Engenharia Civil Engineering

Formulação para tensão de flambagem distorcional em colunas com seção U enrijecido de chapa de aço dobrada a frio

Distortional buckling formulae for cold-formed steel lipped U section columns

Resumo

Esse trabalho apresenta uma formulação para tensão de flambagem distorcional (σ_{dist}) em colunas de chapa dobrada a frio, com seção transversal do tipo U enrijecido, com bordos simplesmente apoiados e empenamento livre. Essa formulação baseia-se em um modelo ajustado a partir de uma rede neural artificial (RNA), cujos dados foram fornecidos por um programa baseado no Método das Faixas Finitas (MFF). Os resultados apresentados demonstram a viabilidade da equação obtida, para a determinação de σ_{disr} , em colunas confeccionadas com as seções analisadas.

Palavras-chave: Flambagem distorcional, rede neural, estabilidade elástica.

Abstract

This paper presents a formulation for distortional buckling stress (σ_{dist}) in coldformed steel lipped U section columns, with simply supported end conditions and free warping. This formulation is based on an adjusted model from an artificial neural network (ANN), whose data was provided by a program based on the Finite Strip Method (FSM). The results show the viability of the obtained equation for determining σ_{dist} on a columns made with the analyzed sections.

Keywords: Distortional buckling, neural network, elastic stability.

1. Introdução

O desenvolvimento de aços com resistências elevadas permite que grande parte dos perfis formados a frio, com esse material, tenha seções abertas formadas por paredes muito esbeltas, tornandoos mais suscetíveis aos fenômenos da (i) flambagem local de placa (FLP) e (ii) flambagem distorcional (FD). Esses fenômenos caracterizam-se pela ocorrência de deformações no plano da seção transversal, ao mesmo tempo em que o eixo do perfil permanece indeformado. Enquanto, na FLP, existem apenas deslocamentos de flexão; na FD, além dos deslocamentos de flexão, existem os deslocamentos de membrana e as deformações de linhas de dobra (bordas longitudinais internas), o que implica a distorção das

Fellipe Peixoto Santos

Graduando em Engenharia Civil, Departamento de Tecnologia, Universidade Estadual de Feira de Santana fellipeixoto@hotmail.com

Koji de Jesus Nagahama

Professor Doutor, Programa de Pós-Graduação em Engenharia Civil e Ambiental, Departamento de Tecnologia, Universidade Estadual de Feira de Santana kjnagahama@gmail.com

Anderson de Souza Matos Gadéa

Professor Doutor, Programa de Pós-Graduação em Engenharia Civil e Ambiental, Departamento de Tecnologia, Universidade Estadual de Feira de Santana agadea@gmail.com seções transversais. A Figura 1 mostra as configurações deformadas de segmentos de um perfil com seção U enrijecido e que exibem FLP e FD, sob compressão.

Vários perfis de aço formados, de uso corrente, possuem seções transversais (forma e dimensões) e comprimentos que conduzem a tensões críticas de flambagem local e/ou global (flexão ou flexo-torção, com empenamento livre ou impedido) bastante semelhantes. Nesse caso, o comportamento estrutural também é afetado pela interação modal, i.e., há o acoplamento entre modos (i) locais

de placa e distorcionais ou (ii) locais de placa e globais ou (iii) distorcionais e globais ou ainda (iv) locais de placa, distorcionais e globais (Figura 2). Ressalta-se que a natureza do modo local de placa e distorcional envolvidos depende, sobretudo, da geometria de seção transversal.

Figura 1 Modos de flambagem local de placa e distorcional em perfil U enrijecido.

A complexidade, para a determinação do comportamento de tais seções transversais, na presença dessa interação modal, é muito grande. Função disso, os códigos de dimensionamento referem-se às tensões críticas de flambagem, considerando-se a estabilidade elástica, desassociando-se os fenômenos, a exemplo do que faz a NBR14762 (ABNT, 2010). Assim, no caso da FLP, a equação diferencial de placa submetida a esforços normais, obtida da teoria de placas, permite a determinação da tensão crítica. Além disso, pode-se aplicar, também, o método das larguras efetivas e o método

2. Materiais e métodos

A utilização de RNA para a obtenção de uma equação que determine os valores das tensões de flambagem distorcional, embora inicialmente pareça tarefa fácil, não o é (Pala, 2006). Diversas são as etapas necessárias para a execução dessa tarefa, a citar: (i) definição do problema; (ii) identificação dos parâmetros de treinamento da RNA, isto é, topolo-

das áreas efetivas (Batista, 2010). Já, para a tensão crítica devida à FD, diversos métodos têm sido empregados, para se determinarem essas tensões, a exemplo dos métodos numéricos, entre os quais se destacam o método das faixas (Nagahama, 2003) e o método dos elementos finitos (Schafer & Peköz, 1998, 1999; Casafont et al., 2009). Além dos métodos numéricos, outras metodologias podem ser empregadas, como a teoria generalizada de vigas (Silvestre & Camotim, 2004a,b) e modelos aproximados, como os apresentados por Davies e Jiang (1996) e Schafer e Peköz (1998, 1999). Mais reFigura 2 Interação modal de flambagem: Modo local de placa (A). Modo distorcional (B). Modo acoplado (C).

centemente, as RNA tornaram-se ferramentas eficazes para a determinação das referidas tensões (Pala, 2006).

A RNA permite a realização de uma modelagem não-paramétrica, utilizando-se de apenas amostragens de valores de entrada e saída do sistema, apresentando-se, assim, como uma alternativa de menor complexidade, sem o real entendimento dos fatores que influenciam nos fenômenos, para a construção de modelos de comportamento. Nesse estudo, as RNA são aplicadas, para obtenção de uma equação e para a determinação da tensão de flambagem, no modo distorcional (σ_{disr}).

gia, função de transferência, etc; (iii) geração dos dados e treinamento da RNA e (iv) definição e averiguação da equação formulada.

Nesse trabalho, optou-se por se utilizarem seções transversais do tipo U enrijecido, tal qual ilustrado na Figura 1. Isto foi motivado pelo mesmo apresentar o fenômeno da flambagem distorcional e por ser um dos perfis de chapa dobrada mais citados pelos autores que estudam a flambagem distorcional, fato este que permite a aferição dos resultados obtidos.

Nesse estudo, as colunas são consideradas simplesmente apoiadas nas extremidades e com empenamento livre, que é uma das condições mais desfavorável em termos de tensão crítica de flambagem. O carregamento foi simulado através de um gradiente uniforme de tensão de compressão, representando uma compressão centrada.

Para a montagem da RNA, uma das metas foi a utilização do menor número possível de variáveis que representam bem o problema estudado. Isto reduz a complexidade do modelo e fornece equações menores. Nesse caso, optou-se por trabalhar com quatro variáveis que caracterizam a seção, isto é, b_{u} , b_{t} , D e t.

^A "varredura", para a identificação dos modos de flambagem, foi feita variando-se o comprimento do perfil de 50mm para 2000mm, com incremento de 50mm e módulo de elasticidade de 200GPa. Ao todo, foram geradas 85 seções, conforme NBR6355 (ABNT, 2003), as quais foram simuladas através do InsLoD, para a obtenção dos valores das tensões de flambagem. No conjunto dos dados analisados, verificaram-se perfis que, ao longo dos comprimentos analisados, apresentam variação nos modos de flambagem em função das relações entre os entes geométricos que definem as seções e a função do comprimento (Figura 3).

Figura 3 Curva ilustrativa da tensão de flambagem *versus* comprimento da coluna, considerando-se apenas o primeiro harmônico.

Os valores-limites estabelecidos, em milímetros, para os entes geométricos foram os indicados na NBR6355 (ABNT, 2003), quais sejam: $50 \le b_w \le 300$; $25 \le b_f \le 100$; $10 \le D \le 30$ e $1, 2 \le t \le 6, 3$.

De modo geral, segundo Nagahama (2003) e Batista (2010), em perfis U enrijecido, verifica-se a tendência ao aparecimento do modo distorcional para flanges maiores e menores rigidezes rotacionais na junção alma/flange. Já, para os enrijecedores maiores, temse uma tendência de surgimento do

3. Resultados

As equações mais simples são aquelas cujas redes apresentam o menor número de camadas intermediárias e o menor número de neurônios por camada. Entre os casos testados, não foi possível a obtenção de um ajuste viável com um neurônio na camada intermediária. Com dois neurônios na camada intermediária, apesar de o coeficiente de correlação encontrado ser de 0,9992, o erro máximo é de 13,49%. Já com três, o coeficiente modo local de placa. Nesse estudo, não foram consideradas as seções transversais que não apresentavam modo distorcional ou nas quais o modo distorcional aparecia acoplado a qualquer outro modo de flambagem, mas tão somente aqueles casos com MD puro. Assim, do conjunto inicial de 85 seções, 9 seções foram descartadas.

A natureza do problema a ser resolvido normalmente define restrições em relação aos tipos de RNA e algoritmos de aprendizagem possíveis. Nesse trabalho, a rede neural é treinada com o algoritmo de aprendizagem Levenberg-Marquardt (Hagan & Menhaj, 1994). A quantidade de camadas e o número de neurônios por camadas foram definidos através de tentativa e erro, mas obedecendo-se sempre ao Teorema de Kolmogorov-Nielsen (Kovács, 1996). Para cada uma das topologias de rede testadas, foram avaliadas as funções sigmóide e tangente hiperbólica para representação das energias de ativação dos neurônios.

de correlação é de 0,9998, apresentando erro máximo de 3,93%. Nesse contexto, a melhor solução foi a rede com três neurônios na camada intermediária, cuja ilustração é mostrada na Figura 4. Em todos os casos, observou-se que a tangente hiperbólica permite melhores ajustes para a rede.

A camada de entrada possui quatro neurônios que representam as variáveis do problema (b_w , b_f , D e t), enquanto a camada de saída possui apenas um neurônio correspondente à tensão crítica de flambagem do modo distorcional (σ_{dist}). O melhor ajuste obtido pode ser observado na Figura 5, de maneira geral.

Após a realização dos ajustes, tornou-se possível a obtenção dos pesos e *biases* de cada neurônio. Assim, a equação representativa do problema pôde ser montada (Equação 1).

$$\sigma_{ist} = -\frac{854091}{628} \cdot tanh(k1) - \frac{5815555}{7939} \cdot tanh(k2) - \frac{27340960}{1851} \cdot tanh(k3) - \frac{1625961}{130}$$
(1)

Formulação para tensão de flambagem distorcional em colunas com seção U enrijecido de chapa de aço dobrada a frio

onde:

4. Discussão

Na Tabela 1, apresenta-se parte da distribuição dos erros obtidos com a equação de ajuste. O ajuste tem elevado índice de correlação, 0,9998, demonstrado pela distribuição de 56 estimativas com erros inferiores a 0,50%, 14 estimativas com erros entre 0,50% e 2,00% e 6 estimativas com erros superiores a 2,00%, ressaltando-se que o erro máxi-

5. Conclusão

Esse trabalho apresentou uma formulação para se ajustar uma equação, para a determinação da tensão de flammo apresentado é de 3,93%.

Os resultados sugerem que é possível a aplicação de RNA, para a determinação de tensão de flambagem distorcional. Faz-se necessário, em novos estudos, a inclusão de mais parâmetros de entrada para o treinamento da rede e, para a averiguação de novas topologias. Estudos preliminares sugerem que equações

bagem distorcional de perfis U enrijecido submetidos à compressão uniforme com condições de apoio que simulam articu-

Ajuste escolhido pela RNA utilizada.

simplificadas não serão capazes de representar o problema com erros inferiores aos obtidos nesse trabalho (Pala, 2008). Deve-se destacar, ainda, que o conjunto de dados utilizado nessa pesquisa não levou em consideração o acoplamento dos modos distorcional e local de placa, restringindo-se a uma faixa de seções, conforme NBR6355 (ABNT, 2003).

lações e empenamento livre.

A determinação de uma equação, para tal fim, torna muito mais ágil o processo de dimensionamento de perfis de chapa de aço dobrada a frio. Com base nos resultados apresentados, pode-se afirmar que a RNA obteve um desempenho satisfatório, no ajuste das tensões de flambagem distorcionais das seções U enrijecidos propostas pela NBR6355. Isto permitiu a obtenção de uma equação para σ_{dist} viável. Estudos posteriores são necessários para se considerar a influência dos acoplamentos entre os distintos modos de flambagem, bem como uma aferição com dados experimentais, muito embora, nesse caso, o InsLoD já tenha sido aferido também com dados experimentais. Contudo percebe-se que a equação determinada representa o conjunto de dados testados, mesmo diante da complexidade do problema.

<i>b_w</i> (mm)	b _f (mm)	D (mm)	<i>t</i> (mm)	InsLoD (MPa)	Equação (MPa)	erro (%)
50	25	10	1,50	864,327	868,717	-0,51
50	25	10	2,00	1220,234	1218,701	0,13
75	40	15	1,50	520,566	525,053	-0,86
75	40	15	2,00	722,670	723,737	-0,15
75	40	15	2,25	829,143	831,504	-0,28
100	40	17	2,00	565,869	565,417	0,08
100	40	17	2,25	649,361	648,494	0,13
100	50	17	2,65	710,565	704,787	0,81
100	50	17	3,00	824,938	820,468	0,54
125	50	17	2,00	401,536	399,128	0,60
125	50	17	2,25	461,539	461,381	0,03
125	50	17	2,65	562,192	563,620	-0,25
150	60	20	2,25	368,772	370,090	-0,36
150	60	20	2,65	447,346	449,463	-0,47
150	60	20	3,00	519,389	520,850	-0,28
200	75	20	2,00	197,183	189,440	3,93
200	75	25	3,00	363,297	362,469	0,23
200	75	25	3,35	414,505	412,549	0,47
200	100	25	3,75	404,252	404,224	0,01
200	100	25	4,25	470,563	470,428	0,03
200	100	25	4,75	539,893	542,292	-0,44
250	85	25	2,00	154,216	150,301	2,54
250	85	25	2,25	176,728	175,657	0,61
250	85	25	2,65	214,387	215,847	-0,68
250	85	30	6,30	703,997	701,770	0,32
250	100	25	2,65	206,872	204,045	1,37
250	100	25	3,00	239,58	235,139	1,85
250	100	25	3,35	273,582	266,995	2,41
300	100	25	2,65	153,425	156,037	-1,70
300	100	25	3,00	178,401	181,256	-1,60
300	100	25	3,35	204,673	206,423	-0,85

Tabela 1 ntre as tensões de

Comparação entre as tensões de flambagem distorcional do InsLoD e as determinadas pela Equação 1, para algumas das seções utilizadas.

6. Referências bibliográficas

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6355: Perfis estruturais de aço formados a frio Padronização. Rio de Janeiro, 2003.
 - ____. NBR 14762: Dimensionamento de estruturas de aço constituídas por perfis formados a frio Procedimento. Rio de Janeiro, 2010.
- BATISTA, E. M. Effective section method: A general direct method for the design of steel cold-formed members under local-global buckling iteration. *Thin-Walled Structures*, 48, p.345-356, 2010.
- CASAFONT, M., MARIMON, F., PASTOR, M. M. Calculation of pure distortional elastic buckling loads members subjected to compression via finite element method. *Thin-Walled Structures*, 47, p.701-729, 2009.
- DAVIES, J. M., JIANG, C. Design of thin-walled columns for distortional buckling. *Coupled Instabilities in Metal Structures (CIMS'96)*, 1, p.165-172, 1996.
- HAGAN, M. T., MENHAJ, M. B. Training feedforward networks with the marquardt algorithm. *IEEE Transactions on Neural Networks*, 5, p.989-993, 1994.
- KOVÁCS, Z. L. *Redes neurais artificiais: fundamentos e aplicações*. São Paulo: Ed. Collegium Cognitio e Edição Acadêmica, 1996.

- NAGAHAMA, K. J. *Análise de estabilidade local em perfis de seção aberta em aço e em resina reforçada com fibra de vidro*. Universidade Federal do Rio de Janeiro, 2003. (Tese de Doutorado).
- PALA, M. A new formulation for distortional buckling stress in cold-formed steel members. *Journal of Constructional Steel Research*, 62, p.716-722, 2006.
- PALA, M. Genetic programming-based formulation for distortional buckling stress of cold-formed steel members. *Journal of Constructional Steel Research*, 64, p.1495-1504, 2008.
- SCHAFER, B. W., PEKÖZ, T. Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses. *Journal of Constructional Steel Research*, 47, p.193-210, 1998.
- SCHAFER, B. W., PEKÖZ, T. Laterally braced cold-formed steel members with edge stiffened flanges. *Journal of Structural Engineering (ASCE)*, 125, p.118-127, 1999.
- SILVESTRE, N., CAMOTIM, D. Distortional buckling formulae for cold-formed steel c-and z-section members: part i-derivation. *Thin-Walled Structures*, 42, p.1567-1597, 2004a.
- SILVESTRE, N., CAMOTIM, D. Distortional buckling formulae for cold-formed steel c-and z-section members: part ii-validation and application. *Thin-Walled Structures*, 42, p.1599-1629, 2004b.

Artigo recebido em 03 de fevereiro de 2011. Aprovado em 25 de setembro de 2012.