditional expectation function (Henderson 1973;
Bulmer 1980; Fernando & Gianola1936).

Gg Gy
E(az |yi’py’p‘e’cj’pu’a’cj) = ;ZIkaakm’
(14)

which is a weighted average of the conditional
expectations peculiar to each of the G x G,
componentsof mixture (13). Thisresultisimportant:
the regression of genotype on phenotype is not
linear iny,. Therefore, standard linear modelsgive
lessthan optimal predictions of genetic effectsfor
traits distributed as mixtures. Further, the variance
of the conditional distribution
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Var(a,|y,.p..1,.0..P,,%C.)

—ZZQ,W[(G (A-b,)+d,,]

k=1 m=1

(£80.4. ).

k=l m=1

(15

In the standard additive genetic linear model,
the variance of the conditional distribution of
genotypes given phenotypesis ¢’ (1—A*), where
h2isthe coefficient of heritability; this conditional
variance is homogeneous and does not depend
on the data. In a mixture model, however, the
dispersion about the regression function is
heteroscedastic and non-linear on the phenotypic
value. Hence, both point and interval prediction of
genetic valuein mixturesinvolvestrikingly different
formulae.

Truncation selection

Consider the standard truncation selection
setting in which individuals kept as parents are
such that y, > t; with the proportion of individuals
selected being Pr (y;, > t) = y. From (10), the
distribution of phenotypic values within selected
individuals has density

kz mN(yl |“k+am’cjk+cim)
ps(y)= ;
¥
>t
Yi “Where
Gg Gy
V= [ D0D P P NG [y + s, +02 )y,
k=1 m=1
Gg G, G Ga
_ZZ an| ZZPCkP Y km-
k=1 m=1 Gek+0am k=1 m=1

(16)

Above, v, is the proportion selected within
the kmth mixture component and & (.) is the
standard normal distribution function. The

proportion selected yis, thus, aweighted average T=

of theindividual component selection proportions
Y SiNce the threshold is fixed, the components
that are most prevalent, have largest means and are
most variable, will beinfluential.

The mean value of selected individualsis

G G4 . [ 2
Es(yf) = E Z::lvkm ”‘k +O(’m +lkm Gek +Gam ’

where i, is the selection intensity factor under
the kmih component and

_ ek])amykm
vkm T Gg G4 ’

2P

(4 {T
imma K ”’

arerelative weights summing to 1. The phenotypic
superiority of selected individuals, or selection
differential (S) isgiven by the difference between
(17) and (11). Further, the mean genetic value of
selected parents is

Ea)=E [E(a,|y)|y]>1=
GE Gy

g ZIE ©.4, 1y >1)

This expression cannot be evaluated
analytically, because it is a highly nonlinear
function of the phenotypic values. Finaly, the
genetic superiority of accepted parents over the
unselected population is

A =E(a)-E(a|p,,a,0>)
E G4 .
- [zzgkmam 31|,

The expected fraction of the selection
differential that is realized can be assessed as
AJS; and this will differ from what could be
expected from the regression of offspring on mid
parent, because of non-linearity.

Heritability

The fraction of variance attributable to additive
genetic effects (usual definition of heritability) is
location invariant for a Gaussian trait, i.e., it does
not involve mean values. In amixture, heritability
becomes

2
£p,(@, +a)-(2n.0.
m=1 m

G,

4 2 2
LP (o, +a,)-
m=1 '

Gy GE 5 5 GF !
LP,q, +§P€k(0q+uk)— LB,
(18)

The partition of variance depends on
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component-specific variances (csjm and ¢ ’k) on
mixing proportions (p, and »,) and on mean values
(nand o) aswell. Inthesimpler caseinwhichthe
genetic distribution is the homogeneous process
N (a0, o ?); “ heritability” becomes

2

a

Gg 2
o’ +ZP (csq +uk (,;Pekpk)

(19)

c
T’ =

and this is expected to be lower than in a
homogeneous population because fixed effects
contribute to variance.

Offspring-parent regression.

The standard formula for the regression of the
phenotypic value of a progeny (O) on that of a
parent (P) gives

ZPMGHW+ZP a; —(ZP a,

m=1 m=1
BOP -

situations with different additive genetic variance
(o 2) and distances between means (A) in the two
distributions of the mixture: 1) > =1, A =1,
2)c2=1 A=2 3 c2=.10,A=1, and
4) 5 2=.10, A= 2. Situations (1) and (2) correspond
toatrait with aheritability of .50 under homogeneity,
while (3) and (4) are for a lowly heritable trait
(h, .09).In(1)and (2), theregression 3 decreases
from 0.25 to about 0.22 and 0.17; respectively,
representing relative decreasesin heritability of 12
and 32%. Therelative decreasesin heritability are
18 and 47% in cases (3) and (4), respectively. In
brief, heritability in heterogeneous or admixed
popul ations depends on the mixing proportion, on
the mean difference between mixture components
and on the “ homogeneous situation” heritability.

Correlations with a Gaussian trait
Correlations between a mixture trait and a
normally distributed character (w) may be of
interest. For example, themixturetrait
could be SCC in dairy cattle, with
several component distributions

m=1

If the distribution of genetic effects is
homogeneous, this simplifies to

Bop =

12
20,

Ca L L (w V(0
o, + 2P, (o, +p)—| 2P 1,
K=l k=1

The consequences are clear: if there is
heterogeneity either in the distribution of sampling
model residuas or of genetic effects, then B is
affected by the mixing proportions and by the
means u,. To illustrate, suppose that the genetic
distribution is homogeneous; let G = 2, take y, =
Oasorigin, u,= AGi1 and Gil = Gi =1.Then (20)
isexpressible as
1 2
BOP =" =2, 2
o, +1+P (1-P)A

When P, = 1; theformulagiveshalf of heritability,
which is a standard result. The function is
symmetric with respect to P,; since P, (1 - P,) is
maximumat P, = J; theregressionisminimum at
thisvalue. As an example, consider the offspring-
parent regression as a function of P, for four
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4 £ Gg 2
Y ACHETN DTN B TG DI

" corresponding to different unknown

statuses of mammary gland disease.
= TheGaussantrait could bemilk yield
of a cow. Is the genetic correlation between the
two traits affected by heterogeneity of somatic cell
count?

The effect of P, on the genetic correlation is
illustrated next for a 2-component mixture.
Let L=o0, /o, be a heteroscedasticity factor,
where 0;, the genetic variance under the first
component of the mixture, isviewed as* basdlineg’
genetic variance, i.e., a measure of variability in
the absence of heterogeneity. Then, it can be
shown that under some simplifying assumptions

_ Phomo

Payaw = 77— = ®Phomo>
JB. 1P,

where Piomo iS the genetic correlation in the

absenceof amixtureand ¢ = |/P, H1-P, )A]E is
the factor by which P is modified by
heterogeneity. Since the sign of P, ., isinvariant
with respect to £, , it sufficesto examineitsvalues
only under positiveP ... Figure 1 displays the
relationship between the genetic correlation and
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P, for two values of P, (0.7 and 0.3) and of A
(1.5and 2). AsPal increases, the proportion of the
component with the smaller genetic variance (m=
1) to increase. The genetic correlation increases
monotonically with P, , the less variable
component, and morerapidly so at thelargest value
of genetic heteroscedasticity. Similar algebra and
considerations hold for the environmental
correlation between traits.

s

Wi ——

T

—— v )y |
SV .-—.au:_‘.-:n‘-w:z-mum.lﬂn
u:o?t.o‘«‘.#"#...““
R oo s 7 68 _00_ Lo

Mixing proportion Pal
Figure 1 - Genetic correlation (Rho) between a
Gaussian character and amixturetrait for atwo-
component mixture, as afunction of the mixing
proportion (P, ), for different combinations of
Promo = genetic correlation in absence of mixture
and A= heteroscedasticity factor. From top to
bottom: 1) P eme = 0.7, A= 1.5 (open squares); 2)
P home=0.7, A =2 (dotted line); 3) Pome = 0.3, A=
1.5(solidlin€); 4) P omo = 0.3, A=2 (opencircles).

Summary remarks

If there is heterogeneity in a population either
at the genetic or environmental levels, then genetic
parameters based on theory treating distributions as
homogeneous can lead to midleading interpretations.

Some peculiarities of mixture characters are:
heritability depends on the mean values of the
populations, the offspring-parent regression is
non-linear, and genetic or phenotypic correlations
cannot be interpreted devoid of the mixture
proportions and of the parameters of the
component distributions.

Maximum likelihood estimation

Motivation

Detilleux & Leroy (2000) pointed out
advantages of amixture model for analysisof SCS
in dairy cows. The mixture model can account for
effects of infection status on SCS and produce an
estimate of prevalence of infection, plus a

probability of status (infected versus un-infected)
for individual cows, given the data and values of
the parameters. Detilleux & Leroy (2000) proposed
a2-component mixturemode, whichwill bereferred
to as DL hereafter. Although additional
components may be required for finer statistical
modelling of SCS, our focus will be on a 2-
component specification, as a reasonable point of
departure. An important issue isthat of parameter
identification. In likelihood inference this can be
resolved by introducing restrictions in parameter
values, although creating computational
difficulties. In Bayesian settings, proper priors
solve the identification problem. A Bayesian
analysis with Markov chain Monte Carlo
procedures is straightforward, but priors must be
proper. However, many geneticists are refractory
to using Bayesian model swith informative priors,
so having aternative methods of analysisavailable
isdesirable. Hereafter, anormal mixturemodel with
correlated random effects is presented from a
likelihood-based perspective.

Hierarchical DL

Themixture moddl isdeveloped hierarchically.
Let P be the probability that a SCS is from an
uninfected cow. Unconditionally to group
membership, but given the breeding value of the
cow, the density of observationi (i =1, 2, ..., n) is

p(y, |Ba,,0., Py=Pp,(y,|B,.a ,0!)
+(1_P)pl(yi |Bl7ai’oj)5

where y, and g, are the SCS and additive genetic
value, respectively, of the cow onwhich therecord
istaken, and = [, B . The probability that
the draw is made from distribution O is supposed
constant from individual to individual.

Assuming that records are conditionally
independent, the density of all n observations,
given the breeding values, is

p(v|B,a,c’,P)= [LPp, (y By,a,00)+

(1=P)p,(3,B;-a,,07)]
(21)

Thejoint density of y and aisthen
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P(Y>a | B,Gi,ﬁi,P)

element z; X, isan n x p, matrix
withtypical row X' ; X;isann x

:{ liilﬁlpo(yi |Bo’a1’cz +(1_P)p16,1 |Bl,a‘,05)] }p(a | Gi) p, matr|xw|thtyp|ca| rowx’li;a

(22)
and the marginal density of the datais

p(y|B.o;.0:.P)= p(ya|B.0;,0;,P)p(ac;) da.

(23)

When viewed as a function of the parameters
0= [Aé,a'”gj,gf,p]' (23) is Fisher’s likelihood.
This can be written as the product of n integrals
only when individuals are genetically unrelated;
here, 5 > would not be identiable. On the other
hand, if g represents some cluster effect (e.g., a
sire's transmitting ability), the between-cluster
variance can be identified.

DL assume normality throughout and take
y,-|l30'a’02 NNo(x'UiBO'l'ai’Gi) and
v1B.a.6;~N,(x', B +a,0]). Here, X'y and
X', are known incidence vectors relating fixed
effects to observations. The assumption about the
genetic effectsisalA,c *~ N (0,Ac 7). Let now z ~
Bernoulli (P), bean independent (apriori) random
variable taking the value z = 0 with probability P if
the datum is drawn from process N,; or the value
z = 1 with probability 1 - Pif from N,. Assuming all
parameters are known, one has

Pp,(»,1B,.a,,07)

={a} ande={e}. Specificforms
of B, and B, (and of the corresponding incidence
matrices) are context-dependent, but care must be
exercised to ensure parameter identifiability and to
avoidwhat isknown aslabel saitching. For example,
DL take X, f3,= 1y, and X, B,= 1y,.

EM Algorithm

One can extremize (23) with respect to  via
the expectation-maximization algorithm, or EM. An
EM version with stochastic steps was developed
by Gianolaet al. (2004). The EM agorithm augments
(22) with nbinary indicator variablesz (i=1, 2, ...,
n), taken as independently and identically
distributed as Bernoulli; with probability P. If z=0;
the SCS datum is generated from the uninfected
component; if z= 1; the draw is from the other
component. Letz= [z, 2, ..., 2]~ denotetheredlized
values of al z variables. The complete data is the
vector [a', ¥', Z]", with [@", Z]” condtituting the
missing part and y representing the observed fraction.
The joint density of a, y and z can be written as

O pay.zIp,.B.ct.cl PR

p(z|P)p(a|c))p(y | z,a,B,.B,,0.)
(25)

Given z; the
component of the mixture

Pr (Zi :0|yi7B0’Bl’ai’G:7P)_

(24)

Thus, Pr (z: =1|y,,B,,B,,a,,06>,P)=1-(24)
is the probability that the cow belongs to the
infected group, given the observed SCS, her
breeding value and the parameters.

A linear model for an observation (given z) can
be written as

Y. = (l_zl)x'm Bo +Zixrli Bl +a, +¢

A vectorial representation is
y= [I- Diag(zi )]Xoﬁo + [Diag(zi )]X1B1 +a+e
=X B, +[Diag(z)](X,B, - X,B,)+a+e

where Diag(z) is a diagonal matrix with typical
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~ Pp,(y,|By»a,,0° +(1=P)p,(7,|B,,a,,6°) " generating the data is

known automatically for
each observation. Now

p(z|F) =]IF (-F),

p(¥ 1 B:.8,. 2,002, = 0) = p,(5, | Bi.a,, 02,
Py 8.8 aniol, £ o=l =p iy |8 a0y,

fori=1,2,...,n. Then, (25) becomes

p(a’y’z|BO’B1702765’P):p(y’Z‘éoaélaaaO—j»Gi’P)p(a'Gz)

={ PP, (, |a0,a,c§>]"*[(1—P)pl(yi,épa,ci)r}p(a|c:>.

(26)

The form of (26) leads to conditional
distributions needed for implementing the Monte
Carlo EM algorithm. Details (very tedious) arein
Gianolaet al. (2004).
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Genetic evaluation for SCS could be based on

, the ith element of &, the mean vector of the
distribution fa g, = B,., =B,.0: = 82,02 =&2,y]
While f,,6,,62 and P follow from the maximum
likelihood procedure, & must be calculated more
conveniently using Monte Carlo methods. Another
issueishow the SCSinformation istranslated into

chances of a cow belonging to the uninfected
group. A simple option isto estimate (24) as

Pp,(y, |B,.4,,67)

assess which model was most appropriate for use
in genetic evaluation of SCS. A brief account of
this study is given here.

Data

Test-day records from primiparous Holstein
cattlein 105 large (>200 cows) herds primarily in
Wisconsin) were used. The somatic cell count
records had been converted to linear somatic cell
scores (SCS), using astandard log 2 transformation.
Because herds were well-
managed, the mean SCS of

Pr (Zi = 0| ynBo’BHaHeiaP) =
(27)

Statistically (27) does not takeinto account the
error of the maximum likelihood estimates of al
parameters. If thelikelihood function is sharp and
unimodal (large samples), thisisaminor concern.

Bayesian analysis with case study

@degard et al. (2003) developed a Bayesian
approach for analysis of a 2-component mixture

model for SCS with heterogeneous residual a
variances, and applied it to simulated data. Their

model considered heterogeneity of variances for
residual effects only, and it was extended
subsequently, to derive a criterion suitable for
selection against putative mastitis by @degérd et
al. (2005). If SCSisatrait that differs genetically
between infected and uninfected cattle, allowing
for heterogeneity of genetic and permanent
environmental (PE) variancesmay be appropriate.
Boettcher et al. (2007) allowed for heterogeneous
variances of genetic and PE effects, and, applied
the mixture modelsto dataon SCScollectedin US
Holsteins. Several models of increasing levels of
complexity were compared for fit, in an attempt to

Table 1 - Summary of the 5 model stested™.

Bp, (v [B.,3,5 +(1-P)p (v, |p,4,06°) ound220waslessthanthe

i’ e

US national average of
approximately 3.00. The dataset analyzed included
177,846 records from 31,040 cows, daughters of
3,082 different sires. An additive relationshipsfile
was created by tracing pedigrees at least 3
generations, including ancestors that were related
to at least 2 animalswith records. The pedigreefile
included 54,143 animals.

Models

Five different models were fitted (Figure 2).
Model 1 was a standard test-day repeatability
model. Fixed effects of systematic non-genetic
factors and random additive genetic and PE effects
were fitted. The other 4 specifications were 2-
component Gaussian mixture models differing
according to the type of heterogeneity of variances
considered. All 3 variances (additive, PE, and
residual) were homogeneousfor Model 2, whereas
al variances were heterogeneous for Model 5.
Analyseswere based on previouswork of @degérd
et al. (2003), with some extensionsto accommodate
Models 4 and 5.

For the mixture models, observations of SCS
were assigned to 1 of the 2 components, assumed
to beindicative of health status. Assignmentswere
defined by a (unknown) vector z, where z= Ofor a

Feature Model

1 2 3 4 5
Misture componentes 1 2 2 2 2
Residual variance Hom. Hom. Het. Hom. Het.
Genetic variance Hom. Hom. Hom. Het. Het.
Permanente environment Hom. Hom. Hom. Het. Het.

1 - Hom = Homogeneous variance; Het = Heterogeneous variance.

Figure2 - Source: Boettcher et al. (2007).
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record i from ahealthy cow and z = 1 for records
from infected cows. Following the notation used
by @degéard et al. (2003), the equations for the
various models can be written, given z, as shown
in Figure 3. The fixed effects in B, included 3
regression coeficients for effects of days in milk
on SCS, 17 effectsof ageat calving, and 3,361 herd-
test-day effects. Regression coefficients for days
inmilk were based on the curve by Wilmink (1987).
Age-at-calving effectswere onefor each age from
20 through 36 months. The B, vector included a
single element, the mean difference (shift) between
components 1 and 2. For the non-mixture model
(Modé 1), al e ementsof Mz were zero. For models
with homogeneous genetic and PE variances (i.e.,
Models 1, 2, and 3), a, = g, and p, = p,. For these
models, a, ~N(0, Ao f), where A isthe numerator
relationship matrix and ¢ j is the additive genetic
variance, and p,~N(0, | o3), wherel isan identity
matrix of order 31,040 and o is the permanent
environmental variance. When genetic and PE
effects were heterogeneous, expectations of a,, a,,
p, and p, whereall zero. The covariance sctructure
of genetic and PE effectswasasin Figures4 and 5,
respectively. There, G is the variance-covariance
matrix between additive genetic values under the
healthy and diseased statuses Further, P is the
variance-covariance matrix between corresponding
PE effects. Conditionally on the breeding values
and PE effects, the variance matrix of the
observation vector (residual variance matrix) was
expressed as in Figure 6, where | is an identity
matrix of order n and ¢°, and G are residual
variances for observations from the first and
second components, respectively. For modelswith
homogenous residual variance, (i.e., Models 1, 2,
and 4) Equation (4) smplifiestoR =162,

Bayesian Analysis

Briefly, a Gibbs sampler was run in which all
unknown parametersand theindicator zweredrawn
from their conditional posterior distributions. Five
sampling chains of 205,000 cycles each were
generated for each modd. For each chain, the first
5,000 cycleswerediscarded asburn-in period so that
atotal of 1,000,000 posterior sampleswere available
for each model. Convergence was assessed by the
approach of Gelman et al. (2004). Posterior
distributions of (co)variances were assessed based
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on sampling every 20th cycle. Posterior means for
breeding values were obtained by averaging
realizationsfrom every 500th cycle.

Y=XBo+ M X B, +(I-M))Z 3
+M zzaai + (I -M Z)pro +M zzppl +€

Figure 3 - Source: Boettcher et al. (2007).

wherey = vector of n observations for test-day
SCS, B, = vector of fixed effectscommomtoall
records; B, = vector of fixed effects
corresponding to observation from infected
cows; | =identity matrix of order n; M, = matrix
with diagonal elements corresponding to vector
Z; a, = vector of randon additive genetic effects
on SCS in the healthy state; a, = vector of
random additive genetic effects on SCS in the
infected state; p, = vector of random PE effectos
in the healthy state; p, = vector of random PE
effectsintheinfection state; e = vecor of residua
effects; and X,, X,, Z, and Z, = incidence
matrixes corresponding tofixed (X.) and random
(Z.) effects, respectively.

Figure4 - Source: Boettcher et al. (2007).

Var Py =P®I
P,
where

P= G;zno Gim
c o’

Figure5 - Source: Boettcher et al.(2007).

R:(I 'M2)02e0+M262e1

Figure6 - Source: Boettcher et al. (2007).
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Comparison of models

The models were compared based on the
Devianceinformation criterion (DIC) proposed by
Spiegelhalter et al. (2002). The model with the
lowest DIC isconsidered to bethe most appropriate
model statistically.

Estimated breeding values (EBV) resulting from
the different models were evaluated for similarity.
The posterior means of additive genetic effects
(calculated by sampling every 500th cycle) were
used as EBV. Pearson correl ation coefficientswere
calculated between all pairs of the 7 sets of animal
solutions: 1 set of EBV from each of the 3 models
(1, 2, and 3) with homogeneous genetic variance
and 2 sets each from the 2 models (4 and 5) with
heterogeneous genetic variance. Correlation
coefficients were calculated for 2 sets of animals:
1) al animals, N = 54,143, and 2) only sireswith at
least 10 offspring (N = 541). To examine changesin
rank, all sireswith at least 10 offspring were sorted
in ascending order based on each of the 7 sets of
EBV. Then, the top and bottom 50 sires were
identified for each set. Finally, the number of animals
in common between each pair (high ranking with
high ranking and low vs. low) of these sets was
observed. Low numbers of mismatches were
assumed to indicate high similarity among
evaluation models.

Results

Most models produced similar estimates of the
mixing proportion (p,), with around 5% of the
observations in the second component (presumably
associated with madtitis), and 95% in the healthy
group. Results from Model 4, however, were
strikingly different. First, the proportion of records
assigned to the second (high) component was
much greater, at about 8%, versus around 5% for
theother 3 mixturemodels. All mixturemodels(2to
5) had much lower residual variance than did the
standard linear model (Model 1). Residua variance
was generally around 1.00 for the mixture models
(with the exception of aresidua variance of 1.20
for the second component of Model 3), versus1.60
for the linear Gaussian model. This differenceis
due to the variability in means between the 2
components in the mixture models, which is
unaccounted for in the linear model specification.

When heterogeneous variance was allowed,
theresidual variance estimate was somewhat larger

for the diseased component of the mixture. No
obvious trend was observed for genetic variance
when comparing the standard model with the 4
mixturemodels. InModel 4, the estimates of genetic
and PE variances for the second component were
much larger than the variances obtained by either
of the other 3 mixture models. The genetic variance
of the second component was 2.41 in Model 4,
versus 0.52 for Model 5; corresponding PE
varianceswere 3.22 and 0.76, respectively.
According to the DIC, Model 4 was favored,
by far; recal that a model with the lowest DIC is
preferred. The DIC of Model 1 wastwice aslarge
asfor any of the mixture models. The correlations
among EBV from the different pairs of models
were all about 0.90. Despite high correlations
among EBV, the degree of sire re-ranking among
models indicated that the use of a mixture model
would lead to real changes in sire selection if
appliedinstead of thelinear model. For all mixture
models (Models 2 through 5), thetop 50 sires (low
SCS) differed by at least 10 sires (>20%) from the
top 50 identified by the linear model (Model 1).
Eleven sires were in common among the top 50,
and 13 werein common among the bottom 50.

Conclusion

Based strictly on statistical considerations,
mixture models are more appropriate for analysis
of, e.g., SCS data of dairy cattle than standard
linear models. In the case studied, a shuffling in
order of the highest ranked sires was observed,
demonstrating that practical differences would be
realized with the adoption of a mixture model for
genetic evaluation.

Although the statistical evidence supporting
the use of mixture models is strong, questions
remain about the biological ramifications of
applying a mixture model, and about the precise
meaning of the different EBV resulting from a
mixture model with heterogeneous genetic effects.
Another issueishow agenetic evaluation for SCS
can be translated into a selection criterion, as
discussed in @degard et al. (2005).

A challenge for scientists confronted with
massive data sets, such asthosein animal breeding
and in gene expression analysis, is making the
computations needed for implementing the mixed
effects mixture models (MMM) feasible. Gianola
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et al. (2004) described a maximum likelihood
analysisof aGaussian mixture with random effects
using the EM agorithm with aMonte-Carlo E-step.
@degérd et al. (2003) presented a Gibbs sampling
scheme for a Bayesian hierarchical 2-component
mixture model (with thousands of random effects),
and retrieved accurate estimates of parametersin
simulation studies. While Markov chain Monte
Carlo may be the only way of carrying out afully
Bayesian analysis, diagnosing convergence to the
equilibrium distribution is a serious problem for
models with thousands of unobservable random
effects. Similarly, non-Bayesian analysis may be
carried out more efficiently with algorithms based
on second derivatives than with EM; in the latter,
augmenting thelikelihood with indicator variables
(so that the missing data fraction becomes very
large) can slowdown convergence painfully.

Standard model sfor quantitativetraitscan lead
to erroneous resultsif fitted to heterogeneous data.
If amixtureis suspected, two of the most suitable
methods for inferring unknown mixture
parameters are maximum likelihood and Bayesian
analysis. Procedures for likelihood or posterior-
based inference applied to mixtures are discussed
extensively in Titterington et al. (1985) and
McLachlan and Peel (2000), including situations
in which the component distributions are not-
normal, e.g., skewed survival processes.

Implementations suitable for fitting different
types of quantitative genetic mixture models have
been described and applied by @degard et al.
(2003, 2005), Gianolaet al. (2004), and Boettcher
etal. (2005, 2007). Prediction of breeding valuesis
discussed in Gianola (2005). A convenient software
for the analysis of mixtureswith random effectsis
availablein aforthcoming update of Version 6.0 of
the DMU package described in Madsen & Jensen
(2002).
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