rca
Revista Ciência Agronômica
Rev. Ciênc. Agron.
0045-6888
1806-6690
Universidade Federal do Ceará
RESUMO
No cultivo comercial da cana-de-açúcar, conhecimentos relacionados à regularidade na repetição de caracteres agroindustriais, em diferentes ciclos de colheita, são essenciais na identificação de genótipos com maior longevidade nas soqueiras. Tais genótipos contribuirão para o aumento significativo da produtividade. O objetivo deste trabalho foi avaliar o desempenho agroindustrial de 16 genótipos de cana-de-açúcar na microrregião canavieira do Litoral Norte de Pernambuco em quatro ciclos de colheita, examinando a regularidade da repetição de caracteres. O experimento foi conduzido na área agrícola da Usina São José, município de Igarassu. Utilizou-se o delineamento experimental de blocos casualizados com quatro repetições. Foram avaliadas as variáveis: toneladas de pol por hectare (TPH), toneladas de cana por hectare (TCH), fibra (FIB), pol % corrigida (PCC), teor de sólidos solúveis (BRIX) e açúcar total recuperável (ATR). A análise de variância revelou diferenças significativas entre as médias dos tratamentos nos quatro ciclos de colheita, indicando variabilidade genética e possibilidade de sucesso na seleção de genótipos superiores. As estimativas do coeficiente de repetibilidade apontam regularidade na repetição dos caracteres agroindustriais, sendo possível identificar genótipos de maior longevidade nas soqueiras. Constatou-se ainda que os genótipos SP79-1011, RB863129, RB92579, RB813804, RB982559 e RB982613 apresentam melhor desempenho agroindustrial, e que duas avaliações com base nos caracteres TPH e TCH indicam ser suficientes para selecionar genótipos superiores com 90% de previsibilidade dos seus valores reais.
INTRODUCTION
Genetic improvement programs underline the importance of sugarcane in both the economic and social scenarios in Brazil (DUTRA FILHO et al., 2012). Currently, the sugarcane sector relies on a large portfolio of varieties developed by these improvement programs or introduced varieties (SOUZA et al., 2012). In the past 30 years, genetic improvement played an outstanding role in the development of the sugarcane sector in Brazil. Productivity figures rose 30%, increasing sugar yield per ton of chopped sugarcane, accompanied by an improvement in the quality of the product (BARBOSA; SILVEIRA, 2012).
In the state of Pernambuco (PE), Brazil, experiments with sugarcane are carried out based on three harvest cycles on average, namely plant cane, 1st ratoon, and 2nd ratoon (SOUZA et al., 2012). The data obtained in these studies enable the evaluation of the magnitude of the interactions between genotype and harvest, which usually are significant. These interactions influence clone selection and are used to identify materials that are more long-lived (MELO et al., 2009). The efficient identification of long-lived genotypes in sugarcane genetic improvement programs depends mainly on the spatial and temporal repeatability of characters under selection (CUENYA; MARIOTTI, 1993).
The repeatability coefficient is used in the study of characters of perennial plants, since these characters are expressed more than once during a plant’s lifetime (CARDOSO, 2006; CHIA et al., 2009; MANFIO et al., 2011; SOARES et al., 2008; SOUZA SOBRINHO et al., 2010). Estimation of the repeatability coefficient is based on more than one phenotypic evaluation of each individual plant. The aim is to measure the potential of these plants to express the characters studied (VENCOVSKY, 1973). The repeatability coefficient also affords to estimate the number of phenotypic evaluations (or replications) that have to be conducted in each individual plant so that the selection of new genotypes is successful, minimizing time and overall costs in the development and introduction of new varieties (CRUZ; REGAZZI; CARNEIRO, 2012; NEGREIROS et al., 2008).
According to Danner et al. (2010), the repeatability coefficient allows assessing the reliability of a selection based on a phenotypic character, that is, whether the selected genotypes will retain their superiority indefinitely. It also affords to determine the minimum number of evaluations of each individual plant in the effort to select genotypes effectively.
Using repeatability estimates obtained by principal component analysis (PCA) to select new sugarcane varieties in the state of Alagoas, Brazil, Santos et al. (2004) obtained values above 0.5 for fiber (FIB) and tons of cane per hectare (TCH) with accuracy in excess of 84%. However, characters like adjusted POL% (PCC), tons of POL per hectare (TPH), and purity (PZA) exhibited poor reproducibility between cycles, with low accuracy (approximately 74%). The authors concluded that at least five evaluations are necessary to select varieties with 80% predictability for TPH, TCH, PCC, and FIB.
Based on these considerations, the present study evaluated the agroindustrial performance of 16 sugarcane genotypes grown in the sugarcane production microregion in the northern coast of PE throughout four harvest cycles. Reproducibility of characters was also assessed to determine the number of evaluations based on the main agroindustrial characters necessary to select new sugarcane varieties grown under the edaphic-climatic conditions of the microregion.
MATERIALS AND METHODS
The experiment was carried out in Engenho Mulata, a sugarcane plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil (8º45’S, 35º00’W, 45 m a.s.l.). Annual mean temperature is 24.8 ºC, and mean rainfall is 1715.7 mm (KOFFLER et al., 1986).
Due to the fact that this was a field experiment and that the conditions were variable, a randomized complete block design with four repeats was used. In total, 16 sugarcane genotypes were used (Table 1).
Table 1
Identification and origin of the 16 sugarcane genotypes used in experiments conducted in the microregion Litoral Norte de Pernambuco, Engenho Mulata, plantation area of the São José sugar mill, municipality of Igarassú, PE, Brazil
Genotypes
Origin
SP79-1011
COPERSUCAR
RB863129
RIDESA
RB92579
RIDESA
RB813804
RIDESA
RB982559
RIDESA
RB982613
RIDESA
RB72454
RIDESA
SP81-3250
COPERSUCAR
RB982541
RIDESA
RB982615
RIDESA
RB982590
RIDESA
RB982586
RIDESA
RB982580
RIDESA
RB982603
RIDESA
RB982630
RIDESA
RB982754
RIDESA
Each quadrat was defined by five 8-m lines 1 m apart. Plants were spaced 1 m from one another. Fertilization and pH adjustments were conducted according to the sugarcane production system adopted by the sugar mill.
The agroindustrial characters (i) TPH, (ii) TCH, (iii) FIB; (iv) PCC, (v) soluble solids (BRIX), and (vi) total recoverable sugars (TRS) were evaluated, since they are the most important parameters in sugarcane production. Briefly, TCH was determined weighing (kg) all culms in a quadrat. Next, the weigh of the quadrat was converted in TCH using the equation:
TCH
=
Total
parcel
weight
x
1
0
/
u
s
e
d
area
of
the
quadrat
in
m
2
TPH was calculated using the equation:
TPH
=
TCH
X
P
C
C
/
1
0
0
While BRIX was analyzed in the laboratory using a refractometer and the homogenized pool of the juice of 10 culms obtained randomly in each quadrat. The methodology developed by Fernandes (2003) was used to calculate FIB, PCC, and TRS. The evaluations were conducted along four agricultural cycles: plant cane, 1st ratoon, 2nd ratoon, and 3rd ratoon.
Hartley’s test (> QMR / < QMR) was used to evaluate the existence of similar residual variances and thus assess the conditions to carry out the analysis of covariance of the experiments.
The covariance analysis of experiments considering the four harvest cycles was carried out according to the statistical model proposed by Cruz (2006)
Y
ijk
=
μ
+
b
/
c
jk
+
g
i
+
c
k
+
gc
ik
+
ε
ijk
where
Yijk is the evaluation of the ith genotype in the jth block in the kth harvest;
m: overall mean;
(b/c)jk: effect of block j on harvest k;
gi: effect of treatment (or genotype) i;
ck: effect of harvest k;
gcik: effect of the interaction between genotype i and harvest k; and
εijk: random error associated with evaluation ijk.
The fixed effects were the effect of means (µ) and genotypes (g), while block (b), harvest (c), interaction between genotype and harvest (gc), and experimental error (ε) effects were considered random. The results of the covariance analysis of the four harvest cycles were obtained using the statistical design in Table 2.
Table 2
Statistical design used to obtain the results of the covariance analysis of experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
FV
GL
E(QM)
F
Blocks/harvests
(r-1)c
σ2+gσ2b
Harvests (c)
c - 1
σ2+gσ2b+gσ2c
QMC/QMB
Genotypes (g)
g - 1
σ2+rl
gσ2gc+crφg
QMG/QMGC
Interaction g x c
(c - 1)(g -1)
σ2+rl
gσ2gc+crφg
QMGC/QMR
Residuals
(g-1)(r - 1)c
σ2
ℓ = g/(g-1)
According to Cruz (2006), mean heritability is calculated using the equation:
H
2
=
φ
̂
g
∠
Q
M
G
/
c
r
Means were grouped using the Scott-Knott test at 5% probability. This test was used because means compared using the Tukey test are difficult to interpret due to ambiguity. The repeatability coefficient was calculated using the covariance analysis with two factors, namely the principal component analysis (PCA) (ABEYWARDENA, 1972) and structural data analysis (MANSOUR; NORDHEIM; RUTLEDGE, 1981), and the two methods were compared. Means were grouped considering the means of genotypes in the four harvests, since genetic improvement of sugarcane requires the best genotype considering its performance not only in plant cane, but also in all harvests.
Repeatability analyses were conducted using the model adapted from Cruz, Regazzi and Carneiro (2012), expressed by the expression:
Y
ijk
=
μ
+
g
i
+
a
j
+
ga
ij
+
b
j
k
+
ε
ij
where
Yijk: is the evaluation of the ith genotype in the jth harvest in the kth repeat;
µ: overall mean;
gi: effect of the ith genotype under the permanent effects of harvest (i = 1, 2, ...,p);
aj: effect of the jth harvest (j = 1, 2, ...η);
gaij: effect of the interaction between genotype and harvest;
b(j)K: effect of the kth block (k = 1, 2, ...K) on the jth harvest;
εij: experimental error defined by the temporary effects of harvest on the jth measurement of the ith genotype.
After analysis of variance, the repeatability coefficient was obtained using the equation:
r
=
C
ô
v
Yij
,
Yij
V
Yij
V
Yi
j
′
=
σ
g
2
σ
y
2
=
σ
g
2
σ
2
+
σ
g
2
Therefore, the number of measurements to predict the actual value of individuals was obtained using the equation
η
o
=
R
2
1
−
r
1
−
R
2
r
The repeatability coefficient was estimated using the PCA using the matrix of phenotypic variances and covariances, according to the statistical model developed by Cruz, Regazzi and Carneiro (2012)
Y
ij
=
μ
+
g
i
+
a
j
+
ε
ij
However, in this case, the covariance matrix was obtained as:
r
=
σ
y
2
=
1
ρ
…
ρ
ρ
1
…
ρ
…
…
…
…
ρ
ρ
…
1
where
V
Yij
=
V
Yij
'
=
σ
2
+
σ
g
2
=
σ
y
2
Cov
Y
i
j
,
Y
i
j
'
=
σ
̂
g
2
+
σ
2
ρ
=
ρ
σ
y
2
The characteristic root was obtained using the equation:
λ
1
=
σ
y
2
1
+
η
−
1
ρ
The corresponding eigenvector was given by the equation:
α
'
1
=
/
η
…
1
/
η
The repeatability coefficient estimate was calculated using the equation:
r
ρ
̂
=
λ
̂
1
−
σ
y
2
σ
y
2
η
−
1
The repeatability coefficient estimate was obtained using structural data analysis considering the parametric matrix of correlations between genotypes in each pair assessed using the equation:
r
=
α
'
R
α
̂
−
1
η
−
1
where
α
'
1
=
/
η
…
1
/
η
Here
α
'
1
R
̂
α
=
1
+
2
η
∑
j
∑
<
j
'
rjj
'
Therefore
r
=
2
η
η
−
1
∑
j
∑
<
j
'
rjj
'
This equation gives the repeatability coefficient estimate as the arithmetic mean of phenotypic correlations between genotypes, considering each pair of measurements.
The determination coefficient was obtained using the equation:
R
2
=
η
r
/
1
+
r
η
−
1
The number of measurements necessary to predict the actual value of an individual was obtained using the equation:
η
0
=
R
2
1
−
r
/
1
−
R
2
r
All genetic-statistical analyses were conducted in the Genes software (Cruz, 2006).
RESULTS AND DISCUSSION
The analysis of variance identified highly significant statistical differences at 1% probability (p<0.01) between genotypes for all characters assessed (Table 3). This result indicates the genetic variability between genetic materials analyzed in different agricultural years and respective harvest cycles. This is an advantageous feature in improvement programs, showing that it is possible to select superior genotypes based on these characters that, according to Silva et al. (2009), are some of the most important variables in sugarcane production.
Table 3
Summary of the covariance analysis of groups of experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
FV
DF
Mean squares
TPH
TCH
FIB
PCC
BRIX
TRS
Genotypes
15
77.71**
4561.24**
5.83**
5.64**
6.03**
479.70**
Harvest
3
14.98*
1167.48**
6.14**
7.56**
21.68**
456.20**
G x H
45
4.10*
228.94**
1.28**
0.74ns
0.90ns
65.43ns
Residual
180
2.48
138.86
0.68
0.76
0.92
67.87
Means
8.72
68.88
13.80
12.70
18.09
127.71
C.V. (%)
18.09
17.10
5.98
6.85
5.30
6.45
>QMR / <QMR
1.45
1.60
2.21
1.56
1.76
2.35
** and * indicate significance at 1% and 5% probability, respectively, in the F test;
(ns)
not significant in the F test; (G x H), Interaction between genotype and harvest
Significant differences were observed for all characters between harvest cycles (plant cane, 1st ratoon, 2nd ratoon, and 3rd ratoon), indicating that these cycles are contrasting environments. In this case, according to Melo et al. (2006), climatic conditions during agricultural years affect the characters evaluated in selection processes.
Similarly, significant statistical differences were observed for the characters TPH, TCH, and FIB in the interaction between genotype and harvest. This shows the different behaviors of genotypes considering these characters in the cultivation of plant cane, 1st ratoon, 2nd ratoon, and 3rd ratoon, and afforded to identify long-lived materials.
The coefficients of variation (C.V.) oscillated between low and medium values, indicating good experimental accuracy. These results agree with the findings published by Couto et al. (2013) in a study that revealed that tonnage of ratoons and tonnage of sugar per hectare presented the highest C.V. classification ranges.
The Scott-Knott test revealed the formation of groups of superior genotypes for all characters assessed, except BRIX (Table 4).
Table 4
Grouping of mean values of agroindustrial parameters in sugarcane genotypes evaluated in experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
Variables
Genotypes
TPH t ha-1
TCH t ha-1
FIB%
PCC%
BRIX%
TRS kg/t
SP79-1011
11.56 a
89.68 a
13.69 b
13.01 a
18.51 a
130.86 a
RB863129
11.47 a
94.68 a
13.31 b
12.23 b
17.36 a
122.92 b
RB92579
10.88 a
85.87 a
13.26 b
12.70 a
17.91 a
127.19 b
RB813804
10.81 a
82.18 a
14.21 a
13.11 a
18.38 a
131.85 a
RB982559
10.39 a
78.31 b
14.59 a
13.32 a
18.91 a
133.76 a
RB982613
10.05 a
74.43 b
13.28 b
13.68 a
19.18 a
136.57 a
RB72454
9.32 b
70.68 b
13.57 b
13.23 a
18.52 a
132.19 a
SP81-3250
9.25 b
75.25 b
13.73 b
12.46 b
18.04 a
125.67 b
RB982541
9.07 b
69.93 b
13.37 b
12.94 a
18.12 a
129.64 a
RB982615
8.67 b
73.87 b
13.45 b
11.75 b
16.79 a
118.96 b
RB982590
8.33 b
67.31 b
13.48 b
12.38 b
17.90 a
125.03 b
RB982586
6.80 c
59.75 c
15.34 a
11.44 b
17.20 a
116.19 b
RB982580
6.57 c
50.25 c
13.13 b
13.15 a
18.49 a
132.42 a
RB982603
6.33 c
51.93 c
14.45 a
12.31 b
17.97 a
124.40 b
RB982630
5.37 c
41.43 d
14.21 a
12.97 a
18.31 a
129.63 a
RB982754
4.55 c
36.50 d
13.78 b
12.53 b
17.79 a
126.03 b
Means followed by identical letters belong to the same group in the Scott-Knott test
Considering character TPH, genotypes SP79-1011, RB863129, RB92579, RB813804, RB982559, and RB982613 presented the highest sugar productivity, forming group ‘a’. for TCH, genotypes SP79-1011, RB863129, RB92579, and RB813804 stood out in agricultural productivity, forming group ‘a’. For FIB, genotypes RB813804, RB982559, RB982586, RB982603, and RB982630 had the highest FIB, forming group ‘a’. Regarding PCC, genotypes SP79-1011, RB92579, RB813804, RB982559, RB982613, RB72454, RB982541, RB982580, and RB982630 presented the highest levels of saccharose in sugarcane juice, forming group ‘a’. For TRS, genotypes SP79-1011, RB813804, RB982559, RB982613, RB72454, RB982541, RB982580, and RB982630 had the best performance, forming group ‘a’.
Mean heritability coefficients were high for all characters, demonstrating the robustness of phenotypic value as indicator of genetic value (Table 5). According to Dutra Filho et al. (2001), these results enable more favorable conditions to select plants based on these characters, and signal the success of the recombination of the genotypes assessed.
Table 5
Heritability and repeatability of agroindustrial characters in sugarcane genotypes assessed in groups of experiments carried out in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
H2
TPH
TCH
FIB
PCC
PZA
BRIX
TRS
0.95
0.95
0.78
0.87
0.82
0.85
0.86
Repeatability M1
0.82
0.83
0.47
0.62
0.53
0.59
0.61
Repeatability M2
0.83
0.84
0.50
0.63
0.55
0.61
0.62
Repeatability M3
0.85
0.86
0.65
0.64
0.57
0.60
0.65
Repeatability M4
0.82
0.83
0.48
0.63
0.54
0.60
0.62
H2: mean heritability; M1: ANOVA; M2: PCA (Correlation); M3: PCA (covariance); M4: structural data analysis
Repeatability coefficients above 0.5 indicate that these characters are regularly repeated during the harvest cycles considered. For Venchosvsky (1973), the repeatability coefficient may be used as a parameter to measure the potential of a given character to be genetically expressed. Cruz, Regazzi, and Carneiro (2012) claim that high repeatability values are desirable, since a genotype is expected to preserve its initial genetic superiority. This superiority is expressed by the repeatability coefficient: the higher the value, the lower the number of repeat measurements to predict the actual value of an individual. In other words, the results of the present study confirm the possibility to select superior, more long-lived genotypes in ratoons, which means that it is possible to renew sugarcane plantations at longer intervals, reducing production costs considerably.
However, it is important to highlight that the repeatability coefficient of the character FIB calculated by PCA was higher than 0.5, different from the value obtained by analysis of variance. Chia et al. (2009) revealed that the PCA isolates the effect of alternating treatments, since this component is included in the experimental error.
Table 6 shows that selection of sugarcane varieties based on TPH and TCH obtained using all methods two evaluations (cane plant and 1st ratoon) are enough, considering the predictability of 90% of the actual value of genotypes.
Table 6
Determination of the number of evaluations (harvests required) to select sugarcane genotypes grown in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
Characters
TPH
TCH
FIB
PCC
BRIX
TRS
R2
M1
0.80
0.89
0.84
4.51
2.41
2.79
2.53
0.85
1.27
1.19
6.39
3.42
3.95
3.58
0.90
2.01
1.89
10.15
5.43
6.28
5.69
0.95
4.24
3.98
21.43
11.47
13.25
12.00
0.99
22.10
20.74
111.64
59.74
69.03
62.55
R2
M2
0.80
0.71
0.66
2.18
2.29
2.63
2.13
0.85
1.01
0.94
3.09
3.24
3.73
3.01
0.90
1.60
1.49
4.91
5.15
5.92
4.78
0.95
3.38
3.15
10.36
10.88
12.50
10.10
0.99
17.62
16.40
53.97
56.67
65.11
52.60
R2
M3
0.80
0.82
0.77
4.05
2.32
2.59
2.46
0.85
1.16
1.09
5.74
3.28
3.66
3.48
0.90
1.84
1.74
9.12
5.21
5.82
5.53
0.95
3.87
3.67
19.25
11.00
12.29
11.68
0.99
20.18
19.11
100.28
57.32
64.01
60.86
R2
M4
0.80
0.82
0.78
4.33
2.34
2.61
2.48
0.85
1.16
1.10
6.13
3.32
3.70
3.51
0.90
1.85
1.75
9.74
5.27
5.87
5.58
0.95
3.90
3.70
20.57
11.12
12.39
11.78
0.99
20.33
19.27
107.16
57.93
64.56
61.39
M1: ANOVA; M2: PCA (Correlation); M3: PCA (covariance); M4: structural data analysis
In 16 experiments with sugarcane, Ferreira et al. (2005) determined that three evaluations are necessary to select superior genotypes based on TCH with a predictability value of 80%. However, it is important to underline that, as reliability increases, so does the number of evaluations rise. For example, in the present study, four evaluations on average were required to select a superior genotype with 95% reliability, independently of the method used. Resende (2002) showed that determination coefficients above 80% are suitable to predict the actual value of an individual and, therefore, the number of evaluations required to select varieties. So, the PCA method (covariance) indicates that, for a selection based on FIB, PCC, and TRS, two harvests are enough considering predictability of 80% for the value of genotypes. Nevertheless, when BRIX is used, three evaluations are required. In the present study, the selection of superior genotypes at 90% predictability using TPH and TCH is appropriate, and it is not necessary to increase the number of evaluations, which enables cost reduction.
CONCLUSIONS
The selection of superior genotypes has to be based on TPH and TCH;
Genotypes SP79-1011, RB863129, RB92579, RB813804, RB982559, and RB982613 exhibited the best agroindustrial performance;
Two evaluations are enough to select superior genotypes in the experimental stage of the sugarcane improvement process, under the edaphic-climatic conditions of the sugarcane microregion Litoral Norte de Pernambuco.
1
Parte da Dissertação de Mestrado do primeiro autor apresentado ao Programa de Pós-Graduação em Agronomia, Melhoramento Genético de Plantas da Universidade Federal Rural de Pernambuco
REFERENCES
ABEYWARDENA, V. An application of principal component analysis in genetics. Journal of Genetics, v. 16, n. 1, p. 27-51, 1972.
ABEYWARDENA
V.
An application of principal component analysis in genetics
Journal of Genetics
16
1
27
51
1972
BARBOSA, M. H. P; SILVEIRA, L. C. I. Melhoramento genético e recomendação de cultivares. In: SANTOS, F; BORÉM, A; CALDAS, C. (Ed.) Cana-de-açúcar: bioenergia, açúcar e etanol: tecnologias e perspectivas. Viçosa, MG: UFV, 2012. p. 313-353.
BARBOSA
M. H. P
SILVEIRA
L. C. I.
Melhoramento genético e recomendação de cultivares
SANTOS
F
BORÉM
A
CALDAS
C.
Cana-de-açúcar: bioenergia, açúcar e etanol: tecnologias e perspectivas
Viçosa, MG
UFV
2012
313
353
CARDOSO, A. I. N. Número mínimo de colheitas em pepino híbrido estimado por meio do coeficiente de repetibilidade. Bragantia, v. 65, n. 4, p. 591-595, 2006.
CARDOSO
A. I. N.
Número mínimo de colheitas em pepino híbrido estimado por meio do coeficiente de repetibilidade
Bragantia
65
4
591
595
2006
CHIA, G. S. et. al. Repetibilidade da produção de cachos de híbridos interespecíficos entre o caiaué e o dendezeiro. Acta Amazônica, v. 39, n. 2, p. 249-254, 2009.
CHIA
G. S.
Repetibilidade da produção de cachos de híbridos interespecíficos entre o caiaué e o dendezeiro
Acta Amazônica
39
2
249
254
2009
COUTO, M. F. et. al. Classification of the coefficients of variation for sugarcane crops. Ciência rural, v. 43, n. 6, p. 957-961, 2013.
COUTO
M. F.
Classification of the coefficients of variation for sugarcane crops
Ciência rural
43
6
957
961
2013
CRUZ, C. D. Programa Genes: biometria. Vicosa, MG: UFV, 2006. 382 p.
CRUZ
C. D.
Programa Genes: biometria
Vicosa, MG
UFV
2006
382 p
CRUZ, C. D.; REGAZZI, A. J.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético. Viçosa, MG: UFV, 2012. 514 p.
CRUZ
C. D.
REGAZZI
A. J.
CARNEIRO
P. C. S.
Modelos biométricos aplicados ao melhoramento genético
Viçosa, MG
UFV
2012
514 p
CUENYA, M. I.; MARIOTTI, J. A. Repetibilidad de la expresion em etapas tempranas de seleccion en progenies hibridas de caña de azucar (Saccharum spp.). Revista Industrial y Agrícola de Tucumán, v. 70, p. 41-48, 1993.
CUENYA
M. I.
MARIOTTI
J. A.
Repetibilidad de la expresion em etapas tempranas de seleccion en progenies hibridas de caña de azucar (Saccharum spp.)
Revista Industrial y Agrícola de Tucumán
70
41
48
1993
DANNER, M. A. et al. Repetibilidade de caracteres de fruto em araçazeiro e pitangueira. Ciência Rural, v. 40, n. 10, p. 2086-2091, 2010.
DANNER
M. A.
Repetibilidade de caracteres de fruto em araçazeiro e pitangueira
Ciência Rural
40
10
2086
2091
2010
DUTRA FILHO, J. A. et al. Aplicação de técnicas multivariadas no estudo da divergência genética em cana-de-açúcar. Revista Ciência Agronômica, v. 42, n. 1, p. 185-192, 2011.
DUTRA
J. A.
FILHO
Aplicação de técnicas multivariadas no estudo da divergência genética em cana-de-açúcar
Revista Ciência Agronômica
42
1
185
192
2011
DUTRA FILHO, J. A. et al. Estimativa do ganho por seleção para produtividade em famílias de cana-de-açúcar. Comunicata Scientiae, v. 3, n. 1, p. 35-40, 2012.
DUTRA
J. A.
FILHO
Estimativa do ganho por seleção para produtividade em famílias de cana-de-açúcar
Comunicata Scientiae
3
1
35
40
2012
FERNANDES, A. C. Cálculos na agroindustria da cana-de-açúcar. 2. ed. Piracicaba: EME, 2003. 240 p.
FERNANDES
A. C.
Cálculos na agroindustria da cana-de-açúcar
2. ed
Piracicaba
EME
2003
240 p
FERREIRA, A. et al. Repetibilidade e número de colheitas para a seleção de clones de cana-de-açúcar. Pesquisa Agropecuária Brasileira, v. 40, n. 8, p. 761-767, 2005.
FERREIRA
A.
Repetibilidade e número de colheitas para a seleção de clones de cana-de-açúcar
Pesquisa Agropecuária Brasileira
40
8
761
767
2005
KOFFLER, N. F. et al. Caracterização edafo-climática das regiões canavieiras do Brasil: Pernambuco. Piracicaba: IAA: PLANALSUCAR, 1986. 78 p.
KOFFLER
N. F.
Caracterização edafo-climática das regiões canavieiras do Brasil: Pernambuco
Piracicaba
IAA: PLANALSUCAR
1986
78 p
MANFIO, C. E. et al. Repetibilidade de características biométricas do fruto de macaúba. Ciência Rural, v. 41, n. 1, p. 70-76, 2011.
MANFIO
C. E.
Repetibilidade de características biométricas do fruto de macaúba
Ciência Rural
41
1
70
76
2011
MANSOUR, H.; NORDHEIM, E. V.; RUTLEDGE, J. J. Estimators of repeatability. Theoretical and Applied Genetics, v. 60, n. 3, p. 151-156, 1981.
MANSOUR
H.
NORDHEIM
E. V.
RUTLEDGE
J. J.
Estimators of repeatability
Theoretical and Applied Genetics
60
3
151
156
1981
MELO, L. J. O. T. et al. Desempenho agroindustrial de cultivares de cana-de-acucar na zona da mata litoral sul de Pernambuco. Ciência e Agrotecnologia, v. 33, n. 3, p. 684-691, 2009.
MELO
L. J. O. T.
Desempenho agroindustrial de cultivares de cana-de-acucar na zona da mata litoral sul de Pernambuco
Ciência e Agrotecnologia
33
3
684
691
2009
MELO, L. J. O. T. et al. Interacao genotipo x ciclos de colheita de cana-de-acucar da Zona da mata Norte de Pernambuco. Bragantia, v. 65, n. 2, p. 197-205, 2006.
MELO
L. J. O. T.
Interacao genotipo x ciclos de colheita de cana-de-acucar da Zona da mata Norte de Pernambuco
Bragantia
65
2
197
205
2006
NEGREIROS, J. R. S. et al. Estimativas de repetibilidade de caracteres de produção em laranjeiras-doces no Acre. Pesquisa Agropecuária Brasileira, v. 43, n. 12, p. 1763-1768, 2008.
NEGREIROS
J. R. S.
Estimativas de repetibilidade de caracteres de produção em laranjeiras-doces no Acre
Pesquisa Agropecuária Brasileira
43
12
1763
1768
2008
RESENDE, M. D. V. de. Genética biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação Tecnológica, 2002. 975 p.
RESENDE
M. D. V. de
Genética biométrica e estatística no melhoramento de plantas perenes
Brasília
Embrapa Informação Tecnológica
2002
975 p
SANTOS, M. S. M. et al. Repetibilidade de características agroindustriais em cana-de-açúcar. Pesquisa Agropecuária Brasileira, v. 39, n. 4, p. 301-306, 2004.
SANTOS
M. S. M.
Repetibilidade de características agroindustriais em cana-de-açúcar
Pesquisa Agropecuária Brasileira
39
4
301
306
2004
SILVA, F. L. da et al. Análise de trilha para os componentes de produção de cana-de-açúcar via blup. Revista Ceres, v. 56, n. 3, p. 308-314, 2009.
SILVA
F. L. da
Análise de trilha para os componentes de produção de cana-de-açúcar via blup
Revista Ceres
56
3
308
314
2009
SOARES, E. B. et al. Repetibilidade e correlações entre caracteres morfo-agronômicos de cajazeira. Ciência e Agrotecnologia, v. 32, n. 6, p. 1851-1857, 2008.
SOARES
E. B.
Repetibilidade e correlações entre caracteres morfo-agronômicos de cajazeira
Ciência e Agrotecnologia
32
6
1851
1857
2008
SOUZA SOBRINHO, F. de et al. Repetibilidade de características agronômicas e número de cortes necessários para seleção de Urochloa ruziziensis.
Pesquisa Agropecuária Brasileira, v. 45, n. 6, p. 579-584, 2010.
SOUZA
F. de
SOBRINHO
Repetibilidade de características agronômicas e número de cortes necessários para seleção de Urochloa ruziziensis
Pesquisa Agropecuária Brasileira
45
6
579
584
2010
SOUZA, P. H. N. et al. Avaliação de genótipos de cana-de-açúcar para início de safra na Microrregião Centro de Pernambuco. Revista Ceres, v. 59, n. 5, p. 427-432, 2012.
SOUZA
P. H. N.
Avaliação de genótipos de cana-de-açúcar para início de safra na Microrregião Centro de Pernambuco
Revista Ceres
59
5
427
432
2012
VENCOVSKY, R. Princípios de genética quantitativa. Piracicaba: Esalq, 1973. 97 p.
VENCOVSKY
R.
Princípios de genética quantitativa
Piracicaba
Esalq
1973
97 p
Autoria
Hudsonkléio Da Costa Silva
Departamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.brUniversidade Federal Rural de PernambucoBrazilRecife, PE, BrazilDepartamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.br
Clodoaldo José Anunciação Filho
Departamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.brUniversidade Federal Rural de PernambucoBrazilRecife, PE, BrazilDepartamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.br
Gerson Quirino Bastos
Departamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.brUniversidade Federal Rural de PernambucoBrazilRecife, PE, BrazilDepartamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.br
João Andrade Dutra Filho**Author for correspondence
Departamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.brUniversidade Federal Rural de PernambucoBrazilRecife, PE, BrazilDepartamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.br
Djalma Euzébio Simões Neto
Departamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.brUniversidade Federal Rural de PernambucoBrazilRecife, PE, BrazilDepartamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.br
*Author for correspondence
SCIMAGO INSTITUTIONS RANKINGS
Departamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.brUniversidade Federal Rural de PernambucoBrazilRecife, PE, BrazilDepartamento de Fitotecnia, Universidade Federal Rural de Pernambuco/UFPE, Recife-PE, Brasil, hudsonkleio@yahoo.com.br, cjoseufrpe@yahoo.com.br, bastosgq@hotmail.com, filho-dutra@ig.com.br, desn@oi.com.br
Table 1
Identification and origin of the 16 sugarcane genotypes used in experiments conducted in the microregion Litoral Norte de Pernambuco, Engenho Mulata, plantation area of the São José sugar mill, municipality of Igarassú, PE, Brazil
Table 2
Statistical design used to obtain the results of the covariance analysis of experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
Table 3
Summary of the covariance analysis of groups of experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
Table 4
Grouping of mean values of agroindustrial parameters in sugarcane genotypes evaluated in experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
Table 5
Heritability and repeatability of agroindustrial characters in sugarcane genotypes assessed in groups of experiments carried out in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
Table 6
Determination of the number of evaluations (harvests required) to select sugarcane genotypes grown in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
table_chartTable 1
Identification and origin of the 16 sugarcane genotypes used in experiments conducted in the microregion Litoral Norte de Pernambuco, Engenho Mulata, plantation area of the São José sugar mill, municipality of Igarassú, PE, Brazil
Genotypes
Origin
SP79-1011
COPERSUCAR
RB863129
RIDESA
RB92579
RIDESA
RB813804
RIDESA
RB982559
RIDESA
RB982613
RIDESA
RB72454
RIDESA
SP81-3250
COPERSUCAR
RB982541
RIDESA
RB982615
RIDESA
RB982590
RIDESA
RB982586
RIDESA
RB982580
RIDESA
RB982603
RIDESA
RB982630
RIDESA
RB982754
RIDESA
table_chartTable 2
Statistical design used to obtain the results of the covariance analysis of experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
FV
GL
E(QM)
F
Blocks/harvests
(r-1)c
σ2+gσ2b
Harvests (c)
c - 1
σ2+gσ2b+gσ2c
QMC/QMB
Genotypes (g)
g - 1
σ2+rlgσ2gc+crφg
QMG/QMGC
Interaction g x c
(c - 1)(g -1)
σ2+rlgσ2gc+crφg
QMGC/QMR
Residuals
(g-1)(r - 1)c
σ2
ℓ = g/(g-1)
table_chartTable 3
Summary of the covariance analysis of groups of experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
FV
DF
Mean squares
TPH
TCH
FIB
PCC
BRIX
TRS
Genotypes
15
77.71**
4561.24**
5.83**
5.64**
6.03**
479.70**
Harvest
3
14.98*
1167.48**
6.14**
7.56**
21.68**
456.20**
G x H
45
4.10*
228.94**
1.28**
0.74ns(ns)
not significant in the F test; (G x H), Interaction between genotype and harvest
0.90ns(ns)
not significant in the F test; (G x H), Interaction between genotype and harvest
65.43ns(ns)
not significant in the F test; (G x H), Interaction between genotype and harvest
Residual
180
2.48
138.86
0.68
0.76
0.92
67.87
Means
8.72
68.88
13.80
12.70
18.09
127.71
C.V. (%)
18.09
17.10
5.98
6.85
5.30
6.45
>QMR / <QMR
1.45
1.60
2.21
1.56
1.76
2.35
table_chartTable 4
Grouping of mean values of agroindustrial parameters in sugarcane genotypes evaluated in experiments conducted in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
Variables
Genotypes
TPH t ha-1
TCH t ha-1
FIB%
PCC%
BRIX%
TRS kg/t
SP79-1011
11.56 a
89.68 a
13.69 b
13.01 a
18.51 a
130.86 a
RB863129
11.47 a
94.68 a
13.31 b
12.23 b
17.36 a
122.92 b
RB92579
10.88 a
85.87 a
13.26 b
12.70 a
17.91 a
127.19 b
RB813804
10.81 a
82.18 a
14.21 a
13.11 a
18.38 a
131.85 a
RB982559
10.39 a
78.31 b
14.59 a
13.32 a
18.91 a
133.76 a
RB982613
10.05 a
74.43 b
13.28 b
13.68 a
19.18 a
136.57 a
RB72454
9.32 b
70.68 b
13.57 b
13.23 a
18.52 a
132.19 a
SP81-3250
9.25 b
75.25 b
13.73 b
12.46 b
18.04 a
125.67 b
RB982541
9.07 b
69.93 b
13.37 b
12.94 a
18.12 a
129.64 a
RB982615
8.67 b
73.87 b
13.45 b
11.75 b
16.79 a
118.96 b
RB982590
8.33 b
67.31 b
13.48 b
12.38 b
17.90 a
125.03 b
RB982586
6.80 c
59.75 c
15.34 a
11.44 b
17.20 a
116.19 b
RB982580
6.57 c
50.25 c
13.13 b
13.15 a
18.49 a
132.42 a
RB982603
6.33 c
51.93 c
14.45 a
12.31 b
17.97 a
124.40 b
RB982630
5.37 c
41.43 d
14.21 a
12.97 a
18.31 a
129.63 a
RB982754
4.55 c
36.50 d
13.78 b
12.53 b
17.79 a
126.03 b
table_chartTable 5
Heritability and repeatability of agroindustrial characters in sugarcane genotypes assessed in groups of experiments carried out in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
H2
TPH
TCH
FIB
PCC
PZA
BRIX
TRS
0.95
0.95
0.78
0.87
0.82
0.85
0.86
Repeatability M1
0.82
0.83
0.47
0.62
0.53
0.59
0.61
Repeatability M2
0.83
0.84
0.50
0.63
0.55
0.61
0.62
Repeatability M3
0.85
0.86
0.65
0.64
0.57
0.60
0.65
Repeatability M4
0.82
0.83
0.48
0.63
0.54
0.60
0.62
table_chartTable 6
Determination of the number of evaluations (harvests required) to select sugarcane genotypes grown in Engenho Mulata, plantation area of the São José sugar mill, in the sugarcane microregion Litoral Norte de Pernambuco, municipality of Igarassú, PE, Brazil
Characters
TPH
TCH
FIB
PCC
BRIX
TRS
R2
M1
0.80
0.89
0.84
4.51
2.41
2.79
2.53
0.85
1.27
1.19
6.39
3.42
3.95
3.58
0.90
2.01
1.89
10.15
5.43
6.28
5.69
0.95
4.24
3.98
21.43
11.47
13.25
12.00
0.99
22.10
20.74
111.64
59.74
69.03
62.55
R2
M2
0.80
0.71
0.66
2.18
2.29
2.63
2.13
0.85
1.01
0.94
3.09
3.24
3.73
3.01
0.90
1.60
1.49
4.91
5.15
5.92
4.78
0.95
3.38
3.15
10.36
10.88
12.50
10.10
0.99
17.62
16.40
53.97
56.67
65.11
52.60
R2
M3
0.80
0.82
0.77
4.05
2.32
2.59
2.46
0.85
1.16
1.09
5.74
3.28
3.66
3.48
0.90
1.84
1.74
9.12
5.21
5.82
5.53
0.95
3.87
3.67
19.25
11.00
12.29
11.68
0.99
20.18
19.11
100.28
57.32
64.01
60.86
R2
M4
0.80
0.82
0.78
4.33
2.34
2.61
2.48
0.85
1.16
1.10
6.13
3.32
3.70
3.51
0.90
1.85
1.75
9.74
5.27
5.87
5.58
0.95
3.90
3.70
20.57
11.12
12.39
11.78
0.99
20.33
19.27
107.16
57.93
64.56
61.39
TCH=Totalparcelweightx10/usedareaofthequadratinm2
TPH=TCHXPCC/100
Yijk=μ+(b/c)jk+gi+ck+gcik+εijk
H2=ˆφg∠(QMG/cr)
Yijk=μ+gi+aj+gaij+b(j)k+εij
r=Cô
Como citar
Silva, Hudsonkléio Da Costa et al. Repetibilidade de caracteres agroindustriais em cana-de-açúcar em diferentes ciclos de colheita. Revista Ciência Agronômica [online]. 2018, v. 49, n. 2 [Acessado 4 Abril 2025], pp. 275-282. Disponível em: <https://doi.org/10.5935/1806-6690.20180031>. ISSN 1806-6690. https://doi.org/10.5935/1806-6690.20180031.
Universidade Federal do CearáAv. Mister Hull, 2977 - Bloco 487, Campus do Pici, 60356-000 - Fortaleza - CE - Brasil, Tel.: (55 85) 3366-9702 / 3366-9732, Fax: (55 85) 3366-9417 -
Fortaleza -
CE -
Brazil E-mail: ccarev@ufc.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.