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Abstract

Decisions, from mineral exploration to mining operations, are based on grade 
block models obtained from samples. This study evaluates the impact of using impre-
cise data in short-term planning. The exhaustive Walker Lake dataset is used and is 
considered as the source for obtaining the true grades. Initially, samples are obtained 
from the exhaustive dataset at regularly spaced grids of 20 × 20 m and 5 × 5 m. A 
relative error (imprecision) of ±25% and a 10% bias are added to the data spaced at 
5 × 5 m (short-term geological data) in different scenarios. To combine these different 
types of data, two methodologies are investigated: cokriging and ordinary kriging. 
Both types of data are used to estimate blocks with the two methodologies. The grade 
tonnage curves and swath plots are used to compare the results against the true block 
grade distribution. In addition, the block misclassification is evaluated. The results 
show that standardized ordinary cokriging is a better methodology for imprecise and 
biased data and produces estimates closer to the true grade block distribution, reduc-
ing block misclassification.

keywords: biased samples, grade estimates, kriging, cokriging.

Resumo

Decisões relacionadas à exploração mineral e à operação da mina estão subor-
dinadas aos modelos de blocos obtidos a partir das amostras. Esse estudo avalia o 
impacto do uso de dados imprecisos no planejamento de curto prazo. O banco de 
dados exaustivo Walker Lake foi usado e considerado como o teor real do depósito. 
Inicialmente, as amostras foram obtidas de banco de dados com espaçamento re-
gular de 20 × 20 m e 5 × 5 m. O erro relativo de ±25% (imprecisão) e 10% de viés 
foram adicionados aos dados espaçados a 5 × 5 m (dados geológicos curto prazo) em 
diferentes cenários. Para combinar esses diferentes dados (precisos e exatos em 20 × 
20 m e imprecisos e enviesados em 5 × 5 m), duas metodologias foram investigadas: 
cokrigagem e krigagem ordinária. As curvas teor tonelagem e análise de deriva foram 
utilizadas para comparar os resultados com a distribuição de real dos blocos. Além 
disso, a classificação errônea dos blocos foi avaliada. Os resultados mostraram que o 
uso da cokrigagem ordinária estandarizada é a melhor metodologia em situações que 
existem dados imprecisos e enviesados e as estimativas produzidas são mais próximas 
da distribuição real dos blocos, reduzindo o erro de classificação dos blocos.

Palavras-chave: amostras com viés, teor das estimativas krigagem, cokrigagem.
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1. Introduction

In the mining industry, decisions 
from mineral exploration through to 
mining operations are based on grade 

block models obtained from samples. 
It is common for data to be collected in 
various formats, and consequently, have 

varying precision and accuracy. During 
the exploration stage, samples are ob-
tained from diamond-made drillholes, 
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which are of high quality and are usu-
ally associated with negligible sampling 
errors. During production, samples are 
usually collected from blastholes, which 
may lead to large sampling errors in 
terms of either bias or precision (GOO-
VAERTS, 1997: GY, 1998). From a 

geostatistical perspective, this difference 
in precision has to be taken into account 
so that the two types of data can be com-
bined. The aim of this paper is to inves-
tigate two geostatistical methodologies 
for integration of data: ordinary kriging 
(JOURNEL & HUIJBREGTS, 1978) 

and standardized ordinary cokriging 
(GOOVAERTS, 1997).The estimates for 
each scenario were compared with a ref-
erence block grade model. As blasthole 
sampling is mainly used for short-term 
grade models, the results emphasize the 
impact of block misclassification.

2. Material and method

2.1 Data presentation
This study uses the exhaustive 

Walker Lake dataset (ISAAKS & SRIV-
ASTAVA, 1989) with 78 000 point 
support samples distributed regularly at 
1 × 1 m. The variable V was used and 
the original unit was rescaled so that it 
resembled grades from a copper mineral 
deposit. To obtain the reference block 
grade distribution, the exhaustive point 

support dataset was averaged into 3210 
blocks of size 5 × 5 m. These blocks 
represented the true block grades, and 
were used for comparison.

In this case study, the data were 
totally heterotopic and of varying qual-
ity. Two types of data were considered. 
First, samples were obtained from the 
exhaustive point support dataset at a 

regular spacing of 20 × 20 m. These 
samples were precise and accurate and 
mimicked diamond-drillholed samples. 
Other samples were obtained from the 
exhaustive point support dataset at a 
regular spacing of 5 × 5 m, and impreci-
sion and bias were added. Figure 1 shows 
the regular spacing between samples in 
this case study.

20 m

5 m

V data with precise and accurate (20x20 meters)

V data with imprecision and bias (5x5 meters)

Figure 1
Dataset with a regular spacing grid.

2.2 Adding imprecision
Sampling aims to obtain a rep-

resentative sample, i.e., one that is 
accurate and precise. For good-quality 
data, it is expected that for the mea-
sured values, there is no trend (or bias) 

in the errors; i.e., the errors should 
have zero mean and follow a Gaussian 
distribution. When there is a system-
atic tendency in the errors to over- (or 
under-) estimate the real values, the 

estimator begins to produce systemati-
cally biased estimates of the true value 
of the attribute, and the associated 
error distribution departs from having 
a zero mean.

2.3 Adding variance (increasing imprecision)
The original samples obtained from 

the exhaustive dataset at a 5 × 5 m regular 
spacing were disturbed by adding (or sub-
tracting) a random relative sampling error 
of 10%. The relative error was assumed 

to be a standard Gaussian with zero mean 
and with a standard deviation determined 
by the product of the relative error (±10%) 
and the grade (MAGRI & ORTIZ, 
2000). These samples mimicked blasthole 

samples, which have a poorer precision 
than diamond-drillholed data. The error 
was assumed to be heteroscedastic, which 
is frequently the case in practice (GOO-
VAERTS, 1997; MATHERON, 1963).

2.4 Adding error bias
Not only was the imprecision of 

the secondary data increased, but also 
a bias was added. For a 25% bias, the 
grades had their mean either increased 
or decreased by 25% (MAGRI & OR-
TIZ, 2000). 

Table I shows the summary sta-
tistics of the reference point support 

dataset (V_Real_points), the reference 
block support dataset (V_Real_blocks), 
and the sample dataset with accurate 
and precise data (V_20×20). The sample 
datasets had means very close to the 
true mean, which indicates that there 
were no biases or precision errors. 
The data with bias and precision er-

rors (V_5×5_+25% and V_5×5_−25%) 
had means that were 25% greater (or 
smaller) than those of the reference 
block distribution (V_Real_blocks), 
to mimic the situation in which poor-
quality data induce biases that are 
subsequently transferred to the grade 
estimation process.
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Table 1
Summary statistics for 

the original reference and for 
the biased and imprecise secondary data.

Data No. of 
samples Mean Standard 

deviation CV Minimum Maximum

V_Real_points 78 000 2.78 2.50 0.90 0 16.31

V_Real_blocks 3 120 2.78 2.29 0.82 0 13.78

V_20×20 195 2.80 2.48 0.88 0 10.13

V_5×5 3 120 2.77 2.49 0.89 0 16.10

V_5×5_+25% 2 925 3.44 3.12 0.90 0 18.13

V_5×5_−25% 2 925 2.07 1.90 0.91 0 13.61

2.5 Estimation Methodologies
Two methodologies were evalu-

ated for the estimation of block grades: 
ordinary kriging and standardized 
ordinary cokriging.

2.5.1 Ordinary Kriging
Scenario 1 used only the accurate 

and precise data (primary) for estima-
tion with ordinary kriging. The dataset 
(V_20×20) comprised 195 samples that 
were 20 × 20 m apart. The variogram 
in this case was defined by equation (1) 
below. In the other cases, the two types 
of data were pooled together. 

The second alternative that was 

tested ignored the differences in ac-
curacy and precision between the two 
sources of information (primary and 
secondary). Scenario 2 combined ac-
curate and precise data (V_20×20) and 
data with biases and precision errors 
added (V_5×5_+25%), whereas scenario 
3 pooled together accurate and precise 
data (V_20×20) and data with systematic 

lower grades (bias) and greater impreci-
sion (V_5×5_−25%). Accurate data and 
data with biases and precision errors 
were combined for estimation purposes. 
The variograms in this case were defined 
by equations (2) and (3) below.

Scenario 1: Ordinary kriging 
with 195 precise and accurate data 
(V_20×20):

γv(h) = 1.0 + 2.0  Sph (1) N157.5E
90 m

N67.5E
40 m

. .. , N157.5E
120 m

N67.5E
60 m

. ,+ 2.92 Sph (2)

Scenario 2: Ordinary kriging with 
3120 data of different quality pooled 

together (V_20×20 and V_5×5_+25%, 
imprecise and inaccurate):

γv(h) = 1.50 + 3.0 Sph (1) N157.5E
35 m

N67.5E
25 m

. .. , N157.5E
80 m

N67.5E
44 m

. ,+ 5.10 Sph (2)

Scenario 3: Ordinary kriging with 
3120 data of different quality pooled 

together (V_20×20 and V_5×5_−25%, 
imprecise and inaccurate):

γv(h) = 0.7 + 1.3 Sph (1) N157.5E
37 m

N67.5E
28 m

. .. , N157.5E
82 m

N67.5E
41 m

. ,+ 1.78 Sph (2)

2.5.2 Standardized ordinary cokriging estimator
Standardized ordinary cokriging 

was thoroughly explained by GOO-
VAERTS (1997). This is a suitable frame-
work for incorporating data of variable 
quality. It takes into consideration the 
spatial auto- and cross-correlations 
among the variables involved. The meth-
od also filters bias from the inaccurate 
dataset, proceeding with standardized 
residuals instead of the original data. It 
uses standardized ordinary cokriging 
(GOOVAERTS, 1997), in which the 
sum of the weights for the primary and 
secondary variables is 1. Spatial continu-
ity is defined using the linear model of 
coregionalization (LMC). During the 

cokriging process, the LMC controls 
the weights allocated to the secondary 
data. The cross-correlation is obtained 
using the cross-covariance, since the 
cross-variogram requires collocated 
data (isotopic multivariate dataset). If 
the cross-covariance resembles the di-
rect variograms, the secondary data are 
treated as primary in terms of weights 
during the cokriging procedure (MIN-
NITT & DEUTSCH, 2014).

There is obviously no nugget ef-
fect on the cross-covariance, since there 
are no collocated data. However, the 
intersection point on the y-axis can be 
obtained only by extrapolating the trend 

of the covariance at nonzero lags. Equa-
tions (4), (5), and (6) below show the 
spatial direct and cross-correlations for 
scenario 4, where the primary variable 
is the V sample (accurate and precise), 
whereas the secondary variable com-
prises additional samples from V with 
biases (higher means) and precision er-
rors added (V_5×5_+25%). Scenario 5 
includes the primary variable V sample 
(accurate and precise) (V_20×20), where-
as the secondary variable is the V sample 
with biases (lower means) and precision 
errors added (V_5×5_−25%). The LMC 
adjustment is shown in equations (7), 
(8), and (9).

(1)

(2)

(3)
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γ (h) = 1.8 + 1.8 Sph (1) N157.5E
90 m

N67.5E
40 m

. .. , N157.5E
120 m

N67.5E
60 m

. ,+ 2.32 Sph (2)
(1)

γ (h) = 2 + 3.5 Sph (1) N157.5E
90 m

N67.5E
40 m

. .. , N157.5E
120 m

N67.5E
60 m

. ,+ 4.20 Sph (2)
(2)

γ (h) = 0.0 + 2.5 Sph (1) N157.5E
90 m

N67.5E
40 m

. .. , N157.5E
120 m

N67.5E
60 m

. ,+ 3.00 Sph (2)
(12)

γ(1) = 1.8 + 1.8 Sph (1) N157.5E
90 m

N67.5E
40 m

. .. , N157.5E
120 m

N67.5E
60 m

. ,+ 2.32 Sph (2)

γ(2) = 0.7 + 1.8 Sph (1) N157.5E
90 m

N67.5E
40 m

. .. , N157.5E
120 m

N67.5E
60 m

. ,+ 1.5 Sph (2)

γ(12) = 0.00 + 1.7 Sph (1) N157.5E
90 m

N67.5E
40 m

. .. , N157.5E
120 m

N67.5E
60 m

. ,+ 1.8 Sph (2)

(4)

(5)

(6)

(7)

(8)

(9)

3. Results and discussion

Figure 2 shows scatterplots of the 
estimated (using all tested estimation 
methods and data) and the true block 
grades. It also shows the basic statistics 
of the two distributions and the slope of 
the regression line between them. 

Figure 2a shows the estimates 
using ordinary kriging with few, but 

accurate and precise, data. The mean 
of the estimated grades is close to that 
of the reference block grades, and the 
slope of the regression line is close to 
1. However, as expected, the standard 
deviation is smaller than that of the ref-
erence block grade distribution because 
of the smoothing effect of kriging. This 

scenario uses sparsely spaced samples, 
which leads to a severe reduction in the 
variance of the block estimates. 

When we used ordinary kriging 
combining data of different quality, the 
results were not good. The mean of the 
estimates was biased and did not repro-
duce the mean of the reference block 

Figure 2
Scatterplot between the 
estimated block grades and the 
true block grades using ordinary kriging: 
(a) accurate and precise data; 
(b) imprecise and inaccurate 
data combined with the secondary 
data having systematically higher readings 
(V_20×20 and V_5×5_+25%); 
(c) imprecise and inaccurate 
data combined with the secondary 
data having systematically lower readings 
(V_20×20 and V_5×5_−25%).
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When ordinary cokriging was 
used to estimate and integrate data of 
different quality (scenarios 3 and 4; 
Figure 3a and 3b), the results were far 

superior. The mean of the estimates 
reproduced the mean of the reference 
block grades, and the slope of the regres-
sion line was close to 1.

The standard deviation of the 
estimates was lower than that of the 
reference block grades.

Figure 3
Scatterplot between the estimated block 

grades and the reference block model 
using standardized ordinary cokriging: 

(a) primary variable 
precise and accurate data (V_20×20) 

combined with secondary variable biased 
and imprecise error data (V_5×5_−25%);

(b) primary variable 
precise and accurate data (V_20×20) 

combined with secondary variable biased 
and imprecise error data (V_5×5_−25%).
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Figure 4 shows the grade tonnage 
curves for the reference block grade model 
and for the estimates. As expected, the 
greater the smoothing effect, the greater 
the deviation from the reference grade ton-
nage curve. Consequently, the estimates 

using ordinary kriging with few precise 
and accurate data produced a poorer 
grade tonnage curve. The grade above 
cutoff predicted by ordinary kriging was 
under-estimated. Also, the largest devia-
tions of the predicted tonnage from the 

true model occurred with the ordinary 
kriging block model. The best results were 
achieved with ordinary cokriging. For all 
the cutoffs, the ordinary cokriging grade 
tonnage curve is the closest to the refer-
ence curve.

Figure 4
Grade tonnage curves.

Figure 5 shows the swath plots with 
different estimation methodologies, and it 

can be seen that the results estimated us-
ing ordinary cokriging are closest to the 

reference model.

grade distribution. These results were 
to be expected, and they are shown here 
to highlight the effect on the model es-
timates that one can expect by ignoring 
and combining data of different preci-
sion and accuracy in a blind manner. 
The slope of the regression line of the 
estimates versus the true value shows a 
clear bias. In scenario 2 (Figure 2b), the 

mean and the standard deviation of the 
estimates are higher than the mean of 
the reference block grades. The slope of 
the regression line is less than 1, show-
ing that the results systematically over-
estimate the true grades.

Scenario 3 (Figure 2c) shows the 
opposite: the mean and the standard 
deviation of the estimates are under-

estimated compared with the reference 
block grades. The slope of the regression 
line is greater than 1, showing that the 
results under-estimate the real grades. 
The proposed solution is inappropriate, 
since it can lead to either over- or under-
estimation of the blocks, depending on 
how the bias in the secondary data af-
fects the grades.
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Figure 5
Swath plots 
between reference model and estimates:
(a) eastings; 
(b) northings.

Figure 6 shows the total number 
of misclassified blocks, the number of 
ore blocks classified as waste, and the 
number of waste blocks classified as ore 
with the grade models obtained with 
each methodology. Five cutoffs were 
considered: 0.93%, 1.73%, 2.35%, 
4.24%, and 5.34%. It can be seen from 
Figure 6 that standardized ordinary 

cokriging generated the best result in 
terms of block misclassification for all 
the cutoffs considered. The difference is 
evident. At 1.73%, the number of mis-
classified blocks is approximately 620 
using standardized ordinary cokriging. 
In the case of ordinary kriging with 
accurate and precise data, the number 
increases to 875. However, ordinary 

kriging erroneously sent much more 
waste to the plant, causing dilution. 
Even worse, the ordinary kriging model 
sent far more ore blocks to the waste 
pile. The better results with regard to 
block misclassification shown by ordi-
nary cokriging are consistent with the 
scatterplots between true and estimated 
block values (Figure 3).

Figure 6
Block misclassification: 
(a) total number of blocks misclassified; 
(b) number of ore blocks 
classified as waste; 
(c) number of waste blocks 
classified as ore.
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4. Conclusion

Samples obtained by different meth-
ods lead to data with different error levels 
(bias and imprecision). This dissimilarity 
has to be considered when integrating 
the two sources of information. In the 
study reported here, two methodologies, 
namely, ordinary kriging and ordinary 
cokriging, were used to incorporate data 
of different quality. 

For samples with bias and precision 
error, ordinary kriging led to poor results 
strongly affected by sample bias. In the 
case of ordinary kriging, the best option 
was to use only those samples that were ac-
curate and precise, discarding biased data.

Ordinary cokriging produced good 

results, since the poor-quality samples 
were considered secondary information 
and their mean was filtered (standard-
ized values). The results of the estimates 
were less smooth than those obtained 
with ordinary kriging, which led to esti-
mates closer to the true block grades. In 
a comparison of ordinary kriging using 
only data that were accurate and precise 
(but few in number), ordinary cokriging 
combining biased and imprecise data, and 
ordinary standardized cokriging, the latter 
is favored. 

Using the grade block model result-
ing from standardized cokriging led to 
grade tonnage curves and swath plots 

similar to those derived from the refer-
ence block grade model. The use of this 
methodology also drastically reduced the 
number of blocks misclassified.

Even with less precise and biased 
samples, improvements in block grade 
estimates, mining recovery, and block 
misclassification were achieved, since 
an appropriate methodology was used 
to include this source of data. Cokriging 
provided better estimates of recoverable 
resources at local and global scales, even 
when poor-quality samples were used (as 
secondary data). Bias and imprecision in 
the secondary data were not transferred 
to the estimates.
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