

Petrography and geochronology of the Furquim Quartzite, an eastern extension of the Itacolomi Group (Quadrilátero Ferrífero, Minas Gerais)

http://dx.doi.org/10.1590/0370-44672015680054

Hanna Jordt-Evangelista

Professora Dra. Universidade Federal de Ouro Preto -Escola de Minas - UFOP Departamento de Geologia Ouro Preto - Minas Gerais - Brasil hanna@degeo.ufop.br

João Paulo Mantovani Alvarenga

Engenheiro Geológico Consórcio Mendes Junior - Isolux Corsan São Paulo, São Paulo - Brasil joaopaulomantovani@hotmail.com

Cristiano Lana

Professor Dr. Universidade Federal de Ouro Preto -Escola de Minas - UFOP Departamento de Geologia Ouro Preto - Minas Gerais - Brasil cristianodeclana@gmail.com

1. Introduction

The Furquim Quartzite is exposed along a ca. 20 km long and 1 to 6 km wide ridge some 10 to 20 km southeast of the Quadrilátero Ferrífero (Fig. 1a). In the investigated area (Fig. 1b) the Furguim Quartzite trends NE-SW and inflects to a NNE-trend in the region of the town of Furquim. According to the geological map of Baltazar et al. (1993), the quartzite ridge separates the western Archean Santa Bárbara Complex from the eastern Proterozoic Mantiqueira Complex (Fig.1a). Baltazar et al. (1993) correlated this quartzite unit to the Maquiné Group of the Archean Rio das Velhas Supergroup. However, the postulated correlation with the Rio das Velhas quartzite is not corroborated by the mode of occurrence, since in a great part of the area, the quartzite ridge overlies

discordantly the Rio das Velhas schists and the Santa Bárbara gneisses, thus suggesting an allochtonous origin. This paper presents the results of the petrographic and geochronological investigation of the Furguim Quartzite in order to enable the discussion of its stratigraphic correlation to quartzite units of the wellknown Maquiné, Moeda and Itacolomi quartzites in the Quadrilátero Ferrífero.

2. Geological context

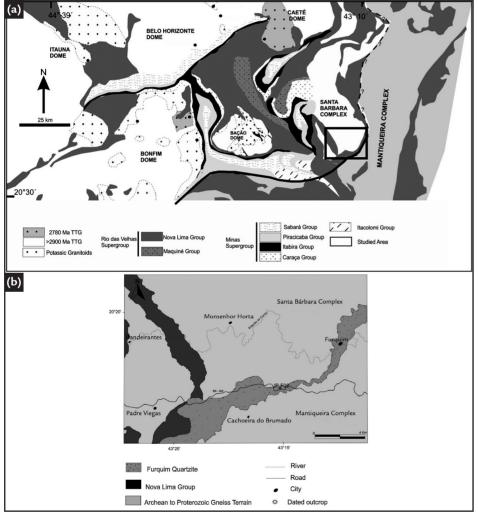
The main quartzitic units in the region of the Quadrilátero Ferrífero belong to the Archean Rio das Velhas Supergroup and to the Paleoproterozoic Minas Supergroup.

The Rio das Velhas Supergroup is subdivided into Nova Lima and Maquiné groups (Dorr, 1969). The Nova Lima Group is composed mostly of metaultramafic, metamafic and metasedimentary pelitic to ruditic rocks. Felsic volcanic rocks mark the final deposition of the Nova Lima Group at ca. 2.75 Ga (Machado et al., 1992, 1996; Noce et al., 2005). The overlying Maquiné Group is a clastic unit comprised of mainly quartzites. U-Pb age determinations of detrital zircons indicate 3.2 to 2.9 Ga for the main sources of the Maquiné sediments (Machado et al., 1996).

The Minas Supergroup overlies the Rio das Velhas Supergroup and surrounding TTG-gneiss terrains. From bottom to top, it is subdivided into the Tamanduá,

Abstract

This paper presents the results of a petrographic and geochronological investigation of the Furquim Quartzite (FQ) to establish its stratigraphic correlation to quartzitic units of the Quadrilátero Ferrífero (QF) province. The Quartzite comprises a ca. 20km long and 1-6km wide ridge overlying discordantly the Archean to Paleoproterozoic gneissic basement and rocks of the Archean Rio das Velhas Supergroup between the city Mariana and the town Furquim, southeast of the QF. Despite the discordant contacts, previous field-based stratigraphic studies considered the Furquim Quartzite as part of the Archean Maquiné Group - top unit of the Rio das Velhas Supergroup. U-Pb zircon geochronology via LA-ICP-MS identified several detrital populations ranging from Paleoproterozoic to Archean age. The youngest population of 2087±19 Ma defines the maximum age for the sedimentation of the precursor sandstone. This age can be correlated to be the age of the youngest zircon population of the Itacolomi Group quartzites in the QF. Thus, in contrast to previous studies, the results indicate that the FQ is an eastern extension of the Itacolomi Group, the youngest unit of the Paleoproterozoic Minas Supergroup.


Keywords: Furquim Quartzite, Quadrilátero Ferrífero, U/Pb Geochronology, LA-ICP-MS, Paleoproterozoic.

Caraça, Itabira, Piracicaba, Sabará, and Itacolomi Groups (Dorr, 1969). Zircon U-Pb detrital age data suggest that the maximum age of deposition of the sediments of the Caraça quartzite is ca. 2.6 Ga (Machado et al., 1996; Hartmann et al., 2006). The Sabará and Itacolomi groups are the youngest units of the Minas Supergroup. The Sabará Group comprises metassedimentary rocks such as metadiamictites and metatuffs and metaturbidites. The Itacolomi Group comprises quartzites derived from sediments with a maximum deposition age of around 2.1 Ga (Machado et al., 1996, Hartmann et al., 2006). Similar ages were also obtained

for the deposition of the Sabará sediments (Machado *et al.*, 1996). Table 1 presents the ages of the youngest zircons found in the main quartzitic units of the Quadrilátero Ferrífero. These ages correspond to the maximum age for the deposition of the sediments.

Two other geological units that would be potential sources for the detrital zircons of the Furquim Quartzite are the TTG-gneiss complexes, including the Santa Bárbara and the Mantiqueira complexes (Fig. 1b). The Santa Bárbara Complex corresponds to an Archean TTG gneiss terrain considered to be the basement of the Rio das Velhas Supergroup

in the eastern portion of the Quadrilátero Ferrífero. Geochronological U-Pb SHRIMP and LA-ICP-MS dating by Lana et al. (2013) indicate crystallization ages of 3.2 Ga. The Mantiqueira Complex is composed of TTG ortogneisses thrusted over the southern margin of the São Francisco Craton during the 2.1 Ga Transamazonian event (Silva et al., 2002, Noce et al., 2007). U-Pb zircon age determinations by SHRIMP (Silva et al., 2002; Noce et al., 2007) resulted in paleoproterozoic crystallization ages of around 2180-2041 Ma for ortogneisses of the Mantiqueira Complex and two metamorphic events at 2100 Ma and 560 Ma.

Age (Ma) Quartzitic unit Hartmann et al., 2006 Machado et al., 1996 2143±16 2059±58 Itacolomi Group Sabará Formation 2668±20 2125±4 Moeda Formation 2649±11 2651±33; 2606±47 (Caraça Group) 2877±3 Maquiné Group Nova Lima Group 2749±07 2996±38

Figure 1
a) Geological map of the Quadrilátero Ferrífero (modified from Lana et al., 2013). Rectangle: location of the study area;

b) Geological map of the study area of the Furquim Quartzite (modified from Jordt-Evangelista, 1984) and location of dated sample JP-F02.

Table 1 Youngest zircon grains in the Quadrilátero Ferrífero quartzites corresponding to the maximum ages for the deposition.

3. Material and methods

Thin sections of representative hand samples collected in the vicinity of the town of Furquim and on the highway BR-356 were described on a Leica DM EP microscope at the Departamento de Geologia (DEGEO), Universidade Federal de Ouro Preto.

One sample (sample JP-F02, UTM: 0682390/7746163, sample locality on Fig. 1b) weighing ca. 5kg was collected for LA-ICP-MS U-Pb geochronology. Zircons were concentrated making use of a conventional jaw crusher, milling, manual panning and heavy liquids separation. The zircons were hand-picked under a binocular microscope. Approximately 123 zircon crystals were selected and mounted on a 2.5 cm-diameter epoxy mount. The mount was polished and imaged under SEM-cathodoluminescence to accentuate internal growth zoning.

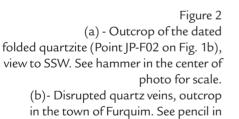
The laser ablation-ICP-MS (LA-ICPMS) analyses were performed using a single collector Agilent 7700 Quadrupole(Q)-ICP-MS and a 213 nm New Wave laser at the isotope/geochemistry laboratory of Department of Geology, Universidade Federal de Ouro Preto. Acquisitions consisted of a 20 s measurement of the gas blank, followed by a 40 s measurement of U, Th and Pb signals during ablation, and a 30 s washout. All

ratios were obtained after averaging the background-subtracted signal (See Romano et al., 2013 and Takenaka et al., 2015, for details on the instrumentation and methodology). Two standards were used during runs: the primary standard GJ-1 zircon (608±1 Ma) and the secondary standard Plesovice zircon (338±1 Ma). The relevant isotopic ratios have been calculated using Glitter data reduction software (van Achterbergh et al., 2001). The U-Pb diagrams were produced using Isoplot 4 software (Ludwig, 2012). The results of the analyses, including data for the primary and secondary standards can be found in Table 2.

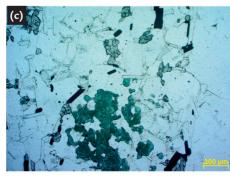
4. Results

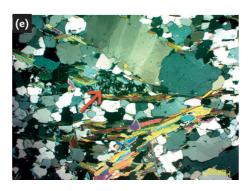
4.1 Petrography

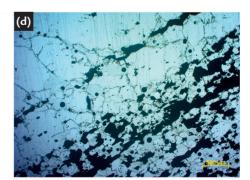
The main rock type is a strongly folded (Fig.2a) and sheared muscovite quartzite. Disrupted quartz veins along fold hinges may be confused with pebbles

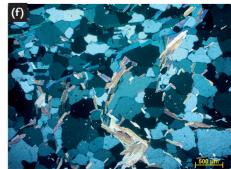

or cobbles of conglomerates (Fig. 2b). Quartz reaches 70 to 90 vol%, muscovite 5 to 20%, while the accessory minerals hematite, magnetite, kyanite, feldspars,

garnet, zircon, and tourmaline seldom sum 5% (Fig. 2c to 2f, all samples from outcrop in the town of Furguim).




the center of photo for scale. (c) - Photomicrograph of muscovite quartzite with tourmaline (greenish), kyanite (gray, strong relief) and hematite


(black), N//. (d) - Photomicrograph of hematite-rich portion in quartzite, N//.


(e) - Photomicrograph showing subgrains in deformed quartz vein in muscovite quartzite. Strongly altered feldspar is seen in the center of figure (arrow), NX.

(f) - Photomicrograph of folded muscovite quartzite, NX. Samples of Fig. 2c to e collected in Furquim. (Photomicrographs from Alvarenga, 2013).

4.2 Geochronology

The extracted zircons from sample JP-F02 measure ca. 100-200 µm, are yellow to brown, slightly rounded and often fractured. Cathodoluminescence images show that most grains present well-defined

oscillatory zoning with some broad zones of intense alteration and radiation damage and no discernible core—rim relationships (Fig. 3). Of the 123 grains mounted on the epoxy disc, 119 LA-ICP-MS analyses

were performed on center and rims of 47 translucent to partly translucent grains. The complete geochronological data set can be found in Table 2.

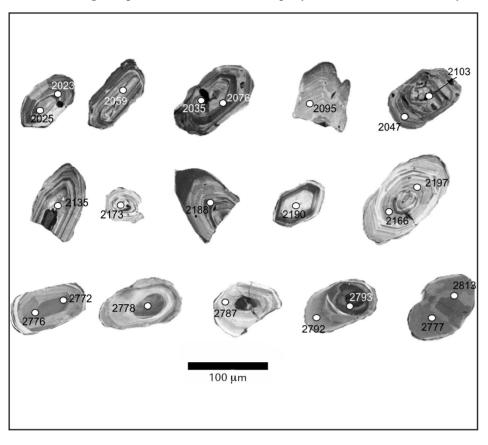


Figure 3
Cathodoluminescence images of analyzed zircons, ages in million years (Ma).

Figure 4 shows concordant to subconcordant points (63 analyses > 3% concordant) plotted on the frequency histogram and on the concordia. Several Paleoproterozoic populations ranging between 2.0 and 2.5 Ga (n=31) are distributed along the concordia. The youngest one of 2087±19 Ma old (n=10) defines

the maximum age of sedimentation for the precursor sandstones. An Archean component is represented by ages in the 2.5-3.0 Ga (n=32) range.

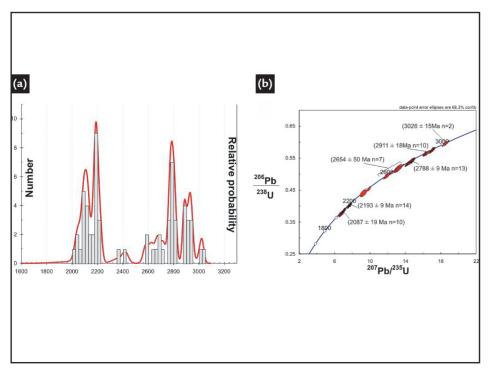


Figure 4
(a) Frequency histogram where two main detrital zircon populations of the Furquim Quartzite can be identified: a Paleoproterozoic population of about 2.2 Ga and an Archean population around 2.8 Ga.
(b) U-Pb Concordia diagram of LA-ICP-MS analyses of zircons (see Fig. 1b for sample locality).

Table 2 - part I
Results of U-Pb LA-ICP-MS analyses for the Furquim Quartzite.

#	Pb204 CPS	Pb207 CPS	U238 CPS	Pb PPM	Th/U Pb	207/Pb206	1s I	Pb206/U238	1s	Pb207/U235	1s	Pb207/Pb206	1s	Pb206/U238	1s	Pb207/U235	1s
TEST59		5 12458			0,4	0,22634	0,00207	0,5991	0,00525	18,69597	0,15659	3026	15	3026	21	3026	8
TEST134		2 30193			0,1	0,2242	0,00253	0,59525	0,00554	18,40183	0,19287	3011	18	3011	22	3011	10
TEST147 TEST78		6 23869 0 24771			1,6 0,1	0,21466 0,21459	0,00257 0,00191	0,57695 0,57542	0,00537	17,07292 17,02778	0,18815 0,14236		19 14	2936 2930	22	2939 2936	11 8
TEST61	1				0,1	0,21435	0,00199	0,57347	0,00517	16,94893	0,14766	2939	15	2922	21	2932	8
TEST96	2				0,4	0,21241	0,00188	0,57789	0,00501	16,92506	0,13829		14	2940	20	2931	8
TEST47 TEST60	1	0 30099 0 28008			0,4 0,3	0,21227 0,21077	0,00224 0,00253	0,57449 0,56699	0,00591 0,00547	16,90682 16,47079	0,17404 0,18333		17 19	2926 2895	24 22	2930 2905	10 11
TEST97		0 24143			0,3	0,20908	0,00233	0,56557	0,00528	16,30547	0,16759		18	2890	22	2895	10
TEST64		0 41155			0,5	0,208	0,00187	0,5635		16,16016	0,1347	2890	15	2881	20	2886	8
TEST42 TEST63	1	0 20108 9 34692			0,3 0,4	0,20699	0,00173 0,00168	0,56417 0,56472			0,12402 0,1213		14	2884 2886	20	2883 2883	7
TEST91	1				0,5	0,19843	0,00100	0,54126		14,81488	0,1213		13	2789	19	2803	7
TEST15	1	1 35654	243356	462,8	0,2	0,19762	0,00223	0,54529	0,00505	14,85681	0,1549	2807	18	2806	21	2806	10
TEST124 TEST56	1-	0 17950 4 8685			0,9 1,6	0,19737 0,1967	0,00176 0,00211	0,54226 0,54407	0,00475 0,00512		0,12304 0,14582	2805 2799	15 17	2793 2801	20 21	2800 2800	8 9
TEST142	1				0,4	0,19584	0,00211	0,54273		14,6573	0,14362	2792	14	2795	19	2793	8
TEST148	1				0,5	0,19561	0,00277	0,53821	0,00546	14,50999	0,19098	2790	23	2776	23	2784	13
TEST71		0 21837 9 57241			0,5 0,5	0,1953 0,19402	0,00179 0,00168	0,54397 0,53385	0,00467 0,0049	14,648 14,315	0,12264 0,1204		15 14	2800 2758	20 21	2793 2771	8
TEST88 TEST144	1:	6 24184			0,3	0,19402	0,00166	0,53354	0,0049	14,2684	0,1204		14	2756	19	2768	8
TEST145	1	8 30062	225827	379,34	0,4	0,19347	0,00221	0,53449	0,00505	14,25559	0,15473	2772	19	2760	21	2767	10
TEST123 TEST23	32				0,1 0,1	0,19297 0,19287	0,0017 0,00244	0,53423 0,53226		14,22443 14,15013	0,11973 0,16764	2768 2767	14 21	2759 2751	20 23	2765 2760	8 11
TEST57		0 11921			0,1	0,19287	0,00244	0,53226	0,00352	13,58394	0,16764		16	2724	20	2700	8
TEST95		2 11196	93699	840,29	1,2	0,18345	0,00419	0,51872	0,00843	13,12547	0,2873	2684	37	2694	36	2689	21
TEST113		9 10203			1,1	0,18319	0,00252	0,51581	0,00532		0,16684	2682	23	2681	23	2682	12
TEST106 TEST120	1:				0,6 0,5	0,18186 0,17721	0,00203 0,00187	0,51149 0,50457	0,00478 0,00436	12,82578 12,32715	0,13263 0,11809		18 17	2663 2633	20 19	2667 2630	10 9
TEST107		3 5219	44607	101,43	1,8	0,17414	0,00273	0,49675	0,00592	11,92847	0,17767	2598	26	2600	25	2599	14
TEST86		5 17113			1,0	0,17205	0,00198	0,49248	0,00486	11,68761	0,12798	2578	19	2581	21	2580	10
TEST102 TEST132	1:	0 16349 2 13145			0,7 0,3	0,15665 0,13973	0,0022 0,00123	0,45503 0,4039	0,00476 0,0035	9,82572 7,78406	0,13019 0,06399		24 15	2418 2187	21 16	2419 2206	12 7
TEST100	3	4 18850	244903	462,41	0,2	0,13939	0,00133	0,40673	0,00347	7,81681	0,06795	2220	16	2200	16	2210	8
TEST109	4				0,4	0,13827	0,00148	0,40511	0,00363	7,72381	0,07657	2206	19	2193	17	2199	9
TEST69 TEST43	1	5 17895 4 8628			0,4 0,4	0,1376 0,13699	0,00116 0,0013	0,40048 0,40254	0,00345 0,00347	7,59984 7,60299	0,05986 0,06596	2197 2190	15 16	2171 2181	16 16	2185 2185	7
TEST141		1 11403			0,5	0,13697	0,0013	0,40222	0,00347	7,59578	0,06886	2189	17	2179	16	2184	8
TEST58	1:				0,5	0,13692	0,00184	0,40315		7,61089	0,09486		23	2184	19	2186	11
TEST99 TEST55	1	0 13354 6 10500			0,5 0,4	0,1369 0,1368	0,00154 0,00127	0,40011 0,40506	0,00356 0,00361	7,55164 7,64155	0,07773 0,06672		19 16	2170 2192	16 17	2179 2190	9
TEST41		8 10809			0,5	0,13678	0,00127	0,40249		7,59125	0,0609		15	2181	16	2184	7
TEST40		0 12370			0,6	0,13674	0,00117	0,40413			0,06032		15	2188	16	2187	7
TEST115 TEST22		0 11425 5 12164			0,9 0,5	0,13628 0,13571	0,0015 0,00137	0,40371 0,40235	0,00364 0,0035	7,58543 7,52765	0,07743 0,06941	2180 2173	19 17	2186 2180	17 16	2183 2176	9 8
TEST68		9 10348			0,4	0,13514	0,00167	0,39864	0,00379		0,00941	2166	21	2163	17	2164	10
TEST126	2			310,2	0,2	0,13274	0,00154	0,38838	0,00347	7,10781	0,07546		20	2115	16	2125	9
TEST74 TEST75	1	4 13152 8 33103			0,3 0,2	0,13203 0,13184	0,00121 0,0011	0,3902 0,381	0,00335 0,00337	7,10321 6,93341	0,05994 0,05555	2125 2123	16 15	2124 2081	16 16	2124 2103	8 7
TEST65		0 13957			0,5	0,13154	0,0011	0,38196	0,00337	6,94466	0,05555		18	2085	17	2103	9
TEST77		6 15053	233157	246,54	0,5	0,13067	0,00127	0,38947	0,00357	7,01913	0,06517	2107	17	2120	17	2114	8
TEST53		0 16807			0,6	0,13036	0,00146	0,3871	0,00347	6,95687	0,07161	2103	19 17	2109	16	2106	9
TEST62 TEST119	1	5 13624 9 9302			0,2 0,3	0,13008 0,12981	0,00127 0,0012	0,37755 0,38863	0,00331	6,77107 6,95624	0,061 0,05945	2099 2095	16	2065 2117	15 16	2082 2106	8
TEST26	3	7 19904	317607	334,66	0,7	0,1293	0,00111	0,37979	0,0034	6,7776	0,05579	2089	15	2075	16	2083	7
TEST25	1				0,6	0,12906	0,00112	0,38171	0,00339		0,05606		15	2084	16	2085	7
TEST82 TEST66	1:	0 16946 2 9598			0,5 0,3	0,12837 0,12715	0,00154 0,00196	0,38054 0,37275	0,00347	6,73491 6,53453	0,07428 0,09472		21 27	2079 2042	16 19	2077 2051	10 13
TEST54		0 16320	255854	381,37	0,5	0,12628	0,00154	0,37615	0,00357	6,54949	0,07429		21	2058	17	2053	10
TEST83		0 17281	266608	446,02	0,4	0,12544	0,00147	0,37545	0,00335	6,49301	0,06998	2035	21	2055	16	2045	9
discarded TEST130	1	7 15357	129023	225,22	0,7	0,19306	0,00271	0,50014	0,00549	13,32666	0,17847	2768	23	2614	24	2703	13
TEST130	3	1 10243	161478	182,01	0,7	0,13374	0,00152	0,35748	0,00349	6,59162	0,06995		20	1970	16	2058	9
TEST108	4				0,2	0,13642	0,00172	0,35007	0,0034	6,58276	0,07795	2182	22	1935	16	2057	10
TEST111 TEST87	3				0,3 0,6	0,20141 0,16782	0,00233 0,00166	0,48547 0,41844	0,00455 0,00384	13,47917 9,68496	0,14646 0,09097	2838 2536	19 16	2551 2253	20 17	2714 2405	10 9
TEST67	1				0,6	0,12595	0,0014	0,31879			0,05708		19	1784	14	1906	9
TEST149		0 13638			0,3	0,18797	0,00347	0,45129			0,20412		30	2401	26	2584	16
TEST110 TEST98	2				0,3	0,20462 0,13773	0,00222 0,00161	0,47839 0,34297	0,00446 0,00334		0,13876 0,07275		18 20	2520 1901	19 16	2715 2048	10
TEST36	7	8 8950	123699	401,57	0,1	0,14742	0,00321	0,35945	0,00484	7,30428	0,1489	2316	37	1980	23	2149	18
TEST17		9 15152			0,5	0,12993	0,00162	0,30903			0,06516		22	1736	15	1907	10
TEST49 TEST46	2				1,0 0,9	0,12211 0,22134	0,00167 0,00278	0,27984 0,47063		4,71249 14,36315	0,06061 0,16937	1987 2990	24 20	1591 2486	14 22	1770 2774	11
TEST112	1	1 15780	186256	383,04	1,0	0,17393	0,00255	0,38878	0,0043	9,3291	0,12959	2596	24	2117	20	2371	13
TEST133		0 2555			1,1	0,13946	0,00427	0,30907	0,00557	5,94005	0,16934		52	1736	27	1967	25
TEST103 TEST76	8	2 27048 8 20373			0,0 0,4	0,12827 0,12608	0,00132 0,00169	0,27673 0,267	0,00251 0,00271	4,89441 4,64472	0,04747 0,05932	2074 2044	18 24	1575 1526	13 14	1801 1757	8 11
TEST18	10	2 24619	594065	450,82	0,4	0,12878	0,00161	0,26841	0,00281	4,78484	0,05796	2081	22	1533	14	1782	10
TEST73	5				0,0	0,07461	0,00073	0,10115		1,04069	0,00949		20	621	5	724	5
TEST19 TEST84	23				0,4 0,4	0,129 0,12203	0,00174 0,00149	0,25613 0,22929			0,05781 0,04405	2084 1986	24 22	1470 1331	13 11	1741 1605	9
TEST85	15				0,4	0,15459	0,00149	0,29563			0,04403	2397	22	1670	16	2024	11
TEST79	3	7 10260	132086	236,93	0,5	0,18605	0,00259	0,33947	0,00383	8,73385	0,11461	2708	23	1884	18	2311	12
TEST114 TEST16	14				0,8 0,4	0,12197 0,13482	0,00222 0,00138	0,21857 0,24367	0,00252 0,00229		0,06252 0,04438		32 18	1274 1406	13 12	1566 1737	14 8
TEST48	4	3 17192	446254	345,66	0,6	0,13098	0,00171	0,23277	0,00234	4,20479	0,05144		23	1349	12	1675	10
TEST45	4				0,8	0,13261	0,00181	0,23349		4,30875	0,05609		24	1353	13	1695	11
TEST135 TEST101	38				0,2 0,4	0,17283 0,15136	0,002 0,00162	0,28914 0,25136	0,00269 0,00234	6,88881 5,24653	0,07464 0,05315		19 18	1637 1446	13 12	2097 1860	10 9
TEST70	5				0,9	0,16088	0,00102	0,26509	0,00234	5,88056	0,03313		14	1516	12	1958	7
TEST131	7	3 22816	420695	457,73	0,2	0,16285	0,00185	0,25821	0,00241	5,79785	0,06171	2486	19	1481	12	1946	9
TEST128 TEST50	20				1,0 0,6	0,12607 0,10564	0,00161 0,00117	0,16837 0,10551	0,00169 0,00104	2,93274 1,54221	0,03593 0,01659		22 20	1003 647	9	1390 947	9
TESTS0	8				2,7	0,10564	0,00117	0,10551	0,00104		0,01659	2637	20	1277	12	1883	10
TEST146	10	1 19092	365813	394,57	0,5	0,18052	0,00254	0,21857	0,00222	5,43959	0,07067	2658	23	1274	12	1891	11
TEST116	53				0,4	0,11746	0,0016	0,11933		1,93674	0,02524		24	727	7	1094	9
TEST117 TEST125	70				0,5 0,5	0,11591 0,17064	0,00137 0,00189	0,11558 0,19859		1,85186 4,67876	0,02101 0,04983	1894 2564	21 18	705 1168	10	1064 1763	9
TEST81	3	0 13418	361207	217,28	1,2	0,16259	0,00212	0,18323	0,00195	4,12558	0,05072	2483	22	1085	11	1659	10
TEST129 TEST127	9- 146				0,6 0,5	0,14761 0,18525	0,00195 0,00189	0,14783 0,18553			0,03768 0,04663		22 17	889 1097	9	1411 1775	10 8
TEST127	146				0,5	0,18525	0,00189	0,18553	0,00174		0,04663	1767	20	238	2	452	4
5120	30	- 04020	5.02007	550,00	0,0	5,10000	5,00110	3,00101	5,00000	3,00000	5,00071		20	200	-	.02	-

Table 2 - part II
Results of U-Pb LA-ICP-MS analyses for the Furquim Quartzite.

#	Pb204	Pb207	U238	Pb	Th/U	Pb207/Pb206	1s	Pb206/U238	1s	Pb207/U235	1s	Pb207/Pb206	1s	Pb206/U238	1s	Pb207/U235	1s
	CPS	CPS	CPS	PPM													
Padrao Secundário		3 285	1 749890	133,36		0,05321	0,00061	0.05369	0,00047	0,39393	0,00422	337.6	25,61	337.2	2.05	337.2	3.07
TEST156															2,85		
TEST37		1 319					0,00054			0,39472			22,64	337,3	2,84	337,8	2,73
TEST152	14						0,00062			0,39072			26,28	337,4	2,84	334,9	3,11
TEST153		290					0,00069			0,39746		355,9	28,8	337,4	2,92	339,8	3,49
TEST157	1						0,00067			0,39415		336,9	28,3	337,5	2,85	337,4	3,38
TEST155		286					0,00062			0,39206			26,34	337,7	2,87	335,9	3,14
TEST5	2						0,00055			0,39548			23,12	338,4	2,87	338,4	2,8
TEST6	39									0,39502			25,15	338,5	2,96	338	3,08
TEST8							0,00055			0,39143		310,7	23,67	338,9	2,85	335,4	2,82
TEST36		317					0,00054			0,39656		338,9	22,8	339,1	2,85	339,2	2,76
TEST158	34			130,26			0,00073			0,39085			31,19	339,3	3,08	335	3,76
TEST34	1	1 317	3 836267	133,17	0,06	0,05328	0,00053	0,05405	0,00047	0,39722	0,00373	340,5	22,32	339,3	2,86	339,6	2,71
TEST154	2	5 297	787230	138,27	0,06	0,05296	0,00058	0,05413	0,00047	0,39534	0,00408	327,2	24,68	339,8	2,88	338,3	2,97
TEST7		301	8 808971	131,49	0,06	0,05272	0,00054	0,05414	0,00047	0,3937	0,00382	316,8	23,17	339,9	2,87	337,1	2,78
#	Pb204	Pb207	U238	Pb	Th/U	Pb207/Pb206	1s	Pb206/U238	1s	Pb207/U235	1s	Pb207/Pb206	1s	Pb206/U238	1s	Pb207/U235	1s
	CPS	CPS	CPS	PPM													
Padrao Primário																	
TEST90		345					0,0006	0,0978	0,0009	0,8145			22	602	5	605	4
TEST9	9	9 382	6 492675	135	0,02	0,0602	0,0006	0,0981	0,0008	0,8136	0,0076	610	21	603	5	605	4
TEST20		370	6 473455	140	0,02	0,0606	0,0006	0,0981	0,0008	0,8195	0,0077	624	21	603	5	608	4
TEST39		349	6 451285	142	0,02	0,0599	0,0006	0,0982	0,0008	0,8110	0,0077	599	22	604	5	603	4
TEST159		302	6 390152	134	0,02	0,0598	0,0007	0,0984	0,0009	0,8112	0,0084	595	24	605	5	603	5
TEST4		366	5 477484	135	0,02	0,0593	0,0006	0,0985	0,0009	0,8052	0,0076	577	22	606	5	600	4
TEST121		2 301	5 401258	138	0,02	0,0579	0,0006	0,0986	0,0009	0,7868	0,0079	524	24	606	5	589	4
TEST3		1 367	0 473661	133	0,02	0,0601	0,0006	0,0986	0,0009	0,8168	0,0076	606	21	606	5	606	4
TEST138		304	2 391993	135	0,02	0,0597	0,0007	0,0987	0,0009	0,8125	0,0083	593	23	607	5	604	5
TEST31		357	0 465714	140	0.02	0.0589	0,0006	0.0988	0.0009	0.8029	0.0076	565	22	607	5	599	4
TEST72		337	6 430147	141	0.02	0.0603	0.0006	0.0988	0.0009	0,8221	0,0079	616	22	607	5	609	4
TEST137		316	9 399681	135	0,02	0.0609	0,0007	0.0989	0.0009	0,8307	0.0084	636	23	608	5	614	5
TEST150	1:						0,0007			0,8183		601	23	609	5	607	5
TEST21	13									0.8278		626	21	609	5	612	4
TEST33		363					0,0006			0,8165		593	21	610	5	606	4
TEST38		352					0.0006			0,8208			22	610	5	609	4
TEST105	10									0,8121		576	23	611	5	604	5
TEST32		360		140			0,0006			0,8203		598	22	611	5	608	4
TEST122	10									0,8168			23	611	5	606	5
TEST160	1									0,8100			24	612	5	612	5
		304										590	24	612	5	607	4
TEST10		J 3/3	9 4/8524	137	0,02	0,0596	0,0006	0,0996	0,0009	0,8188	0,0077	590	22	612	5	607	4

5. Discussion

The age pattern of 31 zircons reveals a high concentration of ages in the 2.0-2.5 Ga range, with a mode of around 2.2 Ga and an important Archean component. This pattern is similar to that obtained for the Itacolomi Group by Machado et al. (1996), thus suggesting that the Furquim Quartzite detrital sequence belongs to this Group. This interpretation is also supported by the obtained minimum age of 2087±19 Ma that is identical to the minimum ages of 2059±58 Ma obtained by Machado et al. (1996) and that of 2143±16 obtained by Hartmann et al. (2006) for the Itacolomi samples.

6. Concluding remarks

The results of the geological, petrographic and geochronological investigation of the Furquim Quartzite allowed for a conclusion that the ridge located southeast of the Quadrilátero Ferrífero is possibly an allochtonous unit. The postulated correlation to the Archean Maquiné quartzite as presented in the regional geological map

The large number of zircon grains of Paleoproteozoic age indicates that the main sediment sources for the Furquim Quartzite are terrains generated during the Transamazonian Orogeny. The Archean ages indicate contribution of the gneissic and greenstone terrains.

The youngest Paleoproterozoic population dated at 2087±19 Ma defines the maximum age of deposition of the precursor sandstones of the Furquim Quartzite.

Quartzite ridges belonging to the Itacolomi Group are more widespread than supposed so far. Besides the locus tipicus near the city of Ouro Preto, the huge mass of quartzite, approximately 1400 m thick, occurring at Serra de Ouro Branco, southern Quadrilátero Ferrífero, previously correlated to the Tamanduá Group or to the Moeda Formation was dated by Machado *et al.*(1996) and correlated to the Itacolomi Group.

The occurrence of a ridge of quartzite belonging to the Itacolomi Group farther east from its locus tipicus near Ouro Preto is probably due to the action of a tectonic event as indicated by its allochtonous nature. Other studies concerning the structural complexity of Furquim Quartzite are necessary to elucidate its geological evolution.

published by CPRM (Baltazar et al., 1993) is not supported by the results of U-Pb geochronology on zircon by LA-ICP-MS, which defined several detrital zircon populations ranging from Paleoproterozoic to Archean age. The youngest population dated 2087±19 Ma defines the maximum age for the sedimentation of the precursor sand-

stone. This age is similar to the age of the youngest zircon population of the Itacolomi Group in the Quadrilátero Ferrífero dated by Machado *et al.* (1996) and Hartmann *et al.* (2006). Therefore, it is possible to conclude that the Furquim Quartzite can be stratigraphically correlated to the quartzites of the Itacolomi Group.

7. Acknowlegments

Cristiano Lana acknowledges financial support from FAPEMIG (RDP0067-10, APQ03943).

8. References

- ALVARENGA, J.P.M. Petrografia e geocronologia do Quartzito Furquim: uma possível extensão oriental do Grupo Itacolomi na região sudeste do Quadrilátero Ferrífero, Minas Gerais. Ouro Preto: DEGEO, Escola de Minas, UFOP, 2013. 38p. (Monografia do Trabalho Final de Graduação n. 72).
- BALTAZAR, O. F., RAPOSO, F. O., MATTOS, G.M.M. Programa Levantamentos Geológicos Básicos do Brasil, Carta Geológica, Folha Mariana (SF.23-X-B-I), Escala 1:100.000. Belo Horizonte: CPRM, 1993.
- DORR II, J.V.N. Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Washington: USGS/DNPM, Prof. Paper 641-A, 1969. 110p.
- HARTMANN, L.A., ENDO, I., SUITA, M.T.F., SANTOS, J. O. S., FRANTZ, J. C., CARNEIRO, M.A., MCNAUGHTON, N.J., BARLEY, M.E. Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U-Pb isotopes. Journal of South American Earth Sciences, v. 20, p. 273–285, 2006.
- JORDT-EVANGELISTA, H. Petrologische Untersuchungeng im Gebiete zwischen Mariana und Ponte Nova, Minas Gerais, Brasilien. Clausthal, Alemanha: Technische Universität Clausthal, 1984. 183p. (Doctorate Thesis).
- LANA, C., ALKMIM, F.F., ARMSTRONG, R., SCHOLZ, R., ROMANO, R., NA-LINI JR, H. The ancestry and magmatic evolution of Archaean TTG rocks of the Quadrilátero, Ferrífero province, southeast Brazil. *Precambrian Research*, v. 231, p. 157–173, 2013.
- LUDWIG, K.R. Isoplot/Ex Version 3.75: a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, CA, n. 5, 2012. 72p. (Special Publication).
- MACHADO, N., NOCE, C.M., LADEIRA, E.A., DE OLIVEIRA, O.A.B. U-Pb geochronology of the Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco Craton, Brazil. Geological Society of America Bulletin, v. 104, p. 1221–1227, 1992.
- MACHADO, N., SCHRANK, A., NOCE, C.M., GAUTHIER, G. Ages of detrital zircon from Archean-Paleoproterozoic sequences: implications for Greenstone Belt setting evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. Earth and Planetary Science Letters, v. 141, p. 259–276, 1996.
- NOCE, C.M., ZUCCHETTI, M., BALTAZAR, O.F., ARMSTRONG, R., DAN-TAS, E.L., RENGER, F.E., LOBATO, L.M. Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas greenstone belt (Quadrilátero Ferrífero, Brazil): U-Pb zircon dating of volcaniclastic graywackes. *Precambrian Research*, v. 141, p. 67–82, 2005.
- NOCE, C.M., PEDROSA-SOARES, A.C., SILVA, L.C., ARMSTRONG, R., PIU-ZANA, D. Evolution of polycyclic basement complexes in the Araçuai Orogen, based on U-Pb SHRIMP data: implications for Brazil-Africa links in Paleoproterozoic time. *Precambrian Research*, v. 159, n. 1-2, p.60-78, 2007.
- ROMANO, R., LANA, C., ALKMIM, F.F., STEVENS, G., ARMSTRONG, R. Stabilization of the southern portion of the São Francisco cráton, SE Brazil, through a long-lived period of potassic magmatism. Precambrian Research, v. 224, p.143-159, 2013.
- SILVA, L.C., ARMSTRONG, R. NOCE, C.M., CARNEIRO, M.A., PIMENTEL, M., PEDROSA-SOARES, A.C., LEITE, C.A., VIEIRA, V.S., SILVA, M.A., PAES, V.J.C., CARDOSO, FILHO J.M. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, Parte II: Orógeno Araçuaí, Cinturão Mineiro e Cráton São Francisco Meridional. Revista Brasileira de Geociências, v. 32, n. 4, p.513-528, 2002.
- TAKENAKA, L., LANA, C., SCHOLZ, R., NALINI H., TROPIA, A. Optimization of the in-situ U-Pb age dating method via LA-Quadrupole-ICP-MS with applications to the timing of U-Zr-Mo mineralization in the Poços de Caldas Alkaline Complex, SE Brazil. Journal of South American Earth Sciences, in press, 2015
- VAN ACHTERBERGH, E., RYAN, C.G., JACKSON, S.E., GRIFFIN, W. Data reduction software for LA-ICP-MS. In: SYLVESTER, P. (Ed.). Laser Ablation ICPMS in the Earth Science. Mineralogical Association of Canada, v. 29, p. 239–243, 2001.