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Digital mapping of soil attributes using machine learning1

Mapeamento digital de atributos do solo utilizando aprendizado de máquina

Patrícia Morais da Matta Campbell2*, Márcio Rocha Francelino3, Elpídio Inácio Fernandes Filho3, Pablo de
Azevedo Rocha3 and Bruno Campbell de Azevedo4

ABSTRACT - Mapping the chemical attributes of the soil on a large scale can result in gains when planning the use and
occupation of the land. There are different techniques available for this purpose, whose performance should be tested for
different types of landscapes. The aim of this study was to spatialize chemical attributes of the soil, comparing eight methods
of prediction. Forty morphometric attributes, generated from a digital elevation model, were used as independent variables,
in addition to geophysical data, images from the Landsat 8 satellite and the NDVI. All possible combinations between the
satellite bands were calculated, generating 28 new variables. Combinations between the Th, U and K bands obtained from
the geophysical data were also calculated, generating a further three variables. The final variables to be calculated were the
distances between the four points of the edges of the basin (d1, d2, d3 and d4). The dependent variables for the model were Al,
Ca, Fe, K, Mg, Na, Si, Ti, Cr, Cu, Mn, Ni, P, Pb, V, Zn, Zr, S and Cl. A total of 200 soil samples were used, which were collected
from 100 points at two depths (0-10 and 10-30 cm); the total elements were determined using an X-ray fluorescence analyzer.
The Random Forest algorithm proved to be superior to the others in predicting the chemical attributes of the soil at both depths,
and is suitable for predicting soil attributes in the study region. Spatial variables are essential, and should be considered when
modelling chemical elements in the soil. Using the methods under test, it is possible to predict elements with R² values ranging
from 0.32 to 0.62.

Key words: XRF. Spatial approach. Prediction models.

RESUMO - O mapeamento de atributos químicos do solo em larga escala pode acarretar em ganhos no planejamento de
uso e ocupação do mesmo. Existem diferentes técnicas disponíveis para tal fim, cujos desempenhos devem ser testados para
diferentes situações de paisagem. Objetivou-se neste trabalho espacializar atributos químicos do solo, comparando oito métodos
para predição. Como variáveis independentes foram utilizados 40 atributos morfométricos gerados a partir do modelo digital de
elevação, além de dados geofísicos, imagens do satélite Landsat 8 e o NDVI. Calculou-se todas combinações possíveis entre
as bandas do satélite, gerando 28 novas variáveis. Também foram feitas combinações entre as bandas de Th, U e K obtidas dos
dados geofísicos, gerando outras três variáveis. As últimas variáveis calculadas foram as distâncias entre os quatro pontos das
extremidades da bacia (d1, d2, d3 e d4).  As variáveis dependentes do modelo foram teores de Al, Ca, Fe, K, Mg, Na, Si, Ti, Cr,
Cu, Mn, Ni, P, Pb, V, Zn, Zr, S e Cl. Foram utilizadas 200 amostras de solo, coletadas em 100 pontos em duas profundidades (0-
10 e 10-30 cm), e os elementos totais foram determinados em analisador de fluorescência de raios-X. Random Forest mostrou-
se superior aos demais para predizer os atributos químicos do solo nas duas profundidades, sendo indicado para predição dos
atributos dos solos da região de estudo. As variavéis espaciais mostraram-se altamente prescindíveis, devendo ser consideradas
nas modelagens dos elementos químicos do solo. É possível a predição dos elementos com R² variando de 0,32 a 0,62 pelos
métodos testados.

Palavras-chave: XRF. Abordagem espacial. Modelos de predição.
DOI: 10.5935/1806-6690.20190061
*Author for correspondence
 Received for publication 26/04/2018; approved on 05/03/2019
1Trabalho extraído da Tese do primeiro autor apresentada ao Programa de Pós-graduação em Ciências Ambientais e Florestais, Universidade
Federal Rural do Rio de Janeiro/UFRRJ

2Programa de Pós-Graduação em Ciências Ambientais e Florestais, Departamento de Silvicultura e Manejo Florestal, Universidade Federal Rural do
Rio de Janeiro, Seropédica-RJ, Brasil, matta542@gmail.com (ORCID ID 0000-0001-8507-8496)

3Departamento de Solos, Universidade Federal de Viçosa, Viçosa-MG, Brasil, marcio.francelino@gmail.com (ORCID ID 0000-0001-8837-1372),
elpidio.solos@gmail.com (ORCID ID 0000-0002-9484-1411), pab_zulu@yahoo.com.br (ORCID ID 0000-0001-9581-9622)

4Programa de Pós-Graduação em Agricultura Orgânica, Departamento de Fitotecnia; Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ,
Brasil, brunocampbell@bol.com.br (ORCID ID 0000-0003-0995-3708)



Rev. Ciênc. Agron., v. 50, n. 4, p. 519-528, out-dez, 2019520

P. M. M. Campbell et al.

INTRODUCTION

New computational techniques have been presented
as an alternative tool for mapping soil classes and
attributes, providing greater speed, repeatability and error
recognition, which are seen as the greatest advantages over
conventional methods (PINHEIRO et al., 2012). Due to
the increasing need for more-detailed information on soils
for various applications, digital methods can contribute
significantly when planning land use and occupation.

Digital mapping is based on the SCORPAN model,
in which a given soil class is a function of five factors of
the ClORPT model (climate - Cl, organisms - O, relief - R,
parent material - P and time - T), added to the factors of soil
(s), and spatial or geographic position (n) (McBRATNEY
et al., 2003). This new model not only allows the classes
of soil to be mapped, but also the soil attributes.

Since the end of the 1960s, there has been an
emphasis on what might be termed “geographical” or
“purely spatial” approaches, i.e. soil attributes would be
predicted from spatial position, largely by interpolation
between the observation sites (McBRATNEY et al.,
2003).

As such, some studies began to test the use of
spatiality to predict the attributes, not only of soils,
but also other elements of the physical environment
(DAVIES; GAMM, 1969; KISS et al., 1988), with the
appearance of such interpolation methods as kriging,
among others. However, the use of spatial tools alone
has led to the development of models where the
trend surfaces are fairly simplified and “artificial”
representations, and where the more complex spatial
patterns generally need to be modeled (McBRATNEY
et al., 2003).

This led to the adoption of hybrid models
that combine different methods, such as the use of
classifying algorithms like Random Forest and kriging.
These are combined with the aim of improving both
techniques, always including the spatial component,
which is a potentially valuable and economical source
of environmental information, and should never be
disregarded (ARRUDA; DEMATTE; CHAGAS, 2013;
McBRATNEY et al., 2003).

Various factors derived from the digital elevation
model (DEM) have been tested as predictor variables
(MENEZES et al., 2014; OLIVEIRA et al., 2012;
PINHEIRO et al., 2012; RYAN et al., 2000; YANG et al.,
2016) in different methods for generating digital maps.
Several techniques have been evaluated for mapping
attributes, among them neural networks, decision trees and
multiple linear regression. However, no studies were found
in the literature that mapped a high number of chemical

elements in the soil, using, in addition to environmental
covariates, spatial variables as predictors.

Under the hypothesis that there may be algorithms
which are more efficient in predicting a large number of
soil attributes with good R² values, where spatial variables
may prove to be essential to the model, this work aimed
to map the chemical attributes of the soil (the levels of Al,
Ca, Fe, K, Mg, Na, Si, Ti, Cr, Cu, Mn, Ni, P, Pb, V, Zn, Zr,
S, Cl) in a drainage basin located in the district of Iconha,
Espírito Santo (ES), at two depths, using environmental and
spatial covariates as predictors and comparing predictions
of the Random Forest, Ridge Regression, Cubist and
Partial Least Squares methods; principal component
regression (PCR); Adaptive Forward-Backward Greedy
Algorithm (FOBA); Generalized Boosted Regression
Models (GBM)  and Gradient Boosting with Component-
wise Linear Models (GLMBOOST).

MATERIAL AND METHODS

The work was carried out in the drainage basin of
the Ribeirão Inhaúma; an area of 2,403.9 ha, centered on
21°10’58.82” S and 41°00’08.87” W, and located in the
district of Iconha, in the south of the state of Espírito Santo.

In order to predict the chemical attributes of the soil,
it was necessary to determine the independent variables
that would be tested. The digital elevation model (DEM),
obtained with data from the ALOS Satellite (Advanced
Land Observing Satellite) at a spatial resolution of 12.5 m,
was used to generate 37 morphometric covariates (Table
1), using a script developed in the R software (RSaga)
for applying the terrain-analysis tools included in the free
SAGA software (BÖHNER; MCCLOY; STROBL, 2006)
together with the land use and occupation map.

The Landsat 8 (LS8) satellite bands were also
used as independent variables, the NDVI (Normalized
Difference Vegetation Index) was calculated using the LS8
bands in the equation proposed by Rouse et al. (1973),
where it is expressed as the ratio between the difference
in reflectance measured in the near red (ρ-IV) and infrared
(ρ-V) channels, and the sum of these channels, so:

                                                                                       (1)

Aerogeophysical data, such as gamma spectrometry
and magnetometry, obtained from the Mineral Resources
Research Company (Companhia de Pesquisa de Recursos
Minerais - CPRM), were also used (Table 1).

All possible combinations between the bands were
calculated, generating 28 new spectral covariates. These
were obtained, by means of the relation:
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                                                                                       (2)

where: Bxy is the result of the band x to band y ratio,
and  bx and by represent the Landsat 8 satellite bands.

For the variables derived from the gamma
spectrometry, the same ratio was used as in equation 2,
where combinations were made between the estimated
values   of thorium (Th), uranium (U) and potassium (K),
generating three new variables. The distances between the
four points at the edges of the basin (d1, d2, d3 and d4)
were calculated as per the relation:

                                                                                       (3)

Table 1 - Independent variables used to predict chemical attributes of the soil

Derivatives of the digital elevation model
Convergence index Mid-Slope Position Total Curvature
Cross-Sectional Curvature Minimal Curvature Total Insolation1
Curvature Classification Digital Elevation Model Total Insolation2
Diffuse Insolation1 Normalized Height Valley Depth
Diffuse Insolation2 Plan Curvature Valley Index
Direct to Diffuse Ratio1 Profile Curvature
Direct to Diffuse Ratio2 Real Surface Area
Diurnal Anisotropic Slope
Duration of Insolation1 Slope Height
Duration of Insolation2 Slope Index
Flow-Line Curvature Standardized Height
General Curvature Surface-Specific Points
Landforms Tangential Curvature
Longitudinal Curvature Terrain Surface Texture
Mass Balance Terrain Surface Convexity
Maximal Curvature Topographic Wetness Index
Geophysical data Others
Total Magnetic Field Landsat8 Bands
Total Count NDVI
Potassium Use and occupation map
First Derivative of the Total Magnetic Field Band Ratio
Thorium to Potassium Ratio Th to U to K Ratio
Uranium to Potassium Ratio Distances between points
Uranium to Thorium Ratio x,y Coordinates
Analytic Signal of the Total Magnetic Field
Total Exposure Count Rate
Thorium
Uranium

where: dAB is the distance between two points A and B, x2
and y2 are the coordinates of point A and x1 and y1 are the
coordinates of point B.

 The x and y coordinates were also considered as
variables, i.e. latitude and longitude. All the maps were
standardized with the same size of cells, lines and columns,
and a resolution of 30 m. The maps from the MDE were
re-sampled using the ArcGis 10.1 software.

The levels of Al, Ca, Fe Al, Ca, Fe, K, Mg, Na, Si,
Ti, Cr, Cu, Mn, Ni, P, Pb, V, Zn, Zr and S were used as the
dependent variables for the model. In order to obtain values
for the attributes, 200 soil samples were collected in the
field at a depth of 0-10 cm and 10-30 cm. The conditioned
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Latin hypercube method was used to set up the sampling
grid, due to difficulty in accessing the area caused by the
extremely mountainous relief. The coordinates of each
sampling point were recorded with the Leica GS08 Plus
GNSS receiver. The data were processed using the Leica
Geoffice 8.0 software, employing the fixed station of the
Brazilian Institute of Geography and Statistics (IBGE) in
Vitória, ES, for transportation from the base to the area of
the basin.

The soil samples were air dried, the clumps were
removed, and the soil sieved through a 2-mm aperture
mesh. In the laboratory, the samples were macerated in an
agate mortar, sieved through a 1-mm aperture mesh, and
then placed in a standard mold and manually compressed
to form tablets, 15 mm in diameter and 2 mm thick, that
were used to take readings in the X-ray fluorescence
analyzer of the Soil Laboratory (ALVES et al., 2015)
of the Federal University of Viçosa - UFV, to obtain the
total content of the elements in each sample. For this, the
Shimadzu Micro-EDX-1300 analyzer was used.

Results that presented outliers were identified and
their data replaced with values estimated by means of
regression imputation, where the new value is calculated
through regression of the other values of the variable,
thereby avoiding a reduction in the number of analytical
data.

The response variables at both sampling depths
were tested for normality by means of the Kolmogorov-
Sminorv test (K-S) (p<0.05).

Attribute maps were generated using the R v3
software. To select the most important independent
variables, those with a correlation index greater than 0.99
were eliminated. Subsequently, each model selected the
most significant variables to predict each of the attributes,
these being used to generate the final maps. Simplified
models were sought, i.e. models that used the smallest
possible number of variables with satisfactory R² values,
where a loss of up to 5% in the R² values was allowed in
favor of a more economical model.

Point values for each of the independent variables
were extracted using the ArcGis software, employing the
‘extract value to points’ command. In order to have greater
area representativity, the mean of the central point with
its neighbors was considered as a typical value for the
sampled site.

The performance of the models was evaluated
using the cross-validation procedure with 10 repetitions,
in which comparisons were made between the observed
and predicted values of each dependent variable. These
values were expressed by the coefficient of determination
R². The index was calculated according to the equation:

                                                                                       (4)

where: Pi e Oi are the predicted and observed values at
location i respectively, and n is the number of samples.

The RMSE value (root mean square error) was also
calculated.

                                                                                       (5)

where: RMSE is the root mean square error, and Ɩ is the
number of points intended for validation.

RESULTS AND DISCUSSION

In relation to the predictions of the models under
test, only those elements whose R² value was greater than
0.30 for at least one of the methods are presented. As a
result, the applied methods were not efficient in predicting
Ca, Mg, Na, Si, Cr, Cu, Ni and Zr at the depth of 0-10 cm,
or Mg, Na, Si, Cu, Mn, Ni and Zn at 10-30 cm.

Table 2 shows the descriptive statistics for the
modelled elements at both depths, i.e. Al, Fe, K, Mn, P,
Pb, S, Ti, V and Zn at 0-10 cm, and Al, Ca, Cr, Fe, K , P,
Pb, S, Ti, V and Zr at 10-30 cm.

With the set of data from the first depth, a negative
asymmetric distribution was seen for Al, K and Zn, and
a positive asymmetric distribution for the remainder,
while at a depth of 10-30 cm, negative asymmetric
distribution occurred only for Al and Fe. With positive
asymmetry, mean values are generally higher than the
median, indicating a high frequency of values below the
mean (LIMA et al., 2010). Such behavior was seen for
P, S and Zn at 0-10 cm and for all the elements at 10-30
cm, except Fe.

Negative asymmetry indicates concentration of
the data (tail elongation) to the left of the mean, and
positive asymmetry shows the data concentrated to the
right of the mean. Values   closer to zero indicate greater
symmetry and, therefore, normal data distribution
(GROENEVELD; MEEDEN, 1984).

Kurtosis indicates the degree of data flattening,
where the distribution is classified as leptokurtic
(when the kurtosis value is <0.263), mesocurtic
(=0.263) or platicurtic (>0.263). At both depths, the
data have a leptokurtic distribution, characterized by a
more funneled curve, with a higher peak than normal
(mesocurtic), except for P and S (0-10 cm) and Ca (10-
30 cm), which have a platicurtic distribution, this curve
being flatter than either the mesocurtic or leptokurtic.
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Table 2 - Descriptive analysis of the chemical attributes of the soil at a depth of 0-10 cm and 10-30 cm

*Al, Ca, Fe, K, S, Ti in dag/kg, and Cr, Mn, P, Pb, V, Zn, Zr in ppm

Depth 0-10 cm
Variable* Mean Median Standard Deviation Minimum Maximum Asymmetry Kurtosis
Al 24.88 24.94 4.44 13.76 35.45 -0.33 -0.02
Fe 10.37 10.65 2.76 3.51 17.73 0.003 -0.15
K 1.22 1.25 0.48 0.14 2.22 -0.26 -0.54
Mn 601.40 600.68 315.16 53.50 1314.77 0.24 -0.69
P 2359.64 2082.35 1394.97 0.00 5867.08 0.46 -0.52
Pb 198.65 200.39 69.78 57.27 395.50 0.20 -0.24
S 0.12 0.11 0.05 0.03 0.30 1.02 1.13
Ti 2.12 2.13 0.67 0.97 3.45 0.14 -1.06
V 417.78 424.47 133.77 210.05 719.71 0.15 -1.08
Zn 119.01 118.53 42.78 28.68 232.19 -0.02 -0.41

Depth 10-30 cm
Al 25.02 24.75 4.93 13.44 33.86 -0.15 -0.67
Ca 0.20 0.19 0.13 0.01 0.61 0.93 1.17
Cr 289.28 272.04 109.92 18.12 541.42 0.23 -0.32
Fe 10.36 10.43 2.80 3.31 17.56 -0.13 0.09
K 1.27 1.27 0.31 0.10 2.57 0.15 -0.20
P 2133.07 1736.18 1340.61 0.00 5981.57 0.79 0.18
Pb 202.47 199.63 78.71 61.00 429.81 0.52 0.03
S 0.11 0.10 0.02 0.01 0.22 0.49 -0.37
Ti 2.16 2.14 0.70 0.93 3.80 0.20 -0.83
V 427.82 423.37 139.62 183.15 745.18 0.20 -0.95
Zr 727.76 709.67 223.03 249.38 1315.95 0.50 -0.05

For the predictive variables, those showing a
correlation equal to or greater than 0.99 were eliminated.
These were: Diffuse Insolation2, Total Insolation2, Valley
Index, and Landsat 8 Bands 2 and 4.

At the depth of 0-10 cm, the R² values (Table 3),
calculated based on the regression between the observed
values and those predicted by the models, show that RF
was superior for three of the variables (Fe, Mn and V),
with RIDGE superior for two (S and Zn) and the remainder
(PLS) for one. PLS and PCR were equally efficient for
predicting P (R² = 0.42), while RIDGE, cubist, PLS, PCR
and FOBA for Ti (R² = 0.50). R² values   at this layer ranged
from 0.23 to 0.54.

Regarding the lowest R² values, FOBA stood out
for not presenting any of the lower correlation coefficients.
For Al, Mn, P and Pb, more than one method presented
the lower values. In general, PLS, PCR, GBM and
GLMBOOST presented lower predicted R² values.

In relation to the elements, the highest R2 values
were found for Ti (0.50) and V (0.54). Ti minerals are very
weather resistant; apparently under reducing conditions
Fe2+ ions are adsorbed on the surfaces of Ti minerals,
Ti being able enter the structure of some silicates and
probably adsorbed on the surface of Fe-Mn concretions.
As  it  is  one  of  the  most  stable  elements,  Ti  is  present
in small amounts in the soil solution, about 0.03 mg/L,
(KABATA-PENDIAS, 2010).

V is distributed fairly uniformly in soil profiles,
and variations in soil content are inherited from the parent
materials (KABATA-PENDIAS, 2010). As such, the
highest concentrations of V (up to 500 mg/kg) are reported
for Cambisols (KABATA-PENDIAS, 2010), levels which
probably facilitate their mapping, since this type of soil
is widely distributed over the study area. The V in soils
seems to be mainly associated with hydrated Fe oxides
and with organic matter. In some soils, clay minerals
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can also control the mobility of this element (KABATA-
PENDIAS, 2010).

As expected, the RMSE values (Table 4) tended to
be smaller the higher the R² value. In predicting P, where
R² was the same for both PLS and PCR, it can be inferred
that PCR was superior due to the lower RMSE value.
However, the same was not possible for S or Ti, whose
RMSE values remained the same for the best predictors.

In the 10-30 cm layer, there was greater disparity
as to the best predictor in relation to the R² values (Table
5). In general, soil attributes vary continuously with depth
in the soil profile (RUSSELL; MOORE, 1968), which

Element
Method

RF RIDGE CUBIST PLS PCR FOBA GBM GLMBOOST
Al 0.39 0.37 0.35 0.33 0.33 0.38 0.33 0.40
Fe 0.49 0.41 0.44 0.40 0.41 0.43 0.45 0.41
K 0.40 0.34 0.36 0.34 0.23 0.35 0.41 0.33
Mn 0.38 0.31 0.32 0.31 0.32 0.33 0.36 0.31
P 0.37 0.39 0.39 0.42 0.42 0.40 0.37 0.40
Pb 0.39 0.36 0.42 0.37 0.37 0.38 0.40 0.36
S 0.36 0.38 0.33 0.37 0.37 0.38 0.35 0.37
Ti 0.48 0.50 0.50 0.50 0.50 0.50 0.46 0.48
V 0.54 0.48 0.52 0.50 0.50 0.48 0.52 0.45
Zn 0.37 0.39 0.30 0.27 0.24 0.37 0.36 0.38

Element*
Method

RF RIDGE CUBIST PLS PCR FOBA GBM GLMBOOST
Al 3.79 3.99 3.96 3.88 3.87 3.82 3.92 3.77
Fe 2.04 2.21 2.18 2.21 2.21 2.16 2.13 2.18
K 0.38 0.42 0.40 0.42 0.44 0.40 0.38 0.41
Mn 257.28 272.11 269.69 270.89 269.45 266.48 260.67 270.95
P 1098.40 1058.68 1082.61 1037.59 1035.29 1053.91 1079.42 1054.49
Pb 62.42 62.78 61.76 62.24 62.23 61.54 62.01 62.23
S 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Ti 0.50 0.48 0.48 0.48 0.48 0.48 0.51 0.50
V 92.17 98.36 95.23 96.66 96.65 98.24 95.13 102.51
Zn 35.06 35.58 37.69 38.99 39.18 36.08 35.68 35.06

Random Forest-RF, Ridge Regression-RIDGE, Partial Least Squares-PLS, Principal Component Regression-PCR, Adaptive Forward-Backward Greedy
Algorithm-FOBA, Generalized Boosted Regression Models-GBM and Gradient Boosting with Component-wise Linear Models – GLMBOOST

Table 3 - R2 values generated by the three methods for predicting chemical attributes of the soil at a depth of 0-10 cm

can generate differences in the prediction ability of each
model. RF was highlighted in six variables (Al, Ca, Fe, K,
P and Pb) and was equal to FOBA for the variable Zr, with
R² = 0.34. FOBA was superior for Cr, GBM for Ti and V,
and PLS and PCR obtained the same R² value for S (0.37).
The R2 values   ranged from 0.24 to 0.62.

As in the 0-10 cm layer, V and Ti were the elements
with the best prediction, presenting an R² of 0.62 and 0.56
respectively. RIDGE, cubist and GLMBOOST proved not
to be efficient predictors in the 0-30 cm layer, obtaining
none of the higher R² values, and having some of the
lowest values found for the correlation coefficient. FOBA,

Table 4 - RMSE values found for Al, Fe, Mn, P, Pb, S, Ti, V and Zn in the 0-10 cm layer, for the different methods under test

*Al, Fe, K, S, Ti in dag/kg, and Mn, P, Pb, V Zn in ppm. Random Forest-RF, Ridge Regression-RIDGE, Partial Least Squares-PLS, Principal Component
Regression-PCR, Adaptive Forward-Backward Greedy Algorithm-FOBA, Generalized Boosted Regression Models- GBM and Gradient Boosting with
Component-wise Linear Models – GLMBOOST
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just as in the 0-10 cm layer, obtained none of the lower R²
values, the same as RF in this layer.

RMSE behavior in the 10-30 cm layer was similar
to the first layer, i.e. the lowest values   were generally
found for the highest estimates of R² (Table 6). The only
exception was for P, where the lowest RMSE value was
obtained with RIDGE. With lower RMSE values, it can
be inferred that RF was superior to FOBA in predicting
Zr, whose R² had been similar. S presented its highest R²
values with the PLS and PCR methods, however with
similar RMSE values in all methods.

Among the predictors under test, RF is the most
common in studies found in the literature, being employed
to predict various soil properties (CAMERA et al., 2017).
These properties, however, are generally related to texture
(sand, silt, clay) (BISHOPet al., 1999; CHAGAS et al., 2016;
HEUVELINK et al., 2016; LAGACHERIEet al., 2008; MA
et al., 2017; VAYSSE; LAGACHERIE, 2015); chemical,
focusing on pH (BISHOP et al., 1999; DHARUMARAJAN
et al., 2017; HEUVELINK et al., 2016;  MA et al., 2017;
MALONE et al., 2014; VÅGEN et al., 2016; VAYSSE;
LAGACHERIE, 2015); organic carbon (ADHIKARI

Table 5 - R2 values generated by the three methods for predicting chemical attributes of the soil at a depth of 10-30 cm

Random Forest-RF, Ridge Regression-RIDGE, Partial Least Squares-PLS, Principal Component Regression-PCR, Adaptive Forward-Backward Greedy
Algorithm-FOBA, Generalized Boosted Regression Models- GBM e Gradient Boosting with Component-wise Linear Models – GLMBOOST

Table 6 - RMSE values found for Al, Ca, Cr, Fe, K, P, Pb, S, Ti, V and Zr in the 10-30 cm layer, for the different methods under test

*Al,  Ca,  Fe,  K,  S,  Ti  in  dag/kg,  and  Cr,  P,  Pb,  V,  Zr  in  ppm.  Random Forest-RF,  Ridge  Regression-RIDGE,  Partial  Least  Squares-PLS,  Principal
Component Regression -PCR, Adaptive Forward-Backward Greedy Algorithm-FOBA, Generalized Boosted Regression Models- GBM e Gradient
Boosting with Component-wise Linear Models – GLMBOOST

Element
Method

RF RIDGE CUBIST PLS PCR FOBA GBM GLMBOOST
Al 0.37 0.28 0.31 0.29 0.30 0.32 0.36 0.33
Ca 0.32 0.29 0.26 0.24 0.24 0.31 0.28 0.29
Cr 0.26 0.32 0.24 0.33 0.32 0.35 0.28 0.32
Fe 0.43 0.33 0.35 0.33 0.33 0.34 0.39 0.33
K 0.38 0.35 0.32 0.36 0.36 0.36 0.36 0.36
P 0.45 0.36 0.37 0.42 0.43 0.40 0.40 0.39
Pb 0.32 0.21 0.25 0.29 0.30 0.25 0.30 0.23
S 0.32 0.32 0.32 0.37 0.37 0.32 0.30 0.30
Ti 0.52 0.42 0.44 0.44 0.44 0.44 0.56 0.43
V 0.55 0.52 0.52 0.50 0.50 0.55 0.62 0.52
Zr 0.34 0.28 0.27 0.28 0.28 0.34 0.28 0.31

Element*
Method

RF RIDGE CUBIST PLS PCR FOBA GBM GLMBOOST
Al 4.10 4.61 4.38 4.50 4.47 4.34 4.15 4.25
Ca 0.23 0.24 0.24 0.24 0.24 0.23 0.23 0.23
Cr 100.42 94.74 102.97 94.90 94.99 92.03 97.81 94.32
Fe 2.35 2.55 2.52 2.54 2.54 2.52 2.46 2.55
K 0.45 0.47 0.47 0.46 0.46 0.46 0.45 0.46
P 1063.33 943.15 1031.79 972.34 966.61 991.67 991.74 1005.35
Pb 71.13 82.70 76.68 73.21 72.99 76.79 72.37 76.53
S 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Ti 0.50 0.55 0.54 0.54 0.54 0.54 0.48 0.54
V 95.76 100.57 99.59 101.79 101.79 97.11 89.07 99.27
Zr 215.96 234.96 235.68 229.85 229.46 219.65 229.07 226.21
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et al., 2014; AKPA et al., 2016; BISHOP et al., 1999;
DHARUMARAJAN et al., 2017; GOMEZ et al., 2008;
GRIMM et al.,  2008;  GUO et al., 2015; HEUVELINK
et al., 2016; MA et al., 2017; POGGIO et al., 2013;
RAMIFEHIARIVO et al., 2017; SREENIVAS et al., 2016;
VÅGEN et al., 2016; WIESMEIER et al., 2011); electrical
conductivity (BISHOP et al.,1999; DHARUMARAJAN
et al., 2017; VAYSSE; LAGACHERIE, 2015),  and cation
exchange capacity (CHAGAS et al., 2016; LAGACHERIE
et al., 2008; VÅGEN et al., 2016).

Hengl et al. (2015) found negative R2 values when
mapping exchangeable sodium using linear regression.
The authors found a gain in R² when comparing the
mapping of exchangeable bases, especially Ca and Mg,
made with RF in relation to the regression. No predictions
carried out by the methods tested in this study were found
in the literature in relation to elements obtained by x-ray
fluorescence.

For the principal variables used in the prediction
models, in the 0-10 cm layer half of the mapped elements
(Al, Fe, K, Pb and S) considered the geophysical data to be
important variables. The following should be mentioned:
the ratio of uranium to potassium (Al, Pb), the ratio of
thorium to potassium (Al, S), uranium (pb), potassium
(Al, S), thorium (K) and the analytic signal of the total
magnetic field (Al, Fe, Pb).

For the 10-30 cm layer, with the exception of Fe,
all the elements considered the geophysical data to be
important. Including the ratio of uranium to potassium
(Al, Ca), the ratio of thorium to potassium (Ca, S), the
ratio of uranium to thorium (K), uranium (Zr), potassium
(Al, Cr, S), thorium (K, Ti, V), the total magnetic field
(Cr), the analytic signal of the total magnetic field (Cr),
and the total magnetic field exposure rate (P).

In relation to the variables created by the distance
relationships, bands and geophysical data, these were

broadly selected by all the elements as important
covariates in prediction. The ratios between the bands
were widely used (K, Mn, V and Zn at 0-10 cm, and
Al, Cr, K, Ti and V at 10-30 cm), as well as the ratios
between K, U and Th (Al , K, Pb and S at 0-10 cm, and
Al, K and S at 10-30 cm).

Except for Al and K in the 0-10 cm layer, and for
K and Pb in the 10-30 cm layer, the distance relationships
(x, y, d1, d2, d3 and d4) were selected as the principal
relationships, and for Ti and P, were the only relationships
selected in the first layer.

These purely spatial approaches are almost
entirely based on geostatistical methods, such as
kriging and co-kriging, with one of their problems
being the artificial boundaries they establish on the
map (MCBRATNEY et al., 2003). Such artificial
boundaries were seen in this work, especially for
those elements whose spatial variables were the most
relevant, appearing either exclusively or in the top
positions, such as Ti and P in the 0-10 cm layer and S
in the 10-30 cm layer (Figure 1 and 2).

When other non-spatial predictor variables are
inserted, these limits are softened, as in the case of Fe
and V at 0-10 cm (Figure 1) and Ti at 10-30 cm (Figure
2). The satisfactory R² values, ranging from 0.38 to 0.54
(0-10 cm) and from 0.32 to 0.62 (10-30 cm), show the
relevance of considering these relationships in predictions
and associating them with the terrain attributes.

In this study, the terrain attributes considered as
most relevant predictor variables were: Terrain Surface
Convexity (Al at 0-10 cm); Valley Depth (Al, Mn and Zn
at 0-10 cm, and Ca and P at 10-30 cm); Real Surface Area
(Al at 0-10 cm, and Ca, Fe and Pb at 10-30 cm); Terrain
Surface Texture (K, Mn and V at 0-10 cm); Diurnal
Anisotropic (K and S at 0-10 cm); Convergence Index (K
at 0-10 cm, and Fe, Cr and K at 10-30 cm); Standardized

Figure 1 - Total iron (Fe2O3), phosphorus (P2O5), titanium (TiO2) and vanadium (V2O5) content using Ridge Regression (Ti), Partial
Least Squares (P) and Random Forest (Fe and V)
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Height (Mn at 0-10 cm); Mid Slope Position (Mn and Zn at
0-10 cm, and Ca and K at 10-30 cm); Topographic Wetness
Index (Mn and Zn at 0-10 cm, and Ca, K, Pb and Zr at 10-
30 cm); Slope Height (Pb at 0-10 cm); Diffuse Insolation1
(Al and S at 0-10 cm, and Al, Cr and P at 10-30 cm); Direct
to Diffuse Ratio1 (S at 0-10 cm); Surface Specific Points
(Cr at 10-30 cm); Slope (Fe, Pb at 10-30 cm) and MDE (S
at 10-30 cm). In the literature, studies can be found that
test MDE-derived variables as predictors for generating
digital maps using different methods (MENEZES et al.,
2014; OLIVEIRA et al., 2012; PINHEIRO et al., 2012;
RYAN et al., 2000; YANG et al., 2016).

CONCLUSIONS

1. The Random Forest algorithm was superior to the other
models in predicting the chemical attributes of the soil
at both depths, especially at the depth of 10-30 cm, with
superior R² values for seven elements, and is therefore
suggested for predicting soil attributes in the region of
the study;

2. Spatial variables proved to be essential for predicting
soil attributes and should be considered when modelling
chemical elements in the soil;

3. It is possible to predict Al, Ca, Cr, Fe, K, Mn, P, Pb, S,
Ti, V, Zn and Zr with an R2 ranging from 0.32 to 0.62 by
the methods tested.
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