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ABSTRACT - In certain areas of animal research, such as nutrition, quantitative summarizations of literature

data are periodically needed. In such instances, statistical methods dealing with the analysis of summary data (generally

from the literature) must be used. These methods are known as meta-analyses. The implementation of a meta-analysis

is done in several phases. The first phase defines the study objectives and identifies the criteria for selecting prior

publications to be used in the construction of the database. Publications must be scrupulously evaluated for their

quality before being entered into the database. During this phase, it is important to carefully encode each record with

pertinent descriptive attributes (experiments, treatments, etc.) to serve as important reference points later on. Statistically,

databases from literature data are inherently unbalanced, leading to considerable analytical and interpretation difficulties.

Missing data are frequent, and data are not the outcomes of a classical experimental system. A graphical examination

of the data is useful in getting a global view of the system as well as to hypothesize specific relationships to be

investigated. This phase is followed by a statistical study of the meta-system using the database previously assembled.

The statistical model used must follow the data structure. Variance decomposition must account for inter-and intra-

study sources; dependent and independent variables must be identified either as discrete (qualitative) or continuous

(quantitative). Effects must be defined as either fixed or random. Often observations must be weighed to account for

differences in the precision of the reported means. Once model parameters are estimated, extensive analyses of residual

variations must be performed. The roles of the different treatments and studies in the results obtained must be identified.

Often, this requires returning to an earlier step in the process. Thus, meta-analyses have inherent heuristic qualities

that can guide in the design of future experiments as well as aggregating prior knowledge into a quantitative prediction

system.

Key Words: meta-analysis, mixed models, nutrition

Abbreviation key: DMI = Dry matter intake, GLM = Generalized linear model, GLMM = Generalized linear

mixed model, NDF = Neutral detergent fiber, SAS = Statistical Analysis System, SEM = Standard error of the

mean, VFA = Volatile fatty acids, VIF = Variance inflation factors.

Introduction

The research environment in the animal
sciences, especially nutrition, has markedly

changed in recent years. In particular, there has

been a noticeable increase in the number of
publications, each containing an increasing

number of quantitative measurements. Meanwhile,

treatments often have smaller effects on the systems
being studied than in the past. Additionally, controlled

and non-controlled factors, such as the basal plane

of nutrition, vary from study to study, thus
requiring at some point a quantitative

summarization, an integration of prior research.

Fundamental research in the basic animal
science disciplines generates results that generally

are at a much lower level of aggregation than those

of applied research (organs, whole animals), thus
supporting the necessity of integrative research.

Research stakeholders, those who ultimately

use the research outcome, increasingly want more
quantitative knowledge, particularly on animal

response to diet. Forecasting and decision support

softwares require quantitative information as
inputs. Lastly, research prioritization by public

funding agencies may force abandoning active

research activities in certain areas. In such
instances, meta-analyses can still support

discovery-type activities from aggregating results

from published literature.
The objectives of this paper are to describe the

application of meta-analytic methods to animal
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nutrition studies, including the development and

validation of literature derived databases, and the

quantitative statistical techniques used to extract
the quantitative information.

Definitions and nature of problems

Limits to Classical Approaches
Results from a single classical experiment

cannot be the basis for a large inference space

because the conditions under which observations

are made in a single experiment are forcibly very
narrow, i.e., specific to the study in question. Such

studies are ideal to demonstrate cause and effect, and

to test specific hypothesis regarding mechanisms and
modes of action. In essence, a single experimentation

measures the effects of one or a very few factors

while maintaining all other factors as constant as
possible. Often, experiments are repeated by others

to verify the generality and repeatability of the

observations that were made, as well as to challenge
the range of applicability of the observed results and

conclusions. Hence, it is not uncommon that over

time, many studies are published even on a relatively
narrow subject. In this context, there is a need to

summarize the findings across all the published

studies. Meta-analytic methods are concerned with
how best to achieve this integration process.

The classical approach to synthesizing

scientific knowledge has been based on qualitative
literature reviews. A limitation of this approach is

the obvious subjectivity involved in the process.

The authors subjectively weigh outcomes from
different studies. Criteria for the inclusion or non-

inclusion of studies are poorly defined. Different

authors can draw dramatically different
conclusions from the same initial set of published

studies. Additionally, the limitation of the human

brain to differentiate the effects of many factors
grows with the number of publications involved.

Definitions and objectives of meta-analyses
Meta-analyses use objective, scientific

methods based on statistics to summarize and
quantify knowledge acquired through prior

published research. Meta-analytic methods were

initially developed in psychology, medicine and
social sciences a few decades ago. In general,

meta-analyses are conducted for one of the

following four objectives:

• For Global hypothesis testing, such as

testing for the effect of a certain drug or of a

feed additive using the outcomes of many
publications that had as an objective the

testing of such effect. This was by far the

predominant objective of the first meta-
analyses published (Mantel & Haenszel,

1959; Glass, 1976). Early on, it was realized

that many studies lacked statistical power for
statistical testing, so that the aggregation of

results from many studies would lead to

much greater power (hence lower type II
error), more precise point estimation of the

magnitude of effects, and narrower

confidence intervals of the estimated effects.
• For Empirical modeling of biological

responses, such as the response of animals

to nutritional practices. Because the data
extracted from many publications cover a

much wider set of experimental conditions

than those of each individual study,
conclusions and models derived from the

whole set have a much greater likelihood of

yielding relevant predictions to assist
decision-makers. There are numerous

examples of such application of meta-

analytical methods in recent nutrition
publications, such as the quantification of the

physiological response of ruminants to types

of dietary starch (Offner & Sauvant, 2004),
grain processing (Firkins et al., 2001) and

rumen defaunation (Eugene et al., 2004).

Others have used meta-analyses to quantify
in situ starch degradation (Offner et al.,

2003), and microbial N flow in ruminants

(Oldick et al., 1999; St-Pierre, 2003).
• For collective summarizations of

measurements that only had a secondary
or minor role in prior experiments.

Generally, results are reported with the

objective of supporting the hypothesis

related to the effect of one or a few
experimental factors. For example, ruminal

VFA concentrations are reported in studies

investigating the effects of dietary starch, or
forage types. None of these studies have as

an objective the prediction of ruminal VFAs.

But the aggregation of measurements from
many studies can lead to a better

understanding of factors controlling VFA
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concentrations, or allow the establishment

of new research hypotheses. A meta-analysis

of ruminal liquid flow rates allowed the
identification of an indirect criterion to saliva

production and buffer recycling, which

criterion is linked to ruminal conditions
(Sauvant & Mertens, 2000).

• In mechanistic modeling, for parameter

estimates and estimates of initial conditions

of state variables. Mechanistic models

require parameterization, and meta-analyses

offer a mechanism of estimation that makes
parameter estimation more precise and more

applicable to a broader range of conditions.

Meta-analyses can also be used for external
model validation (Sauvant & Martin, 2004),

or for a critical comparison of alternate

mechanistic models (Offner & Sauvant,
2004).

Types of Data and Factors in Meta-Analyses
As in conventional statistical analyses,

dependent variables in meta-analyses can be of
various types such as binary [0, 1] (e.g., for

pregnancy), counts or percentages, categorical-

ordinal (good, very good, excellent), and
continuous, which is the most frequent type in

meta-analyses related to nutrition.

Independent factors (or variables) have either
a fixed or random effects on the dependent variable

of interest (McCulloch & Searle, 2001). In general,

factors related to nutrition (grain types, DMI, etc)
should be considered as fixed effects factors. The

study effect can either be considered as random or

fixed. If a dataset comprised many individual
studies from multiple research centers, the study

effect should be considered random because each

study is conceptually a random outcome from a
large population of studies to which inference is

to be made (St-Pierre, 2001). This is especially

important if the meta-analysis has for objective
the empirical modeling of biological responses,

or the collective summarizations of measurements

that only had a secondary or minor role in prior
experiments, because it is likely that the researcher

in those instances has a targeted range of inference

much larger than the limited conditions
represented by the specific studies. There are

instances, however, where each experiment can

be considered as an outcome each from a different

population. In such instances, the levels of study

or trial are in essence arbitrarily chosen by the

research community, and the study effect should

then be considered fixed. In such instance, the
range of inference for the meta-analysis is limited

to the domain of the specific experiments in the

dataset. This is of little concern if the objective of
the meta-analysis is that of global hypothesis

testing, but it does severely limit the applicability

of its results for other objectives.

Difficulties Inherent to the Data
The meta-analytic database is best

conceptualized with rows representing treatments,
groups or lots, while the columns consist of the

measured variables (those for which least-squares

means are reported) and characteristics (class
levels) of the treatments or trials. A primary

characteristic of most meta-analytic databases is

the large frequency of missing data in the table.
This reduces the possibility of using large multi

dimensional descriptive models, and generally

forces the adoption of models with a small subset
of independent variables. Additionally, the

underlying data design, referred as the meta-

design, is not determined prior to the data
collection as in classic randomized experiments.

Consequently, meta-analytic data are generally

severally unbalanced and factor effects are far from
being orthogonal (independent). This leads to

unique statistical estimation problems similar to

those observed in observational studies, such as
leverage points, near collinearity, and even

complete factor disconnectedness, thus prohibiting

the testing of the effects that are completely
confounded with others.

An example of factor disconnectedness is

shown in Table 1, where two factors each taking
three possible levels are investigated. In this

example, factor A and B are disconnected

because one cannot join all bordering pairs of
cells with both horizontal and vertical links.

Consequently, the effect of the third level of A

cannot be estimated separately from the effect
of the third level of B. This would be diagnosed

differently depending on the software used with

different combination of error messages, zero
degrees of freedom for some effects in the

ANOVA table, or a missing value for the statistic

used for testing.
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Table 1 - Example of factor disconnectedness.

                              Factor A Levels
Factor B Levels 1 2 3

1 x x
2 x x
3 x

In general, the variance between studies is large

compared to the variance within studies, hence
underlying the importance of including the study

effect into the meta-analytical model. The study

effect represents the combined effect of many
factors that differ between studies, but which

factors are not in the model because they either

were not measured, or have been excluded from
the model, or for which the functional form in the

model is inadequately representing the true but

unknown functional form (e.g., the model assumes
a linear relationship between the dependent and

one independent continuous variable whereas the

true relationship is nonlinear). In the absence of
interactions between design variables (e.g.,

studies) and the covariates (e.g., all continuous

independent variables of interest), parameter
estimates for the covariates are unbiased, but the

study effect adds uncertainty to future predictions

(St-Pierre, 2001). The presence of significant
interactions between studies and at least one

covariate is more problematic since this indicates

that the effect of the covariate is dependent on the
study, implying that the effect of a factor is

dependent on the levels of unidentified factors.

Steps in the meta-analytic process

There are several inherent steps to meta-

analyses, the important ones being summarized

in Figure 1. An important aspect of this type of
analyses is the iteration process, which is under

the control of the analyst. This circular pattern

where prior steps are re-visited and refined is an
important aspect of meta-analyses and contribute

much to their heuristic characteristic.

Objectives of the study
Establishing a clear set of study objectives is a

critical step that guides most ulterior decisions

such as the database structure, data filtering,

weighing of observations, and choice of statistical
model. Objectives can cover a wide range of

targets, ranging from preliminary analyses to

identify potential factors affecting a system, thus
serving an important role to the formulation of

research hypotheses in future experiments, to the

quantification of the effect of a nutritional factor
such as a specific feed additive.

Data Entry
Results from prior research found in the

literature must be entered in a database.The

structure and coding of the database must include

numerous variables identifying the experimental
objectives. Hence numerous columns are added

to code the objectives of each study. This coding

is necessary so as to avoid the improper

Figure 1 - Schematic representation of the meta-analytic process.
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aggregation of results across studies with very

different objectives. During this coding phase, the
analyst may chose to transform a continuous

variable to a discrete variable with n levels coded

in a single column with levels of the discrete
variable as entries, or in n columns with 0-1 entries

to be used as dummy variables in the meta-analytic

model. Different criteria can guide the selection
of classes, such as equidistant classes, or classes

with equal frequencies or probability of

occurrence. The important point is that the sum of
these descriptive columns must entirely

characterize the objectives of all studies used.

Data Filtering
There are at least three steps necessary to

effective data filtering. First, the analyst must

ensure that the study under consideration is
coherent with the objectives of the meta-analysis.

That is, the meta-analytic objectives dictate that

some variables must have been measured and
reported. If, for example, the meta-analysis

objective is to quantify the relationship between

dietary NDF concentration and DM intake, then
one must ensure that both NDF concentration and

DM intake were measured and reported in all
studies. The second step consists of a thorough

and critical review of each publication under

consideration, focusing on the detection of errors
in the reporting of results. This underlines the

importance of having a highly trained professional

involved in this phase of the study. Only after
publications have passed this expert quality filter

should their results be entered in the database.

Verification of data entries is then another essential
component to the process. In this third step, it is

important to ensure that a selected publication does

not appear to be an outlier with respect to the
characteristics and relations under consideration.

Preliminary Graphical Analyses
A thorough visual analysis of the data is an

essential step to the meta-analytic process. During

this phase, the analyst can form a global view

regarding the coherence and heterogeneity of the
data, as well as to the nature and relative importance

of the inter-study and intra-study relationships of

prospective variables taken two at a time.
Systematic graphical analyses should lead to

specific hypotheses and initial selection of

alternate statistical models. Graphics can also help

identifying observations that appear unique or

even outliers. The general structure of
relationships can also be identified, such as linear

vs. nonlinear relationships as well as the presence

of interactions. As an example, Figure 2 shows an
intra-study curvilinear relationship between two

variables in the presence of a significant inter-

study effect (i.e., different intercepts between
studies). In this example, the inter-study effect

associated with the X variable indicates the

presence of a latent (hidden) variable that differed
across studies. Another example is shown in Figure

3, which suggests the presence of a linear intra-

study effect interacting with the study effect (i.e.,
different regression slopes across studies). This

may be due to a narrow range of the X variable in

each experiment, or that again experiments
differed with respect to a latent, interacting

variable that was maintained constant or nearly

constant within each experiment. This
visualization phase of the data should always be

taken as a preliminary step to the statistical analysis

and not as conclusive evidence. The reason is that
as the multi dimensions of the data are collapsed

into two or possibly three dimension graphics, the

unbalance that clearly is an inherent characteristic
of meta-analytic data can lead to false visual

relationships. This is because simple X-Y graphics

do not correct the observations for the effects of
all other variables that can affect Y.

Figure 2 - Example of a curvilinear intra-study
effect in the presence of a random study effect.

Graphical analyses should also be done in

regards to the joint coverage of predictor variables,
identifying their possible ranges, plausible ranges,

and joint distributions, all being closely related to

the inference range. Figure 4 shows the concepts
involved when the dependent variable is plotted
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against one of the predictor variable. Similar
graphics should be drawn to explore the

relationships between predictor variables taken

two at the time. In such graphics, the presence of
any linear trends indicates correlations between

predictor variables. Strong positive or negative

correlations of predictor variables have two
undesirable effects. First, they may induce near

collinearity, implying that the effect of one

predictor cannot be uniquely identified (i.e., is
nearly confounded with the effect of another

predictor). In such instance, the statistical model
can include only one of the two predictors at a

time. Second, the range of a predictor X1 given a

level of a second predictor X2 is considerably less
than the unconditional range of predictor X1. In

these instances, although the range of a predictor

appears considerable in a univariate setting, its
effective range is actually very much reduced in

the multivariate space.

Figure 4 - Illustration of the concepts of possible range, plausible range, and actual range in a meta-
analysis with a single predictor variable.

Figure 3 - Example of a linear intra-study effect
in the presence of an interaction of study by
predictor variable.

Figure 5 illustrates some of these concepts
using an actual set of data on chewing activity in

cattle and the NDF content of the diet. Visually,

one concludes that the intra-study relationship
between chewing activity and diet NDF is

nonlinear, and that the intercept (i.e., height of the

curves) differed across studies. This observation
can be formally tested using the statistical methods

to be outlined later. In this example, the possible

NDF range is 0 – 100%, whereas its plausible
range is more likely between 20 and 60%.

Interestingly, the figure illustrates that

experimental measurements were frequently in the
20-40% and 45-55% ranges, leaving a gap with

very few observations in the 40-45% range.

Figure 5 - Effect of dietary neutral detergent
fiber (NDF) content on chewing activity in
cattle. 1 - Data are from 88 published experiments
where the NDF content of the diet was the
experimental treatment.
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Study of the experimental meta-design
The meta-design is determined by the structure

of the experiments for each of the predictor

variables. To characterize the meta-design,
numerous steps must take place before and after

the statistical analyses. The specific steps depend

on the number of predictor variables in the model.

One predictor variable.

• The experimental design used in each of the
studies forming the database must be

identified and coded, and their relative

frequencies calculated. This information can
be valuable during the interpretation of the

results.

• Frequency plots (histograms) of the predictor
variable can identify areas of focus of prior

research. For example, Figure 6 shows the

frequency distributions of NDF for the 517
treatment groups for the meta-analytic

dataset used to draw Figure 5. Both figures

indicate a substantial research effort towards
diets containing 30-35% NDF, an area of

dietary NDF density that borders the lower

limit of recommended dietary NDF for
lactating dairy cows (NRC, 2001). Because

of the high frequency of observations in the
30-35% NDF range, the a priori expectation

is that the effect of dietary NDF will be

estimated most precisely in this range.
• One should also consider the intra and inter-

study variances for the predictor variable.

Small intra-study variances reduce the ability

of assessing the structural form of the

relationship between the predictor and the

dependent variable. Large intra-study
variances but with only two levels of the

predictor variable in all or most of the studies

hides completely any potential nonlinear
relationships. Figure 7 shows the intra-study

standard deviation (S) of NDF as a function

of the mean dietary NDF for experiments
with two treatments, and for those with more

than two treatments. The analyst can

determine a minimum threshold of S to
exclude experiments with little intra-study

variation in the predictor variable. In

instances where the study effect is considered
random, this is not necessary and generally

not desirable. In such instances the inclusion

of studies with little variation in the predictor

Figure 6 - Frequency plot of neutral detergent fiber (NDF) content of diets across experimental treatments.

Figure 7 - Intra-study standard deviation of
dietary neutral detergent fiber (NDF) and mean
NDF of experiments designed to study the
effects of NDF in cattle.
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variable does little in determining the

relationship between the predictor and the

dependent variable, but adds observations and
degrees of freedom to estimate the variance

component associated with the study effect.

When looking at a possible nonlinear intra-
study relationship, it is intuitive to retain only

those experiments with three or more levels of

the predictor variables in the dataset. In this
instance, intuition is incorrect. Experiments

with two levels of the predictor variables add

information on the study component (intercept)
and the linear parameter of the model. In Figure

7, eliminating studies with less than three levels

of the predictor variable would eliminate 40%
of all the observations.

• Another important aspect at this stage of the

analysis is to determine the significance of the
study effect on the predictor variables. As

explained previously in the context of Figures

4 and 5, one must be very careful in regards to
the statistical model used to investigate the

intra-study effect when there is an interaction

between the predictor variable(s) and study. In
these instances, the relationship between the

predictor variable and the dependent variable

is dependent on the study, which itself
represents the sums of a great many factors

such as measurement errors, systematic

differences in the methods of measurements
of the dependent variable across studies, and,

more importantly, latent variables (hidden) not

balanced across experiments. In those
instances, the analyst must exert great caution

in the interpretation of the results, especially

regarding the applicability of these results.
• It is generally useful to calculate the leverage

of each observation (Tomassone et al., 1983).

Traditionally, leverage values are calculated
after the model is fitted to the data, but nothing

prohibits the calculation of leverage values at

an earlier stage because their calculations
depend only on the design of the predictor

variable in the model. For example, in the case

of the simple linear regression with n

observations, the leverage point for the ith

observation is calculated as:

h
i
 = 1/n + (X

i
 – X

m
) / ΣΣΣΣΣ (X

i
 – X

m
)2             [1]

where:h
i
 is the leverage value,

X
i
 is the value of the Ith predictor

variable, and
X

m
 is the mean of all X

i
.

Equation [1] clearly indicates that the leverage
of an observation, i.e. its weight in the

determination of the slope, grows with its distance

from the mean of the predictor variable. The
extension of the leverage point calculations to

more than one predictor variables is straight

forward (St-Pierre & Glamocic, 2000).

• In a final step, the analyst must graphically

investigate the functional form of the
relationship between the dependent variable

and the predictor variable.

Two or more predictor variables
In the case of two or more predictor variables,

the analyst must examine graphically and then

statistically the inter and intra-study relationships
between the predictor variables. Leverage values

should be examined. With fixed models (all effects

in the models are fixed with the exception of the
error term), variance inflation factors (VIF) should

be calculated for each predictor variables (St-

Pierre & Glamocic, 2000). An equivalent statistic
has not been proposed for mixed models (e.g.,

when the study effect is random), but asymptotic

theory would support the calculation of the VIFs
for the fixed effect factors in cases where the total

number of observations is large. The objective in

this phase is to assess the degree of inter-
dependence between the predictor variables.

Because predictor variables in meta-analyses are

never structured prior to their determination, they
are always non-orthogonal and, hence, show

variable degrees of inter-dependency. Collinearity

determinations (VIF) assess one’s ability to
separate the effects of inter-dependent factors

based on a given set of data. Collinearity is not

model driven, but completely data driven.

Weighing of observations
Because meta-analytic data are extracted from

the results of many experiments conducted under
many different statistical designs and number of

experimental units, the observations (treatment

means) have a wide range of standard errors.
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Intuition and classical statistical theory would

indicate that observations should be subjected to

some sort of weighing scheme. Systems used for
weighing observations form two broad categories.

Weighing based on classical statistical theory
Under a general linear model where

observations have heterogeneous but known

variances, maximum likelihood parameters

estimates are obtained by weighing each
observation by the inverse of its variance. In the

context of a meta-analysis where observations are

least-squares (or population marginal) means,
observations should be weighed by the inverse of

the squares of their standard errors, which are the

standard errors of each mean (SEM).
Unfortunately, when such weights are used, the

resulting measures of model errors (i.e., standard

error, standard error of predictions, etc.) are no
longer expressed in the original scale of the data.

To maintain the expressions of dispersion in the

original scale of the measurements, St-Pierre
(2001) suggested dividing each weight by the

mean of all weights, and to use the resulting values

as weighing factors in the analysis. Under this
procedure, the average weight used is algebraically

equal to 1.0, thus resulting in expressions of

dispersion that are in the same scale as the original
data.

Weighing based on other criteria
Other weighing criteria have been suggested

for the weighing of observations, such as the power
of an experiment to detect an effect of a size

defined a priori, the duration of an experiment,

etc. The weighing scheme can actually be based
on an expert assessment, partially subjective, of

the overall quality (precision) of the data. The

opinion of more than one expert may be useful in
this context. From a Bayesian statistical paradigm,

the use of subjective information for decision-

making is perfectly coherent and acceptable, as
subjective probabilities are often used to establish

prior distributions in Bayesian decision theory (De

Groot, 1970). Traditional scientific objectiveness,
however, may restrict the use of this weighing

scheme in scientific publications.

Predictably, the importance of weighing
observations decreases with the number of

observations used in the analysis, especially if the

observations that would receive a small weight

have relatively small leverage values. An example

of this is shown in Figure 8.
Whether the analyst should weight the

observations based on the SEM for each individual

treatments or the pooled SEM from the studies is
open for debate. There are many reasons why the

SEM of each treatment within a study can be

different. First, the original observations
themselves could have been homoscedastic

(homogeneous variance) but the least-squares

means would have different SEM due to unequal
frequencies (e.g., missing data). In such case, it is

clear that the weight should be based on the SEM

of each treatment. Second, the treatments may have
induced heteroscedasticity, meaning that the

original observations did not have equal variances

across sub-classes. In such instances, the original
authors should have conducted a test to assess the

usual homoscedasticity assumption in linear

models. The problem is that a lack of significance
(i.e., P > 0.05) when testing the homogeneity

assumption does not prove homoscedasticity, but

only that the null hypothesis (homogeneous
variance) cannot be rejected at a P < 0.05. In a

meta-analytic setting, the analyst may deem the

means with larger apparent variance to be less
credible and reduce the weigh of these

observations in the analysis. Unfortunately, most

publications lack the information necessary to this
option.

Among the more subjective criteria available

for weighing is the quality of the experimental
design used in the original study in regard to the

meta-analytic objective.

Experimental designs have various trade-offs

Figure 8 - Estimated response of lactating dairy
cows to concentrate intake using weighed and
unweighed observations.
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due to their underlying assumptions. For example,

the Latin square is often used in instances where

animal units are relatively expensive, such as in
metabolic studies. The double orthogonal blocking

used to construct Latin square designs can remove

a lot of variation from the residual error.
Thus very few animals can be used compared

to a completely randomized design for an equal

power of detecting treatment effect. The downside,
however, is that the periods are generally relatively

short to reduce the likelihood of a period by

treatment interaction (animals in different
physiological status across time periods), thus

reducing the magnitude of the treatment effects

on certain traits, such as production and intake for
example. In those instances, the analyst should

legitimately weigh down observations from

experiments whose designs limited the expression
of the treatment effects.

Statistical models
The independent variables can be either

discrete or continuous. With binary data (healthy/

sick, for example), generalized linear models

(GLM) based on the logit or probit link functions
are generally recommended (Agresti, 2002).

Because of advances in computational power, the

GLM has been extended to include random effects
in what is called the generalized linear mixed

model (GLMM). In its version 9, the SAS system

includes a beta release of the GLIMMX procedure
to fit these complex models.

In nutrition, however, the large majority of the

dependent variables subjected to meta-analyses are
continuous, and their analyses are treated at length

in the remainder of this paper.

St-Pierre (2001) made a compelling argument
to include the study effect in all meta-analytic

models. Because of the severe imbalance in most

databases used for meta-analyses, the exclusion
of the study effect in the model leads to biased

parameter estimates of the effects of other factors

under investigation, and severe biases in variance
estimates. In general, the study effect should be

considered random because it represents the sum

of the effects of a great many factors, all with
relatively small effects on the dependent variable.

Statistical theory indicates that these effects would

be close to Gaussian (normal), thus much better
estimated if treated as random effects.

Practical recommendations regarding the

selection of the type of effect for the studies are

presented in Table 2. In short, the choice depends
on the size of the conceptual population, and the

sample size (the number of studies in the meta-

analysis).
The ultimate (and correct) meta-analysis would

be one where all the primary (raw) data used to

perform the analyses in each of the selected
publications were available to the analyst. In such

instance, a large segmented model that includes

all the design effects of the original studies (e.g.,
the columns and rows effects in Latin squares) plus

the effects to be investigated by the meta-analysis

could be fitted by least-squares or maximum
likelihood methods. Although computationally

complex, such huge meta-analytic models should

be no more difficult to solve than the large models
used by geneticists to estimate the breeding values

of animals using very large national databases of

production records. Raw data availability should
not be an issue in instances where meta-analyses

are conducted with the purpose of summarizing

research at a given research center. This, however,
is very infrequent, and meta-analyses are almost

always conducted using observations that are

themselves summaries of prior experiments (i.e.,
treatment means). It seems evident that a meta-

analysis conducted on summary statistics should

lead to the same results as a meta-analysis
conducted on the raw data, which itself would have

to include a study effect because the design effects

are necessarily nested within studies (e.g., cow 1
in the Latin square of study 1 is different than the

cow 1 of study 2), which itself would be considered

random. Thus, analytical consistency dictates the
inclusion of the study effect in the model, generally

as a random effect. The study effect will be

considered random in the remainder of this paper,
with the understanding that under certain

conditions explained previously it should be

considered a fixed effect factor.
Beside the study effect, meta-analytic models

include one or more predictor variables that are

either discrete, or continuous. For clarity, we will
initially treat the case of each variable type

separately, understanding that a model can easily

include a mixture of variables of both types, as
we describe later.

Model with discrete predictor variable(s)
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A linear mixed model easily models this

situation as follows:

Y
ijk

 = µ + S
i
 + τττττj

 + S
tij

 + e
ijk

                         [4]

where:
Y

ijk
= the dependent variable,

µ = overall mean,

Si = the random effect of the ith study, assumed
~ 

iid
N (0, σ2

S),

t
j

= the fixed effect of the jth level of factor τ,

S
tij

= the random interaction between the ith

study and the jth level of factor τ, assumed

~ 
iid

N (0, σ2
Sτ), and

e
ijk

 = the residual errors, assumed ~ 
iid

N (0,
σ2

e
).

e
ijk

, Sτij
 and S

i
 are assumed to be independent

random variables.

For simplicity reasons, model [4] is written
without weighing the observations. The weights

would appear as multiplicative factors of the

diagonal elements of the error variance-covariance
matrix (Draper & Smith, 1998). Model [4]

corresponds to an incomplete, unbalanced

randomized block design with interactions in
classic  experimental research. The following SAS

statements would solve this model:

PROC MIXED DATA=Mydata CL COVTEST;
CLASSES study tau;
MODEL Y = tau;                           [5]
RANDOM study study*tau;
LSMEANS tau;

RUN;

Standard tests of significance on the effect of

τ  are easily conducted and least-squares means
can be separated using an appropriate mean

separation procedure. Although it may be tempting

to remove the study effect from the model in
instances where it is not significant (also called

pooling of effects), this practice can lead to biased

probability estimations (i.e., final tests on fixed
effects are conditional on tests for random effects)

and is not recommended. This is because not being

able to reject the null hypothesis of no study effect
(i.e., variance due to study is not significantly

different from zero) is a very different proposition

than proving that the effect of study is negligible.

At the very least, the probability threshold for

significance of study should be much larger than
the traditional P = 0.05. Ideally, the analyst should

state before the analysis is performed what size of

estimated variance due to study should be
considered negligible, such as σ2

S< 0.1 σ2e.

Model with continuous predictor variable(s)
A linear mixed model is used:

Y
ij
 = B

0
 + S

i 
+ B

1
 X

ij 
+ b

i
 X

ij
 + e

ij
                  [6]

where:

Y
ij
 =  the dependent variable,

B
0
 = overall (inter-study) intercept (a fixed

effect equivalent to τ in [4]),

S
i
 = the random effect of the ith study,

assumed ~
iid

N (0, σ2
S),

B
1
 = the overall regression coefficient of Y

on X (a fixed effect),

X
ij
 = value of the continuous predictor

variable,

b
i
 = random effect of study on the regression

coefficient of Y on X, assumed ~ 
iid

N
(0, σ2

b
), and

e
ij
 = the residual errors, assumed ~ 

iid
N (0,

σ2
e
).

e
ij
, b

i
 and S

i
 are assumed to be independent

random variables.

The following SAS statements solve this

model:

PROC MIXED DATA=Mydata CL COVTEST;
CLASSES study;
MODEL Y = X / SOLUTION;                 [7]
RANDOM study study*X;

RUN;

Using a simple Monte Carlo simulation, St-
Pierre (2001) demonstrated the application of this

model to a synthetic dataset, showing the power

of this approach, and the interpretation of the
estimated parameters.

Model with both discrete and continuous

predictor variable(s)

Statistically, this model is a simple combination

of [4] and [6] as follows:
Y

ijk
 = µ + S

i
 + τττττj

 + Sτττττij
 + B

1
 X

ij
 + b

i
 X

ij
 + B

j
 X

ij
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+ e
ijk

  [8]

where:
B

j
 = the effect of the jth level of the discrete

factor τ on the regression coefficient (a

fixed effect).

The following SAS statements would be used

to solve this model:
PROC MIXED DATA=Mydata CL COVTEST;

CLASSES study tau;
MODEL Y = tau X tau*X;             [9]
RANDOM study study*tau study*X;
LSMEANS tau;

RUN;

In theory, [8] is solvable, but the large number

of variance components and interaction terms that
must be estimated, in combination with the

imbalance in the data makes it often numerically

intractable. In such instances, at least one of the
two random interactions must be removed from

the model.

In [4], [6], and [8], the analyst secretly wishes
for the interactions between study and the predictor

variables to be highly nonsignificant. Recall that

the study effect represents an aggregation of the
effects of many uncontrollable and unknown

factors that differed between studies. A significant

study x τ interaction in [4] implies that the effect
of τ (the intercept) is dependent on the study, hence

of factors that are unaccounted for. Similarly, a

significant interaction of study by X in [6] (the b
i

terms) indicates that the slope of the linear

relationship of Y on X is dependent on the study,

hence of unidentified factors. In such situation,
the analysis produces a model that can explain very

well the observations, but whose predictions of

future outcomes are generally not precise because
the actual realization of a future study effect is

unknown.

The maximum likelihood predictor of a future
observation is computed by setting the study and

the interaction of study with the fixed effect factors

to their mean effect values of zero (McCulloch &
Searle, 2001), but the standard error of this

prediction is very much amplified by the

uncertainty regarding the realized effect of the
future study.

When the study effect and its interaction with

fixed effect is correctly viewed as an aggregation

of many factors not included in the model, but that

differed across studies, the desirability of including
as many fixed factors in the model as can be

uniquely identified from the data becomes

obvious. In essence, the fixed effects should
ultimately make the study effect and its interactions

with fixed effects predictors small and negligible.

In such instances, the resulting model should have
wide forecasting applicability. Imagine for

instance that much of the study effect on body

weight gain of animal is in fact due to large
difference in the initial body weight across studies.

In such instances, the inclusion of initial body

weight as a covariate would remove much of the
study effect, and the diet effects (as continuous or

discrete variables) would be estimated without

biases, with a wide range of applicability (i.e., a
future prediction would require a measurement of

initial body weight as well as measurements of

the other predictor variables).
Whether one chooses [4] or [6] as a meta-

model is somewhat arbitrary when the predictor

variable has an inherent scale (i.e., is a measured
number). The assumptions regarding the relationship

between Y and the predictor variable are, however,

very different between the two models. In [4], the
model does not assume any functional form for the

relationship. In [6], the model explicitly assumes a

linear relationship between the dependent and the
predictor variables. Different methods can be used

to determine whether the relationship has a linear

or nonlinear structure.
• The first method consists in classifying

observations into five sub-classes based on

the quintiles for the predictor variable, and
performing the analysis according to [4] with

five discrete levels of the predictor variable.

Although the selection of five sub-classes is
somewhat arbitrary, there are substantive

references in the statistical literature

indicating that this number of levels
generally works well (Cochran, 1968; Rubin,

1997). A visual inspection of the five least-

squares means, or the partitioning of the four
degrees of freedom associated with the five

levels of the discrete variable into singular

orthogonal polynomial contrasts can rapidly
identify an adequate functional form to use

for modeling the Y-X relationship.
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• The second method can be directly applied

to the data, or can be a second step that

follows the identification of an adequate
degree for a polynomial function. Model [6]

is augmented with the square (and possibly

higher order terms) of the predictor variable.
In the MIXED procedure of SAS, this can

be done simply by adding an X*X term to

the model statement. It is important to
understand that in the context of a linear

(mixed or not) model, the matrix

representation of the model and the solution
procedure used are no different when X and

X2 are in the model compared to a situation

where two different continuous variables
(say X and Z) are included in the model. The

problem, however, is that X and X2 are

implicitly dependent; after all, there is an
algebraic function relating the two. This

dependence can result in a large correlation

between the two variables, thus leading to
possible problems of collinearity.

• A third method can be used in more complex

situations where the degree of the
polynomial exceeds two, or the form of the

relationship is sigmoid, for example. The

relationship can be modeled as successive
linear segments, an approach conceptually

close to the first method explained previously.

Martin and Sauvant (2002) used this method
to study the variation in the shape of the

lactation curves of cows subjected to various

concentrate supplementation strategies, using
the model of Grossman & Koops (1988) as its

fundamental basis. Using this approach,

lactation curves were summarized by a vector
of  9 parameter estimates, which estimates

could be compared across supplementation

strategies.

In [8], the interest may be in the effect of the

discrete variable τ after adjusting for the effect of
a continuous variable X as in a traditional covariate

analysis, or the interest may be inverse, i.e., the

interest is in the effect of the continuous variable
after adjusting for the effect of the discrete

variable. The meta-analyses of Firkins et al. (2001)

provide examples of both situations. In one
instance, the effect of grain processing (a discrete

variable) on milk fat content was being

investigated while correcting for the effect of dry

matter intake (DMI, a continuous variable). In this

instance, the interest was in determining the effect
of the discrete variable. In another instance, the

effects of various dietary factors such as dietary

NDF, DMI and proportion of forage in the diet
(all continuous variables) on starch and NDF

digestibility, and microbial N synthesis were

investigated, while correcting for the effect of the
method of grain processing. In this case, the

interest was much more towards the effects of the

continuous variables exempt from possible biases
due to different grain processing methods across

experiments.

Accounting for interfering factors
Differences in experimental conditions

between studies can affect the treatment response.

The nature of these conditions can be represented

by quantitative or qualitative variables. In the first
instance the variable and possibly its interaction

with other factors can be added to the model if

there are sufficient degrees of freedom. The
magnitude of treatment response is sometimes

dependent on the observed value in the control

group. For example, Figure 9 shows the milk fat
response in lactating cows to dietary buffer

supplementation as a function of the milk fat of

the control group (Meschy et al., 2004). The
response was small or non-existent when the milk

fat of control cows was near 40 g/L, but increased

markedly when the control cows had low milk fat,
possibly reflecting a higher likelihood of sub-

clinical rumen acidosis in these instances.

The presence of a study by predictor variable
interaction can indicate a nonlinear relationship

and the need for a higher degree of polynomial in

the model. Applying model [6] with the addition
of a square term for the X

ij
 to the data shown in

Figure 5 results in a relatively good quantification

of the relationship between chewing time and
dietary NDF, as shown in Figure 10. In this type

of plot, it is important to adjust the observations

for the study effect, or the regression may appear
to poorly fit the data because of the many hidden

dimensions represented by the studies (St-Pierre,

2001).
In instances where the interacting factor is

discrete, the examination of the sub-classes least-

squares means can clarify the nature of the
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interaction. For example, the effect of a dietary

treatment may be dependent on the physiological

status of the animals used in the study. This
physiological status can be coded using multiple

dummy variables, as explained previously.

Figure 9 - Response in milk fat content (FAT)
to dietary buffer supplementation.

Figure 10 - Effect of dietary neutral detergent
fiber (NDF) content on chewing activity in
cattle.  1Data are from published experiments
where the NDF content of the diet was the
experimental treatment. Observations were
adjusted for the study effect before being plotted,
as suggested by St-Pierre (2001).

Post-optimization analyses

a variance σ2e. The normality assumption can be

tested using a standard Chi2 test, or a Shapiro-

Wilkes test, both available in the UNIVARIATE
procedure of the SAS system. Residuals can also

be expressed as Studentized residuals, with

absolute values exceeding 3 being suspected
outliers (Tomassone et al., 1983). In meta-

analysis, the removal of a suspected outlier

observation should be done only with extreme
caution. This is because the observations in a

meta-analysis are the calculated outcomes (least-

squares means) of models and experiments that
should themselves be nearly free of the influence

of outliers. Thus, meta-analytic outliers are

much more likely indicative of a faulty model
than of a defective observation. In addition, the

removal of one treatment mean as an observation

in a meta-analysis might be removing all the
variation in the predictor variable for the

experiment in question, thus making the value

of the experiment in a meta-analytic setting
nearly worthless. In addition, the analyst should

examine for possible intra and inter-study

relationships between the residuals and the
predictor variables.

Structure of study variation

When a model of the type described in [4],

[6], or [8] is being fitted, it is possible to

examine each study on the basis of its own
residuals. For example, Figure 11 shows the

distribution of the residual standard errors for

the different studies used in the meta-analysis
of chewing time in cattle (Figures 5 and 10).

Predictably, the distribution is asymmetrical and

follows the law of Raleigh for the standard
errors, while variances have a Chi2 distribution.

Studies with unusual standard errors, say those

with a Chi2 probability exceeding 0.999 could
be candidates for exclusion from the

analysis.Alternatively, one could consider using

the inverse of the estimated standard errors as
weights to be attached to the observation before

re-iterating the meta-analysis.

Other calculations such as leverage values,
Cook’s distances, and other statistics can be used

to determine the influence of each observation on

the parameter estimates (Tomassone et al., 1983).

As when fitting conventional statistical models,
numerous analyses should follow the fitting of a

meta-analytic model. These analyses are used to

assess the assumptions underlying the model, and
to determine whether additional meta-analytic

models should be investigated.

Structure of Residual Variation

In [4], [6], and [8], the residuals (errors) are

assumed independent, and identically distributed
from a normal population with a mean of zero and



© 2007 Sociedade Brasileira de Zootecnia

357Meta-analyses of experimental data in the animal sciences

Figure 11 - Frequency distribution of the
residual standard errors of the studies used in
the meta-analysis of chewing activity in cattle.

Table 2 - Guidelines to establish whether an effect should be considered fixed or
random in a meta-analytic model1.

Population Experiment Effect of t in the model
Case 1 T is small2 t ≅ T Fixed effect
Case 2 T is large t << T Random effect
Case 3 T is large t ≅ T Should be fixed but random works better
Case 4 T is large t << T, and Should be random but fixed may work better

t is very small (i.e., variance components can be poorly estimated)
1Adapted from Milliken (1999) for mixed models. 2T represents the number of studies in the population
(conceptual), and t is the number of studies in the meta-analysis.

Conclusion

Meta-analyses produce empirical models. They
are invaluable for the synthesis of data that at first

may appear scattered without much pattern. The

meta-analytic process is heuristic and implicitly
allows returning to prior steps. Extensive graphical

analyses must be performed prior to the

parameterization of a statistical model to gain a
visual understanding of the data structure as well

as to validate data entries.

The increased frequency of meta-analyses
published in the scientific literature coupled with

scarce funding for research should create an

additional need for scientific journal to ensure that
published articles provide sufficient information to

be used in a subsequent meta-analysis. There may

be a time when original data from published articles
will be available via the web in a standardized format,

a current practice in DNA sequencing research.

Lastly, new meta-analytic methods should
assist the expansion of mechanistic modeling

efforts of complex biological systems by providing

conceptual models as well as a structured process
for their external evaluation.
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