Acessibilidade / Reportar erro

Mathematical modeling and determination of thermodynamic properties of coffee (Coffea arabica L.) during the drying process

The aim of the present work was to model the drying process and to obtain the thermodynamic parameters of coffee beans (Coffea arabica L.), cultivar Catuaí Amarelo, for three different conditions of temperature and relative humidity (35 ºC and 32.1 %; 45 ºC and 15.7 %; 55 ºC and 10.2 %). Coffee beans were hand picked with an initial moisture content of 1.25 (d.b.) and dried to a mean moisture content of 0.13 (d.b.). Six mathematical models commonly used to represent the drying process of agricultural products were fit to the experimental data. Fick's second law was used to obtain the diffusion coefficients of coffee beans using the drying kinetics. The activation energy for the drying process of coffee beans, as well as the entropy, enthalpy and Gibbs free energy were determined. The modified Midili model best represented the drying phenomenon of coffee beans. The calculated diffusion coefficients were 2.99 x 10-11, 2.39 x 10(11) and 5.98 x 10-11 m² s-1, to the temperatures of 35, 45 and 55 ºC, respectively. Enthalpy decreased with the increase in the drying air temperature, as well as the entropy. The Gibbs free energy increased with the temperature.

Arrhenius; moisture diffusion; enthalpy; activation energy


Universidade Federal de Viçosa Av. Peter Henry Rolfs, s/n, 36570-000 Viçosa, Minas Gerais Brasil, Tel./Fax: (55 31) 3612-2078 - Viçosa - MG - Brazil
E-mail: ceres@ufv.br