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ABSTRACT - Unmanned Aerial Vehicles (UAVs) have potentially significant application in agriculture and, with the
emergence of the digital farming era and Agriculture 4.0, this platform has become increasingly important. UAV imagery
may improve or even replace routine data surveys, as well as optimize phytosanitary product application. High-spatial
resolution imagery makes UAVs attractive for several applications where traditional satellite sensing is still unsuitable.
With the significant recent development of data science techniques, UAVs have a prominent position in assisting
farmers for more efficient decision-making and automating agricultural processes. Thus, this work addresses the main
agricultural applications of UAVs into five major topics: topographic survey, physiological assessments, biophysical
assessments, monitoring of biological targets, and spraying of phytosanitary products and application of bio inputs.
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RESUMO - As potencialidades de uso de UAVs na agricultura são enormes e, com a entrada na era da digitalização
das lavouras e da Agricultura 4.0, essa plataforma tem ganhado cada vez mais importância. Levantamento rotineiros
de dados em campo podem ser melhorados ou mesmo substituídos por imagens obtidas via UAVs e as aplicações de
produtos fitossanitários podem ser otimizados. A altíssima resolução espacial das imagens torna os UAVs atrativos
para diversas aplicações que o tradicional sensoriamento via satélite ainda não atendem. Ainda, com o enorme
desenvolvimento recente das técnicas e aplicações de ciência dos dados, os UAVs têm posição de destaque para auxiliar
o agricultor na tomada de decisão mais eficiente e na viabilização da automação de processos agrícolas. Assim, neste
trabalho abordaremos as principais aplicações dos UAVs na agricultura, dividindo o texto em cinco grandes tópicos:
Levantamento topográfico, Avaliações fisiológicas, Avaliações biofísicas, Monitoramento de alvos biológicos, e
Pulverização de produtos fitossanitários e aplicação de bioinsumos.
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INTRODUCTION

To feed the world population estimated to reach
nearly 10 billion people by 2050, the world agricultural
productivity must increase between 14 and 28%, according
to the United Nations Food and Agriculture Organization
(FAO, 2018), posing a challenge for agriculture. To assist
in this endeavor, technology has been increasingly used
in the fi eld, outlining the terms Precision Agriculture
(PA), Digital Agriculture (DA), and Agriculture 4.0
(Agri 4.0). Although DA and Agri 4.0 still have no clear
and unanimous defi nition, the International Society for
Precision Agriculture (ISPA) current defi nition of PA is
quite comprehensive. This suggests that soon these terms
will have no differentiation, being simply understood as
an effi cient and sustainable way of practicing agriculture:
“Precision Agriculture is a management strategy that
gathers, processes and analyzes temporal, spatial, and
individual data and combines it with other information
to support management decisions according to estimated
variability for improved resource use effi ciency,
productivity, quality, profi tability and sustainability
of agricultural production.” Such approach leads to an
intense “agricultural digitalization” by various types of
data collected from multiple sources, such as soil, plant,
climate, relief and several other factors, making data
science and information technology application mandatory
in agriculture to support proper decision making.

Among the diverse data sources for a more
sustainable and technological agriculture (generalized in
this text as Agri 4.0), we may stress the different remote
sensing (RS) technologies. Remote sensing is the act of
acquiring information about a target without being in
contact with it. In the case of agriculture, sensors and
cameras coupled to different platforms can be used to
monitor or map an area by RS. Such platforms are divided
into orbital (satellites), aerial (planes and Unmanned
Aerial Vehicles - UAVs), and terrestrial (including those
carried or pulled by agricultural machinery). *Orbital
platforms have evolved signifi cantly in recent years,
continuously providing products with several agriculture
applications while improving the quality of spatial,
spectral, and temporal resolutions. Similarly, RS using
terrestrial platforms has evolved signifi cantly in terms
of sensors and applications. UAVs are up-and-coming
tools for use in agriculture, mainly due to their diverse
applications (TSOUROS et al., 2019; YANG et al., 2017),
being one of the Agri 4.0 techniques that have developed
the most in recent years. This is explained by the fact that,
depending on the desired application, acquiring data by
UAVs (usually images) has several advantages over other
platforms, such as its fl exibility. For example, users can
choose the UAV-Sensor set that best fi ts their needs and
defi ne the fl ight plan according to specifi c situations

and desired image quality, ensuring data quality for the
most diverse applications. An obstacle to the use of this
technology is the high computational requirements for
data processing, especially for large areas and/or high-
resolution images. However, these complications tend to
decrease with the development of big data and the Internet
of Things (IoT).

To defi ne the best UAV-Sensor set, one must
understand the intended application for the equipment.
Different characteristics must be considered in selecting
an UAV, especially regarding their performance (coverage
area per time unit), autonomy (fl ight time without
interruption for refueling or recharging), and load capacity
(sensor or payload that must be transported). The coupled
sensor must be defi ned based on the RS survey objective
and primarily on the spectral band at which the sensor
works. Sensors that work with the visible spectrum are
limitedly applicable to what the human eye is capable of
differentiating. On the other hand, multispectral sensors,
which also comprise the infrared spectrum, provide
greater sensitivity to changes in vegetation vigor, plant
canopy, and soil moisture. Hyperspectral sensors have
narrower bands and in greater quantity, increasing target
recognition potential based on their spectral behavior,
besides enabling better predictive results with the use
of machine-learning algorithms. Thermal sensors have
great potential for tracing stresses, such as water defi cit
and pests attack, despite several factors interfering with
their measurements. Thus, choosing the sensor with the
appropriate characteristics for the desired purpose is
essential to acquire useful and effi cient information for
Agri 4.0 decision-making.

Considering that, this work is a literature review on
studies addressing UAVs main agricultural applications
and their peculiarities. This paper is divided into fi ve
general UAVs agricultural applications: topographic
survey, physiological assessments, biophysical
assessments, monitoring of biological targets, and
spraying of phytosanitary products and application of
bio inputs.

TOPOGRAPHIC SURVEY

Topographic data is widely used as strong
supporting information in several research fi elds and
civil applications, such as environmental management
and landscape planning (PIJL et al., 2020). Advances
in photogrammetry techniques, often used to assist
topographical surveys, were driven by remote sensing
technology; for example, detailed three-dimensional
reconstructions of landscapes are used to calculate
erosion volume (MEINEN; ROBINSON, 2020a).
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The modernization of remote sensing techniques for
topography makes data increasingly accessible and
accurate. The main output of such approach is the Digital
Elevation Model (DEM), which represents continuous
elevations over a topographic surface defi ned in two ways:
the model that contains aboveground information such as
vegetation cover, known as Digital Surface Model (DSM);
and the model containing purely ground information (i.e.,
soil surface modeling), known as Digital Terrain Model
(DTM). The height difference between DTM and a DSM
may generate a third model, such as the canopy height
model (CHM - PIJL et al., 2020).

DEMs based on UAV imagery were previously
applied only in urban areas but are now useful for
agricultural applications. An example of this is the
“motion structure” technique, used to generate a 3D point
cloud from a combination of overlapped 2D images,
widely used to trace and quantify erosion on agricultural
fi elds (CÂNDIDO et al., 2020; GIANNETTI et al.,
2020; MEINEN; ROBINSON, 2020a). Regarding plant
measurements, Millan et al. (2020) showed that 3D digital
reconstruction of plant canopies enables the detection
of abrupt changes in their inclination angle, which may
be related to canopy damage. Such crop biophysical
assessment will be addressed later in this text.

Acquired images need to be georeferenced for
an accurate photogrammetry approach based on the
aerial mapping. However, georeferencing precision
and accuracy vary according to the type of Global
Navigation Satellite System (GNSS) embedded in
the UAV. The most common and affordable UAVs
contain a GNSS only for navigation purposes - precise
on a metric scale but insufficient for high-precision
surveying (centimeter or even millimeter), - as most
topographic applications. The ground control points
(GCPs) approach provides high-precision mapping,
as observed by Meinen and Robinson (2020b) when
mapping erosion in an agricultural landscape. Despite
their efficiency, other studies consider GCPs as a
disadvantage of UAV technology, deeming its field
acquisition as time-consuming and laborious, while no
quantity and distribution standard guarantees maximum
accuracy (REN et al., 2020). Considering this, some
popular positioning techniques are used to improve
GNSS, such as the real-time kinematic correction (RTK)
and the post-processed kinematic correction (PPK).
While RTK is applied simultaneously during the flight,
PPK corrects positioning during post processing, back
at the office. Studies show RTK and PPK positioning
systems to provide higher quality positioning for UAVs
than GCPs for a correct georeferencing (TOMAŠTÍK
et al., 2019; WOO et al., 2018). However, even with
the use of RTK or PPK, more in-depth research are

require to obtain maximum positioning accuracy,
ensuring sub-centimeter-level accuracy in the obtained
DEMs. Yet, Forlani et al. (2018) argue that GCPs are
necessary despite RTK-enabled UAVs, possibly due to
the stability of the camera calibration parameters.

PHYSIOLOGICAL ASSESSMENTS

Spatial and temporal information about crop
vigor and development, especially during the growing
season, can optimize site-specifi c management,
improving inputs effi ciency (e.g., applying nutrients and
phytosanitary products - NÄSI et al., 2018; MODICA
et al., 2020). Data on these characteristics may be
acquired using UAV-embedded sensors. The sensors can
easily capture pants refl ectance behavior and, through
data analysis, guide decision-making. In some cases,
plants may show easily identifi able behavior, such as
withering, yellowing, reduced growth, etc., enabling
inspection by visible spectrum and fi eld campaigns.
However, some behaviors can only be identifi ed using
sensors capable of capturing specifi c refl ectance signals,
acquired by multi-spectral or hyperspectral sensors.
Below, we describe some applications of these types of
sensors in detecting water stress and quantifying plants
vigor and nutritional status.

Water stress

The fl exibility enabled by UVAs in comparison
to manually obtained data - such as by the use of
infrared thermometers, which impairs plant properties
mapping due to the limited amount of data (CRUSIOL
et al., 2020), - fostered the conduction of several
studies to assess crops water stress. Thus, the successful
application of UAV technology is an attractive alternative
for irrigation management based on the use of thermal
imaging to measure crop canopy temperature (KING
et al., 2021). Likewise, the daily monitoring of plant
water status, estimated by shortwave-infrared bands
(KANDYLAKIS et al., 2020), enables measuring plant
physiological responses to water stress (IHUOMA;
MADRAMOOTOO, 2019). Studies show the increasing
use of thermal cameras coupled to UAVs, especially to
measure canopy leaves withering (ZHOU et al., 2020).
Besides measuring crop canopy, this technique is also
applicable for estimating water demand based on soil
surface temperature observation (HEINEMANN et al.,
2020). Multi-spectral sensor imaging can also assist
in identifying plant genotypes susceptible and tolerant
to water stress, as plants spectral behavior is a well-
established detector of changes in canopy structure and
growth (SHENDRYK et al., 2020). Maimaitijiang et al.
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(2020) integrated thermal images with multispectral
sensors data to forecast soybean crops and obtained
better results when compared with the use of a single
sensor.

Vigor and nutrition of the plants

The classic approach for remote sensing, including
UAV imagery, involves using multispectral sensors and
calculating different vegetation indices related to plant
physiological status, such as plant pigment concentration,
vigor, aboveground biomass, stress (BUCHAILLOT et
al., 2019; GARCÍA-MARTÍNEZ et al., 2020). Spectral
data is most commonly used by combining individual
bands, usually including the infrared (IR) band due to
its sensitivity to vigor vegetation variation, constituting
vegetation indices (VIs). More than one hundred VIs
have been recently developed to investigate vegetation
biophysical and chemical properties (XUE; SU, 2017).

The analysis of plant nutritional status by UAV
remote sensing allow us to highlight some relevant
information, especially regarding the management of
nitrogen fertilization, considered the most demanded
nutrient for plant growth, development, and quality
(LIU et al., 2017). Quantifying the variability in terms
of nitrogen status and plant growth during the growing
season can determine whether variable-rate applied
fertilizer is worth being implemented in the fi eld
(ARGENTO et al., 2020). This topic has been recently
addressed by Yang et al. (2020) on wheat, Thompson and
Puntel (2020) on maize, Zheng et al. (2020) on rice, and
Grüner et al. (2020) on legume-grass mixtures.

VIs present variable sensitivities to variations in
the plant canopy and their effi ciency in measuring plant
vigor relies on some plant properties, such as leaf area
index, leaf chlorophyll content, and crop phenological
stage (OLSON et al., 2019). Among the VIs, the
normalized difference vegetation index (NDVI) is
traditionally the most widespread (HASSAN et al., 2019)
for providing good agronomic inferences for most grain
crops during the early growth stages. However, NDVI
often loses sensitivity during the most advanced growth
stages due to the high leaf area index and relative canopy
homogeneity (SULIK; LONG, 2016; YUE et al., 2019).
In this case, the main problem is at the red band, as its
refl ectance reaches a very low level in situations with
high canopy cover (FU et al., 2014), losing the ability to
differentiate crop vigor, which is known as “saturation.”
Thus, the red-edge band has been preferred in detriment
of the red band, resulting in the normalized difference
red-edge (NDRE) index.

In contrast to the saturation effect problem, low
canopy cover in the early growth stages may cause

problems related to mixed-pixels, i.e., the same pixel
contains refl ectance information from both plant and soil.
To improve the performance of VI-based quantifi cations
and target classifi cation, approaches based on computer
vision have been tested. Ballasteros et al. (2020) found
that computer vision techniques should be applied to UAV
multispectral images to extract useful information for
eliminating noise sources, such as the soil effect.

Given the higher cost incurred by multispectral
sensors with bands in the infrared, several UAV
users tend to opt for RGB cameras, so that several
vegetation indices have been proposed for this sensor
(GARCÍA-MARTÍNEZ et al., 2020; DU; NOGUCHI,
2017; SCHIRRMANN et al., 2016). The triangular
greenness index (TGI), for example, was developed to
be sensitive to leaf chlorophyll content, applicable to
nitrogen management (HUNT et al., 2012). Some users
have modifi ed RGB cameras to use more traditional VIs,
such as NDVI, by removing the blue band and including
the near infrared band. However, such procedure is limited
for two reasons: 1) the absence of the blue band prevents
images from being generated in true color composition,
possibly compromising visual photointerpretation; 2)
the refl ectance measured by the modifi ed infrared band
present some calibration issues (NIJLAND et al., 2014;
ZHANG et al., 2020). According to Nijland et al.
(2014), cameras with such modifi cation should be
avoided, recommending the original RGB cameras
for reliable detection and monitoring of plant stress,
growth, and phenology. Vergara-Diaz et al. (2015)
presented a RGB image-based approach to predict
grain yield, quantify nutrient defi ciencies, and measure
the impacts of yellow rust based on vegetation indices
using two methods: green area (GA) and greener area
(GAA); both quantify the number of green pixels in the
image, but the second does so by excluding yellowish-
green tones. The authors found both methods to show
robust and reliable results, comparable to predictions
made using NDVI and agronomic quantifi cations in the
fi eld.

BIOPHYSICAL ASSESSMENTS

Information on the variability of the crop biophysical
attributes, such as growth stage, biomass accumulation,
and general crop conditions, are highly useful for farmers
to monitor their crops development and plan further
management, such as determining the timing of inputs
application and the harvest beginning. Although UAV
have many applications in Agri 4.0, estimating biomass,
nutrient demand, and productivity is undoubtedly among
the most popular uses (HASSLER; BAYSAL-GUREL,
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2019). Accordingly, point clouds and 3D modeling have
been used in agriculture mainly to estimate aboveground
biomass (AGB), model tree structure and crop canopies,
and detect weed (HASSLER; BAYSAL-GUREL, 2019).
3D vegetation height models proved to be a reasonable
estimate of the height of cereal crops (BROCKS, 2018;
WATANABE et al., 2017) and orchards (DÍAZ-VARELA
et al., 2015; DILLEN et al., 2016); combining vegetation
height estimates with one or more VIs from multispectral
data provided reasonable AGB estimates (BENDIG et al.,
2015; YUE et al., 2017). To this end, different sensors
and image processing techniques can be used for 3D
modeling.

Depth sensors are within the set of sensors that
can be embedded in UAV for agricultural applications,
generating point clouds and 3D models. Among these
sensors, two technologies stand out: the Light Detection
and Ranging (LiDAR) technology, often called laser
scanning, and RGB-D cameras. RGB-D cameras are a
relatively inexpensive and effective way to generate depth
data, capturing an extra value in each RGB pixel – which
indicates the distance from the sensor to that point in the
image (CHÉNÉ et al., 2012; SHANI; VIT, 2018; WANG;
LI, 2014). For that, an active sensor is used to measure
the distance between the sensor and the target on the
ground, estimating the time delay from signal emission
(target refl ectance) until its detection by the sensor
itself (SARBOLANDI et al., 2015). The KINECT 2.0
(Microsoft Corporation, Redmond, WA, USA), the Xbox
One video game console technology, is probably the best-
known sensor for this purpose.

A simpler alternative than the two aforementioned
technologies is the processing of high-resolution images
associated with the ‘Structure from Motion’ (SfM)
algorithms to generate dense point clouds and 3D models.
The key to this method is the ability to calculate camera
position, orientation, and geometry from a set of overlapped
images that capture the scene complete three-dimensional
structure from a wide range of positions or, as the name
suggests, images derived from sensor motion (JAMES et
al., 2014). Several authors agree that a negative aspect of
this technology is the demand for images with high overlap
degree and wide distribution of GCPs to obtain reliable
3D models. However, higher spatial resolution images
improve models accuracy (HOLMAN et al., 2016) and
RGB cameras are suffi cient for such application, incurring
low acquisition costs.

The literature contains several studies approaching
plant height estimation using LiDAR sensors (JIMENEZ-
BERNI, 2018), RGB-D sensors (CHÉNÉ et al., 2012;
SHANI; VIT, 2018; WANG; LI, 2014), and RGB sensors
with image processing by SfM algorithm (HASSAN
et al., 2019a; HASSLER; BAYSAL-GUREL, 2019;

HOLMAN et al., 2016; HU et al., 2018; MADEC et al.,
2017; BROCKS, 2018; WATANABE et al., 2017; DÍAZ-
VARELA et al., 2015; DILLEN et al., 2016). Plant height
is an important variable to assess the general condition of
crops and assist in productivity estimates (LAZCANO;
DOMÍNGUEZ, 2011), as well as in providing a good
approximation for biomass estimation (BENDIG et al.,
2014; OTA et al., 2015; TILLY et al., 2015). Stem height
seems to be sensitive to stresses caused to the crop and is
also an input variable for models used for assessing water
stress (BLONQUIST et al., 2009) and crop susceptibility
to damping off (BERRY et al., 2003). Considering that,
such estimates may provide meaningful canopy structure
inferences, especially attractive for fi eld phenotyping
(MADEC et al., 2017). Individual plant height or canopy
height can be obtained by extracting the highest points
detected in the dense point cloud.

Some authors highlight the inability to isolate
plants singular details in models generated from data
obtained by UAV due to their movement during image
acquisition, probably due to wind (WILLKOMM et al.,
2016). Such movement may cause changes in plant
structure, which may explain height underestimation by
models (MADEC et al., 2017). Hassan et al. (2019a)
reported SfM to underestimate plant height in relation
to estimates obtained by LiDAR sensor embedded in
terrestrial vehicle, attributing such fi nding to UAV
images coarser spatial resolution and SfM limited ability
to penetrate plant canopy when compared to LiDAR point
cloud. Canopy structure and density were also found to
infl uence fi nal estimates (GEIPEL et al., 2014).

An important point about the 3D modeling using
UAVs is that plant height and canopy volume measurement
depends on the appropriate digital terrain model (DTM)
acquisition, used to assess soil surface profi le (the point
cloud lowest limit). The most common methods used to
assess DTM are: 1) interpolation and adjustment of the
terrain surface using GCPs and traditional topographic
surveying techniques (Method 1 - WEISS; BARET,
2017); 2) pixel segmentation of the digital surface model
(DSM) collected during crop development, discriminating
vegetation from soil pixels (Method 2 - GEIPEL et al.,
2014); and 3) DTM obtained by pre-planting or post-
harvesting fl ights (BENDIG et al., 2013; HOLMAN et al.,
2016; WU et al., 2017), when there is no above-ground
vegetation (Method 3). Alternatively, DTM can also
be obtained by interpolating position records acquired
during any agricultural operation as long as the vehicle is
equipped with high-accuracy GNSS (Method 4). Madec
et al. (2017) compared plant height estimates based on
the DTM provided by interpolated position records during
planting and those provided by DSM pixels segmentation
(Method 2), obtaining similar performance between the
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methods. Holman et al. (2016) compared plant height
estimates obtained by Method 2 and Method 3, with
DTM obtained by post-harvest terrain point cloud, and
found better estimates for Method 2. This result might be
explained by the fact that whenever DEM construction
contains bias, this bias will be present in both DTM and
DSM, canceling its infl uence. However, when DTM and
DSM data are collected at different times, such as post-
harvesting, several issues may infl uence the result, such as
variations in fl ight characteristics, images collection and
processing, as well as changes in the soil surface itself,
altering such bias and infl uencing DSM calculation.

Field measurements of aboveground biomass
(AGB) are particularly problematic to acquire due to
the laborious and destructive methods required to assess
it. Nondestructive methods to estimate AGB have
been extensively investigated using 2D images and
VIs (HASSAN et al., 2019b; HASSLER; BAYSAL-
GUREL, 2019; MARINO; ALVINO, 2019; VILJANEN;
HONKAVAARA, 2018), but few studies are investigating
the use of 3D methods for this purpose. Walter et al.
(2018) found good AGB estimates in wheat plots using
RGB camera embedded in UAV to measure canopy
volume and height. Other studies estimated grass biomass
using 3D models and found good correlations with actual
values (CHANG et al., 2017; GRÜNER et al., 2019).
Good AGB estimates were also obtained by combining 3D
vegetation height estimates with VIs from multispectral
data (BENDIG et al., 2015; YUE et al., 2017).

Temporal crop monitoring is also an interesting
application. Several 3D point clouds generated during
harvest may enable modeling plant growth or abrupt
changes in their development, called 4D point clouds
(HASSAN et al., 2019a; HASSLER; BAYSAL-GUREL,
2019; HOLMAN et al., 2016).

Another exciting agricultural application of UAVs
is the fast and effi cient counting of plants, fruits, and others.
Rahnemoonfar and Sheppard (2017) employed a UAV-
based fruit counting method in a citrus crop. They used
VI to segment treetops from images background and then
implemented a counting method based on canopies mean
green area. She et al. (2014) studied a similar proposal
to quantify Christmas trees, where the algorithm sought
to locate and count the maximum refl ectance locations
within the moving split windows of trees conical tops.
Years later, these researchers published another paper
addressing measuring issues in areas densely covered by
plants and describing a method for accurate counting in
these environments based on the Support Vector Machine
algorithm (SHE et al., 2018). Chen et al. (2017) also
demonstrated that computer vision and deep learning
algorithms could count apples and oranges using UAV-
acquired images.

MONITORING OF BIOLOGICAL
TARGETS

Identifying agents that depreciate agricultural
production – such as weeds, insect pests, and phytopathogenic
agents (plant diseases) - is a routine and mandatory task
to promote proper phytosanitary treatment and ensure
crop productivity. The methods for on-site identifi cation
of these agents are usually manual and require sampling
efforts to make a fi eld assessment representative. Given
UAV operational performance and high spatial resolution,
its use for performing such diagnosis seeks to automate
and ensure greater representativeness of the evaluations,
remediating satellite monitoring defi ciencies. Making this
application viable via UAV-embedded sensors pose some
challenges regarding the identifi cation of characteristics
that directly or indirectly differentiate the targets, their
proper classifi cation, and the promotion of automated
learning by computational means.

Good quality imagery allows proper
characterizations of scenes and targets. Thus, the high
spatial resolution images of UAV potentially increases
investigation accuracy, as the phenomenon to be
identifi ed can be captured by pure pixels (YE et al.,
2020). This process enables target individualization and
contributes to proper target identifi cation, as shown by
López-Granados et al. (2016) with Sorghum halepense
plants, individually identifi ed with pixels of 0.01 to
0.04 m. However, these authors stress that quality
orthomosaics with high spatial resolution require many
images, resulting in longer fl ights and post-imaging
processing with high computational cost.

The spectral quality of the embedded sensors
also infl uences identifi cation results. Castaldi et al.
(2017) observed that narrow bands of multispectral
sensors were more relevant than spatial resolution to
identify weeds and produce herbicide prescription maps.
Helminthsporiosis severity in wheat was classifi ed by
identifying symptom characteristics in RGB images with
a spatial resolution of 0.034 m (HUANG et al., 2019),
but specifi c wavelengths of a hyperspectral sensor were
used to identifying two tomato diseases and quantifying
the severity of symptoms (ABDULRIDHA et al., 2019).
Thermal bands, which have a coarser spatial resolution,
are less frequently used. However, integrating their
spectral information to other spectral bands may improve
diseases and pests identifi cation, even in the early stages,
given the sensitivity to plants physiological changes
(MESSINA; MODICA, 2020).

For choosing a sensor, one must consider not
only the effi ciency in recording target behavior, but also
differences in operational imaging performance. For
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example, multispectral sensors must fl y at lower altitudes
to obtain the same spatial resolution of an RGB sensor,
requiring more time or number of UAV fl ights, higher
fi nancial cost, and longer image processing time (LÓPEZ-
GRANADOS et al., 2016). No consensus has been reached
regarding the best choice among the different sensors
and their potential for specifi c applications, as many
different target and environmental factors may infl uence
the fi nal result. Thus, the importance of the images spatial
and spectral properties varies according with targets
characteristics and mapping purposes.

After ensuring the quality of images, the focus is
on extracting characterization attributes, such as color,
shape, texture, and statistics for the target or symptoms
produced in the plant (BAH et al., 2018; ZHANG et al.,
2018; SIEBRING et al., 2019). However, the agricultural
environment is challenging due to the complexity of its
elements patterns and dynamics. Spectral and phenological
patterns may be similar when weeds and crops pertain to
the same family (LÓPEZ-GRANADOS et al., 2016); in
this context, considering weeds and crop positioning may
assist in the identifi cation. Positioning analysis and spatial
relation among pixels enables identifying crop rows and,
consequently, weed arrangements (BAH et al., 2018). Gao
et al. (2018) used spatialized information on crop row and
interrow space to improve weed classifi cation as crop and
weeds have similar colors and shapes in the initial stages.

For phytopathology, identifying the precise agent
(e.g., fungus species) is challenging because similar
symptoms can be common to several pathogens (HUANG
et al., 2019). Specifi c VIs can infer some symptoms based
on morphological and physiological changes that alter
spectral response (XUE; SU, 2017). Abdulridha et al.
(2019) evaluated relations that allowed the identifi cation
of early-stage citrus canker symptoms in trees and fruits
using data from hyperspectral images.

Dynamic targets, such as agricultural pests,
are yet more challenging due to diffi culties with angle
of view and focal length, even when photographing
static fruit fl y targets (Drosophila suzukii) trapped in
adhesive traps (ROOSJEN et al., 2020). Xiao et al.
(2018) analyzed static images of insects in public digital
libraries, clearing a path for future diagnosis of pests
using UAVs. However, fi eld conditions are still very
restrictive for the direct identifi cation of pests using
UAVs, so that indirect target-spectral response relations
are more commonly used, as occurred with the near-
infrared (NIR) response of soybean plants attacked by
Aphis glycines (ALVES et al., 2019). Considering that
such response may be easily confused with any other
kind of stress affecting the plants and classifi cation
attributes selected in the images may vary with the
algorithm and predictive model used, the selection for

a given crop may not be applicable for others crops nor
for changes in the calendar year, due to the introduction
of new elements in the scene (BAH et al., 2018). These
circumstances may drastically reduce the capacity of
predictive models built under different conditions. Also,
this biological targets identifi cation strategy requires the
supervision of experts with reasonable computational
skills and knowledge about calibrating machine-learning
algorithms, which is unlikely for alleged end-users, such
as farmers (HUNTER et al., 2020).

Although various classifi er algorithms such as
support vector machine (SVM) and random forest (RF)
have been applied with relative success (CASTALDI
et al., 2017; CAO et al., 2018), deep learning (DL)
techniques have shown more exciting results for
complex classifi cation (WIESNER-HANKS et al., 2019;
ROOSJEN et al., 2020) such as agricultural issues. One
of DL advantages is its automatic hierarchical extraction
of attributes (LIAKOS et al., 2018), solving one of the
signifi cant bottlenecks of machine learning techniques,
which is the requirement of experts for supervising this
procedure (BAH et al., 2018). DL techniques greater
learning capacity is conditioned by the database that
must be suffi ciently large and characterize the problem
(KAMILARIS; PRENAFETA-BOLDÚ, 2018), which
may also pose a challenge to the use of this algorithm.
Even so, this seems to be quite feasible for digital images
and data from various sensors that have been used in
Agri 4.0.

Considering the above, despite the diffi culties for
fi eld collection of images due to the infl uence of soil,
lighting, and the shading or occlusion of elements of
interest (HAMUDA et al., 2016), the major bottlenecks
in identifying biological targets using UAVs are not
encountered in the platform itself, but in the processing
of collected information, especially in the models and
attributes used. However, the advances in artifi cial
intelligence, especially regarding DL, whose agricultural
applications are still relatively recent, rise great
expectations.

SPRAYING OF PHYTOSANITARY
PRODUCTS AND BIO INPUTS

DISPENSING

The increased amount of fi eld information allows
a high-precision identifi cation of site-specifi c inputs
demands. In this sense, besides assisting in data collection
(as presented so far), UAV spraying systems have the
potential to satisfy these spraying and inputs application
demands - as traditional input application systems, whether
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manual, aerial or using a tractor, sometimes fail in meeting
the peculiarities of the crop production system. A historical
and growing scientifi c-technical development of spraying
with UAVs has been recorded in Asia, especially China,
South Korea, and Japan, fostered by local characteristics
such as small-scale production units, in sloping areas, and
with manpower shortage (YANG et al., 2018). In the USA,
UAVs fully serve specifi c applications in viticultural areas
(GILES; BILLING, 2015). Spraying UAVs have recently
become an alternative for situations where traditional
sprayers are unfeasible. Vertical take-off, ability to
maneuver in tight spaces, autonomous operation, quick
access to points of interest, and null damage to the crops by
wheels are some of spraying UAVs advantages compared
to agricultural machinery. However, further scientifi c
knowledge on UAVs spraying and industry standards for
this equipment are made necessary (HE et al., 2017). In
this sense, we observed at least three directions for the
technical and scientifi c development of this operation: a)
development of spraying UAVs; b) research to establish
ideal conditions for operation; and c) development of
supplementary systems to increase process effi cacy.

Development of spraying UAVs

Vertical take-off UAVs with one or multiple
engines are often employed in spraying activity. Although
most of them are powered by electricity, larger machines
with higher load capacity mainly use combustion engines,
while some hybrid formats are already available (LAN;
CHEN, 2018). When operations require a high volume of
spraying solution per unit of area, the load capacity and
spraying fl ow rate applied by a UAV constitute a limiting
factor for its general application in replacing traditional
spraying machinery. The tank capacity of spraying UAVs
usually holds 5.0 to 20.0 liters, but some models hold up
to 30.0 liters (HE et al., 2017). There is no technological
limitation for the development of UAVs with greater
capacities; this merely occurs due to a deliberation of
manufacturers and developers considering stringent
regional laws, such as documents Part 107 and Part 137
of the American Federal Aviation Agency (FAA, 2020).
Such documents restrict UAV operation according to load
capacity and make training mandatory for UAV operators
who might handle chemical and biological products.
Thus, research has been developed to decrease the
recommended pesticide fl ow rates, in order to make UAV
spraying suitable. Japan, the birthplace of UAV spraying,
has developed fl ow rates of up to 1.0 l/ha, characterized as
of ultra-low volume compared with original applications
of up to 30.0 l/ha (HE et al., 2017).

Across many countries, local adaptations of
the spraying UAVs operation have experimentally
enabled the use of this equipment in various crops,

such as rice (LI et al., 2019), corn (ZHENG et al.,
2017), soybeans (ZHANG et al., 2019), wheat (WANG
et al., 2019), cotton (YAO et al., 2018), sugarcane
(ZHANG et al., 2020), citrus (PAN et al., 2017) and
grapes (GILES; BILLING, 2015). However, this
method’s applicability in the most diverse crops leads
to questions about the operational performance of such
equipment. Considering only flight time, Wang et al.
(2019) achieved a performance of 4.1 ha/h applying
insecticide on wheat, while Giles and Billing (2015)
obtained a similar performance (4.5 ha/h) testing UAV
application on a vineyard. However, Wang et al. (2017)
report that flight time corresponds to only 30% of the
total time spent to complete a spraying operation;
the other 70% time is used for pre-flight checklists,
batteries exchange, inputs reservoir supply, and other
similar activities. Nevertheless, Yang et al. (2018)
mention several evaluations in which UAVs were
superior to other spraying devices, similar to what
Martinez-Guanter et al. (2020) observed compared to
a tractor sprayer in operations with olive and citrus.

The effi ciency of UAV treatments seems to be
relatively consistent with the other spraying methods
(XIAO et al., 2020; WANG et al., 2019), even though
intermediate parameters for the quality of spraying
(that is, deposition uniformity) may be below other
application modes (WANG et al., 2019). Results such as
those by Lou et al. (2018) show 26% better control for
aphids and 6% better for mites in favor of the terrestrial
sprayer in cotton crop; however, adjustments of spraying
parameters have stimulated research seeking effi ciency
improvement for UAVs.

Ideal conditions for spraying

Effi cient spraying requires correct choice
and regulation of the spraying system, according to
environmental conditions and characteristics of the
targets. Mistaken decisions when selecting a spraying
nozzle may lead to differences of up to 30% in treatment
effectiveness, as Chen et al. (2020) observed in their
study of nozzles unsuitable for grasshopper control in
different vegetative stages of rice. Correct choices in this
matter determine the best coverage of the target and the
consequent increase in the effi ciency of phytosanitary
treatment and reduction of drift problems. The most
frequently-tested nozzles are 110 degrees with a fl ow
rate of 0.1 to 0.2 gallons (CHEN et al., 2020). However,
there are several suitable specifi cations for spraying,
especially concerning the characteristics of the target.
Nozzles generating larger droplets, with a volume median
diameter (VMD) above 160 microns, have better droplet
deposition, better penetration, and less drift for spraying
insecticides on rice (CHEN et al., 2020). Moreover,
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adequate fl ow rate, fl ight speed and height are critical
parameters for defi ning the best spraying conditions.

The speed of a UAV modifi es its engine rotation,
changing the airstream fi eld formed towards the vegetation
that is necessary for droplet deposition, causing variation
in airfl ow and consequent alteration in droplet deposition.
This occurs because the weight variation changes the
battery discharge curve and, consequently, the engine
operation (MARTINEZ-GUANTER et al., 2020). The
stronger the air vortex, the greater the deposition on the
fl ight path; while weaker vortices provide deposition
both on the path and laterally. For very weak vortices, the
deposition is subject to the direction and force of the wind
(GUO et al., 2019). Zheng et al. (2017) report adequate
distribution results with speeds of up to 6.0 m/s.

The vortex’s infl uence is also directly related to
fl ight height, which can modify the deposition density
and penetration (ZHANG et al., 2020), achieving up
to 40% variations in droplet distribution (GUO et al.,
2019). Proper fl ight height, as well as speed and direction
of fl ight, were especially important for application in
crops such as citrus (TANG et al., 2018), olives trees
(MARTINEZ-GUANTER et al., 2020), and peach trees
(MENG et al., 2020), whose morphological structures
and canopy density had a relevant impact on the spraying
quality. The best spraying distribution and coverage result
was achieved with 1.4 m above the canopy in the citrus
crop (HOU et al., 2019), while for defoliant applications
on cotton, it was with 1.5 m and speeds of 2.5–3.8 m/s,
depending on the UAV used (LIAO et al., 2019). Zhang
et al. (2020) defi ned a height of 3.0 meters, a volume
of 15.0 l/ha, and a speed of 4.0 m/s as optimal reference
parameters for spraying sugarcane, due to the need of
reaching the lowest leaves. These parameters clarify the
multifactorial infl uence required to achieve application
quality and the need for a more signifi cant number of tests
under different conditions.

Supplementary systems to increase UAV spraying
effi ciency

At least two research lines aim to develop
optimization systems for spraying with UAVs: 1) one
focuses on real-time spraying control, considering
variations in environmental conditions; 2) the other seeks
to defi ne spraying criteria based on characteristics of the
target, using varied strategies to increase performance.

Real-time sensing systems are an essential step
in enabling more specifi c and optimized interventions
with UAVs. Issues in this area are still challenging
because they require both hardware and software with
high computational cost, directly related to the energy
consumption of the batteries and load capacity. One

strategy for increased spraying effi ciency and reduced
environmental risks, mainly represented by drift, is by
developing systems to adapt fl ight parameters in real-
time (HE et al., 2017); for example, by using a network of
wireless sensors in the fi eld, sending positional information
of wind speed and direction, in order to correct parameters
of the UAV (FAIÇAL et al., 2017). With a greater degree
of sophistication, a neural network fed with information
on ambient temperature, relative air humidity, wind speed,
and UAV settings (such as fl ight speed and altitude, number
of rotors and spray nozzles, and a prescribed volume of
application), was developed to control in real-time the
volume and size of spray droplets, in order to improve the
quality of deposition of the phytosanitary product (WEN
et al., 2019). For real-time interventions, which require
the operator’s command, fl ight speed is an essential
component for command communication between the
control base and the UAV, to the point of ensuring accuracy
in spraying (HE et al., 2017). According to UAV fl ight
conditions, Lian et al. (2019) overcame this challenge by
developing a quick-response system for adjustment of the
spraying fl ow rate.

As for the defi nition of spraying criteria according
to characteristics of the target, the application support
systems aim to increase the automation and accuracy
of the activity, defi ning areas of application and non-
application in high defi nition images (GAO et al., 2019).
One of the signifi cant challenges for image classifi cation
is its implementation in real-time during the fl ight.
Alternatively, previously acquired imagery or sensing
data can be used to streamline real-time processing. In
this sense, Wang et al. (2019) developed a system that
autonomously defi ned the application and non-application
areas in rice cultivation using previously surveyed
characteristics of the fi elds (e.g., color and texture
parameters) to feed a support vector machine (SVM)
classifi er. The real-time image processing also imposes
previously mentioned challenges, such as response time,
embedded hardware, energy consumption, among others.

In short, there was remarkable development in
UAV spraying in the last fi ve years. The diversity of
agricultural UAV application is a challenge to the constant
development and adaptation of these spraying systems,
requiring further investigation that might make the activity
agronomically functional and effi cient while also being
safe for people and the environment. The defi nition of
optimal parameters for fl ight, automation systems, and
real-time decision support will contribute to this objective.
Research initiatives such as that of Ivić et al. (2019) share
these goals; some contributions were the development of
swarm control systems for spraying UAVs to fully automate
the operation, thus increasing application accuracy, and
improving performance. As a result of these advances,
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other applications for dispersion of different types of inputs
using UAVs will be studied more frequently, such as the
distribution of seeds (LI et al., 2016), fertilizers, and bio
inputs. The latter is already commercially implemented
and has been validated by Teske et al. (2019), in order to
distribute natural enemies using UAVs in the fi eld and to
spread these populations.

CONCLUSIONS

1. UAV applications in agriculture have evolved
substantially in recent years with the prospect of
replacing activities of low human performance, such
as crop monitoring sampling.  Another contribution
is improving the effi ciency of agricultural operations,
such as the site-specifi c application of phytosanitary
products. However, most research efforts have been
developed within the scope of Agri 4.0, that is, data-
focused research, which would enable autonomous
decision-making or with a minimum dependency of a
human expert. In this sense, data science applications are
growing exponentially in agriculture through machine
learning, big data, and the Internet of Things. We have
already ensured subcentimetric image accuracy through
the sensor’s high resolution and high-frequency data
acquisition. This is due to the fl exibility of obtaining
these data, enabling a wide range of agricultural
applications. To this end, computer vision techniques are
proposed to replace the visual assessment of human-fi eld
technicians and experts, with the remarkable difference
that the entire fi eld could be investigated with very high
resolution through image analysis without sampling
approaches, providing quality information for the
farmer’s decision-making. In an optimal scenario, not
even the farmer’s decision-making would be required,
as the AI itself would identify unbalanced parts of
the fi eld and their causes, selecting the most effective
control methods and activating the proper autonomous-
machinery responsible for such interventions;

2. Implementing such a project requires much
development regarding data transmission capacity
as well as cloud storage and processing. Currently,
data communication in the fi eld still lacks the effi ciency
necessary for such an approach. The 5G system is
promising in this regard. However, several questions
still require clarifi cation, such as the actual data transfer
rates over long distances and the costs for implementing
such a dedicated structure in the rural environment.
Similarly, machine learning techniques still require
signifi cant effort to obtain a robust database in order
to recognize patterns under different situations in the
agricultural environment, such as plants with different

colors and shapes caused by different types of stress, like
climate and pathogenic attack. Therefore, the application
of such techniques in the agricultural fi eld faces much
more challenges than the same approach in the industrial
environment, in which there is environmental control over
most factors that interfere with automated predictions.
The fact is that agricultural automation requires AI
learning about the most varied and representative
situations in the fi elds, requiring extensive and robust
databases to apply Agri 4.0 comprehensively. Thus,
UAVs, as a high-resolution data acquisition platform, are
a reality. In contrast, the knowledge that these data can
provide for Agri 4.0 applications is still diffi cult to fully
understand and quantify.
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