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Metallurgy and materials
Metalurgia e materiais

Online hybrid modeling method 
with application for predicting
Bauxite production indicators
Abstract

In the bauxite flotation process, concentrate grade and tailings grade are key 
production indicators; however, they are difficult to measure online. It is also difficult 
to develop an effective mathematical model for the process because of the complex 
non-linear and uncertain relationship among the feed parameters (feed grade, pulp 
density, slurry particle size, etc.), froth features and production indicators. Therefore, 
an online hybrid modeling method is proposed by analyzing the multiple param-
eters that affect the production indicators. First, according to the correlation and 
redundancy in the feed and froth feature parameters, the kernel principle component 
analysis (KPCA) is used to reduce the number of the parameters. Then, a neutral 
network model of the regular extreme learning machine (RELM), which is based on 
wavelet function, is presented to predict these two indicators. To improve generaliza-
tion capability and prediction accuracy, information entropy is used to distribute the 
weight of the two models based on their predicting error. At last, an on-line updating 
strategy of the hybrid model is constructed in order to investigate the influence of the 
working conditions. The proposed method is tested on the diasporic-bauxite flotation 
process and shows high predictive accuracy and generalization capability. It lays the 
foundation for optimal control of the operation parameters based on mineral grade 
in the flotation process.

Keywords: froth flotation; image features; online predictive model; extreme learning 
machine (ELM)
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1. Introduction

Online modeling is a useful tool for 
operating complex industrial processes. 
Updated models are needed for early 
reaction to disturbances that affect the 
process production indicators and the end 
product quality. In the bauxite flotation 
process, the concentrate grade and the 
tailings grade, which is measured by the 
mass ratio of Al2O3 and SiO2 (m (Al2O3)/m 
(SiO2) =A/S),are the main production in-
dicators, but they are hard to achieve by 
online measurements (Morar et al., 2012, 
CAO et al., 2013, Moolman et al., 1996) 
and mainly depend on human laboratory 
analysis. However, off-line analysis is 
often long and tedious, with delay times 
ranging from 2 to 4 hours, making it dif-
ficult to offer a practical guide to industrial 
operations. The production indicators 
fluctuate with changing of feed param-
eters. Sometimes, a large fluctuation will 

exceed the allowable threshold, making 
the indicators unqualified. Typically, 
process operators predict the concentrate/
tailings grade through the froth appear-
ances and feed parameters to adjust oper-
ating parameters such as reagent dosage 
and aeration (Morar et al., 2012, Liu et 
al., 2008, XU et al., 2012). This manual 
operation is characterized by subjectivity 
and uncertainty, which might easily lead 
to excessive reagent dosages and working 
condition fluctuations. Thus, research for 
an indicator prediction is of great signifi-
cance in stabilizing the flotation process, 
optimizing the flotation operation and 
reducing the overuse of reagents.

Much research has been conducted 
on detecting methods for the flotation 
process production indicators. Traditional 
mechanism-based modeling methods 
(Neethling et al., 2003, Perez-Correa, 

1998) made too many simplifications and 
assumptions because of the complexity of 
the flotation process mechanism, which 
makes it difficult to accurately describe 
the actual flotation process. The current 
methods for the detection of flotation 
indicators mainly integrate the field 
experience of operating workers, expert 
knowledge and statistical modeling rules. 
In González et al. (2003), feed grade, feed 
rate, pulp density and pulp level obtained 
during the copper flotation process were 
set as the model input data. Several pre-
diction models including the autoregres-
sive moving average model (ARMAX), 
neural networks, the fuzzy combination 
model and the partial least squares model 
(PLS) are compared in the prediction of 
copper concentrate grade. The feed rate, 
airflow rate and pH value of slurry in 
the copper flotation process are used as 
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input variables in Hatonen et al., (1999). 
Moreover, the recursive partial least 
squares method was adopted to establish 
the concentrate grade and recovery rate 
prediction model of the lead and copper. 
These studies suggest that using the feed 
parameters to predict the concentrate 
grade is feasible. For the high-dimensional 
nonlinear characteristics of the feed 
parameters, the method of using kernel 
principal component analysis (KPCA) to 
extract the principal feature is proposed in 
Schölkopf et al.(1998) and LI et al. (2012); 
the magnetite grade prediction model 
is then established, which demonstrates 
that the KPCA is capable of reducing the 
data dimension, eliminating redundancy 
among data, and further improving the 
model accuracy. This will easily result in 
an unsatisfactory dynamic tracking ability 
for the predictive model. In Hargrave et 
al. (1997) and Heinrich (2003), machine 
vision was introduced to the flotation 

process, and a relation model between 
the froth color and the concentrate grade 
was established. In CAO et al. (2013) 
and Forbes (2007), a relationship model 
between the size, velocity, froth load and 
production index was developed. The 
aforementioned research demonstrates 
that all of the visual features of the froth 
surface can reflect flotation performance, 
and it is a very effective method to predict 
the production indicators.

Therefore, this paper proposes an 
online hybrid predictive model (ON-
HPM) of the production indicators 
based on multi-input data to improve 
the predictive precision of the model. 
First, the multi-input data influencing 
production indicators are analyzed, in-
cluding the feed parameters and the froth 
feature parameters. Then, considering 
these parameters with high-dimensional, 
non-linear, redundant and non-relative 
properties, KPCA is used to reduce the 

dimension. Furthermore, a neutral net-
work model of the regular extreme learn-
ing machine (RELM), which is based on 
wavelet function, is presented to predict 
the concentrate grade and the tailings 
grade. Then, information entropy is used 
to distribute the weight of the two mod-
els based on their predicting error. Con-
sidering the disturbances of the working 
condition fluctuation within the model, a 
model updating strategy is constructed. 
Lastly, the proposed method is validated 
in a diasporic-bauxite flotation plant.

This paper is organized as follows. 
Section 2 analyzes the diasporic-bauxite 
flotation process and influencing fac-
tors of the flotation process. Section 3 
describes the online hybrid predictive 
model. Section 4 gives the application 
validations of the proposed predictive 
model in a bauxite flotation process, 
and a conclusion of this paper is given 
in Section 5.

2. Influencing factors of the bauxite flotation process

2.1 Process description of bauxite flotation
Diasporic-bauxite flotation in 

China is used as an example to describe 
the flotation process. This flotation is 
a direct flotation process that achieves 
flotation froth as the concentrate and 
underflow as the tailings. The diaspor-
ic-bauxite is characterized by a high 

content of Al2O3 and SiO2 and a low 
ratio of Al2O3 and SiO2 (m (Al2O3)/m 
(SiO2) =A/S, usually between 5 and 6). 
The bauxite flotation circuit is a long 
and complex separation process, con-
sisting of the following flotation banks: 
roughing bank, rough-scavenging 

bank, clean-scavenging bank, clean-
ing I bank and cleaning II bank. Each 
flotation bank is composed of dozens 
of flotation cells. This is done to en-
sure both high concentrate grade and 
recovery. The flow sheet of the bauxite 
flotation plant is shown in Fig. 1.

Figure 1
Diagram of the flotation circuit.

The flotation processing begins 
with a ball grinder that reduces the 
particle size of the ore down to powder 
of micrometer level. Then, the powder 
is mixed with water and flotation re-
agents, and the resulting slurry is fed 
to an agitated tank. It is then fed into 
the roughing cell, and the stirring of 
the impeller forms ore pulp and froth. 
Then, the mineral particles adhering 
to the froths float up and overflow out 

of the rougher cells; the particles then 
pass into cleaning I, while the underflow 
pulp goes into the rough-scavenging. 
Then, the froth overflowing from 
cleaning I flows into cleaning II, and its 
concentrate feeds in to the final cleaners. 
Meanwhile, the underflow of cleaning II 
enters cleaning I, while the underflow of 
cleaning I enters the clean-scavenging. 
Froth overflows from the rough-scav-
enging and clean-scavenging banks; 

however, it then returns to roughing 
and cleaning I, respectively, for more 
separation. The underflows of both the 
rough-scavenging and clean-scavenging 
are added into the final tailings. The 
final concentrate products are selected 
from the final cleaning cell. It should be 
emphasized that the flotation processes 
mentioned above are used for the pur-
pose of achieving a high concentrate 
grade and a low tailings grade.
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2.2 Influencing factors of the bauxite flotation process
Bauxite flotation is a very compli-

cated and non-linear process, and many 
direct or indirect parameters frequently 
exert influence on the production indi-
cators (Zhao et al., 2010, CAO, et al., 
2013, Sandro, 2012). However, fewer 
model parameters should be considered 
when constructing predictive models be-
cause too many parameters may increase 
the complexity of the model, while the 
incompleteness of some parameters will 
result in low precision (González et al., 
2003, Kaartinen et al., 2005,LI et al., 
2012).In this case, the significant pa-
rameters that affect flotation indicators 
should be considered.

According to the flotation metal-
lurgist (Zhao et al., 2010, Sandro, 2012, 
ZHOU, et al., 2010), the slurry particle 
size refers to the ore grinding size. In this 
paper, the percentage content (%) of parti-
cle sizes is less than 200 mesh (-0.075mm). 
When the particle size is coarse, the 
flotation velocity is very slow, leading to 
incomplete detachment of a single ore, 
which results in a low concentrate grade. 
When the particle size is finer, the flotation 
velocity is fast, but it is hard to effectively 
sort and leads to a low grade of products. 
Appropriate pulp density benefits the 
selection of ores because too high or too 
low a concentration will result in the loss 
of useful minerals. Pulp density typically 
uses the percentage concentration (%), i.e., 
the percentage of solids, contained in the 

slurry. In bauxite flotation, the range of 
the pulp densityis within 30%to35%. The 
feed grade (A/S) represents the enrichment 
of useful minerals, and a higher feed grade 
indicates higher enrichment, which leads 
to an concentrate grade and metal recov-
ery. Conversely, a low feed grade leads to 
difficultly in separating useful minerals. 
A/S for feed grade refers to the mass ratio 
of Al2O3 and SiO2 of feed slurry. Addi-
tionally, another important factor is the 
flotation temperature that is maintained 
within 40 to 45ºC. Operational variables 
affecting the technological indicators in-
clude pulp level, air inflow and reagents. 
The fluctuation of pulp level or air inflow 
often leads to overflow and sinking, so 
the corresponding technique adjusts the 
amount of reagents for a condition where 
by the air inflow and the pulp level re-
main stable. The main flotation reagent 
is the collector. The insufficient collector 
amount leads to inadequate mineraliza-
tion of the diasporic-bauxite in the ore, 
resulting in a lower concentrate grade. 
However, the sufficient collector amount 
leads to the loss of flotation selectivity and 
results in a higher tailings grade and a 
lower recovery rate. The collector amount 
is typically 850 g/t. Therefore, the factors 
affecting flotation properties mainly in-
clude pulp density G

d
, slurry particle size 

G
S
, feed grade G

g
,dosages of the collector  

D
0
 and pulp pH D

pH
.

The visual features of froth image 

are an important indicator for character-
izing the flotation properties (Heinrich, 
2003, Forbes, 2007, CAO et al., 2013). 
For instance, the froth color can character-
ize the mineral type and content. Bubble 
transparency becomes lower when the col-
or is darker, which reflects greater mineral 
content and a higher concentrate grade. 
Froth image texture is a comprehensive 
characterization of the roughness, contrast 
and viscosity. In some cases, the bubble 
size is correlated with the mineral ‘load’ 
of the froth and is also used to determine 
the optimal amount of reagent. With the 
increase in froth load, the probability of 
useless ores carried into the concentrates 
increases correspondingly; as a result, the 
concentrate grade decreases. Meanwhile, 
the bubble collapse rate can reflect the 
mineral content information, as does the 
bubble size. Therefore, the froth color, 
texture features, dynamic features and 
morphological characteristics are used to 
describe the froth image. The following 
proposed methods of parameter extrac-
tion (XU et al., 2012; GUI et al., 2013, 
WANG et al., 2014) are used to extract 
these feature parameters: the R (red) 
mean value, the G (green) mean value, 
the relative red components, the B (blue) 
mean value, brightness, energy, entropy, 
correlation, local homogeneity, steepness, 
inverse difference moments, the average 
froth size, stability, speed, the froth load 
and the froth collapse rate.

3. Online hybrid predictive model

Because of the higher dimension, 
non-linearity and excessive redundancy 
among the parameters that affect the 
production indicators, KPCA is used to 
reduce the dimensions and to construct 
completed and independent datasets 
(Schölkopf et al., 1998). This paper pro-
poses a neural network model based on 

the wavelet regularized extreme learning 
machine to predict the production indica-
tors of bauxite flotation and to address 
the non-linearity and complexity of the 
data. However, the production data in a 
continuously running bauxite flotation 
process are constantly produced, so the 
model based on the data is easily influ-

enced by the disturbance variables in the 
flotation process. This results in the time-
varying feature of the data; therefore, the 
model cannot exactly reflect the produc-
tion state when fluctuating. To avoid these 
problems, a sliding window approach is 
used to update the model parameters in 
this paper.

3.1 Regularized extreme learning machine based on wavelet function
The extreme leaning machine 

(Huang et al., 2004) is a new single-
hidden layer feed forward neural net-
work (SLFN) (Ferrari, et al., 2005). 
It has been demonstrated that the 
extreme learning machine has the same 
global approach property as the neural 
network (NN). There is no need for 
iteration to determine the parameters, 
and its velocity is much higher than the 
NN and the support vector machine 
(SVM), which meets the real-time re-

quirements of an industrial site. How-
ever, some of the following problems 
exist in ELM.

(1) Structural crises and excessive 
fitting occur, and thus, the regularized 
extreme leaning machine was pro-
moted to address these issues (DENG. 
et al., 2009).

(2) The activation function has ex-
cessive dependency and over-learning 
quality, which results in bad general-
ization performance. In this case, the 

study proposed the wavelet regularized 
learning machine where the wavelet 
function is used as an activation func-
tion and can effectively improve the 
ability of the local processing and 
model generalization ability.

ELM is one of the new algorithms 
of the single hidden layer feed forward 
neural network. One SLFN that con-
tains N

1
different learning samples and 

K hidden knots can be characterized as 
(Huang et al., 2006)
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

where ω
i
 is the link weight of the input 

neural cell with the ith hidden neural cell;  
b

i
 is the threshold value of the mth neural 

cell; βi is the weight of the link hidden 
layer knot and the input layer knot; g is 
the activation function.

There are always some ω
i
, b

i
, βi that can 

make a single-hidden feed forward neural 
network converge with a sample value of 
expectation y

j 
with near zero errors for the 

given N
1 
samples ( x

j
, y

j
 ), namely.

The expression above can be simplified as: H β = Y 

where H is the hidden-layer output matrix of the neural network, namely

Huang (2006)demonstrated that if 
the input weight value and the hidden-
layer threshold value are randomly 
generated and the activation function is 

infinitely differentiable, then the rank of 
matrix H is L.Thus, the weight value of 
the output layer can be obtained by solv-
ing the linear equation group (4) without 

adjustment and the value can be assigned 
at any range. SLFM approximately equals 
the least square solution β  of linear system 
H β = Y.

β̂

ˆ T

H Yβ =

where HT represents the Moore-
Penrose generalized inverse matrix 
of matrix H that is obtained through 

singular value decomposition.
The mathematical model of the 
regularized extreme learning machine 

(DENG. et al., 2009) can be charac-
terized as:

where       represents the structural risk,
       is the empirical risk, and is the 
rate parameter characterizing both of 

the risks. 
By the La Grange equation, the ques-
tion of the conditional extremum above 

can be converted to the question of the 
non-conditional extremum.

1j

2
( )a H Yγ β ε β ε= + − − −

where α = [α1, α2, ...,αN
], α

j 
∈

 
Rm ( j = 1,2,..., N

1
) is the LaGrange multiplier.

2

2 0

0

T

T

l
aH

l
a

l
H Y

a

γβ
β

ε
ε

β ε

∂⎧ → =⎪∂
⎪
∂⎪

→ + =⎨
∂⎪
∂⎪

→ − − =⎪∂⎩

2
β

2
ε

The gradient in the equation is set to zero, so
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The equation above is simplified as:

1ˆ T TI H H H Yβ γ
−

= + ⋅(10)

(11)

(12)

(13)

The expression used to calculate     con-
tains merely one N x N matrix and is fast 

in operation speed. RELM is degenerated 
to be ELM when γ → 0.

β̂

This study draws ideas for 
theproperty of the activation function 
fromthe wavelet Support Vector Ma-
chine (Chih-Chiang Wei, 2012); there-
fore, the wavelet function has been 

brought into RELM, and the wavelet 
regularized learning machine has 
been proposed. The hidden activation 
function is infinitely differentiable; 
the weight of the input vector and the 

threshold of the hidden layer knots can 
be assigned at any value.

The Morlet wavelet function is 
characterized as:

It is easy to demonstrate that 
the equation meets the requirements 
of infinite differentiation and can 
be used as the activation function to 

construct wavelet RELM (WRELM). 
Wavelet features such as cosinusoi-
dal modulation and high resolution 
of time frequency can be applied to 

ensure that the proposed method has 
advantages such as stable operation, 
small errors, excellent robustness to 
interference, etc.

3.2 Predictive sub-model based on KPCA and WRELM
There are many parameters affecting 

production indicators in the flotation pro-
cess. On the basis of operator experience 
to inspect a “bubble,” this paper proposed 
a new production indicator predictive 
method combining froth features and 
feed parameters. Here, two predictive 
sub-models are constructedusing the feed 
parameters and the image features as input 
variables. The detailed steps are as follows.

Step 1: Input and output parameters 
of model

Appropriate input variables can im-
prove the predictive precision, described 
as follows: 

(1)	Feed parameters are taken as 
one-input variables, including feed grade, 
feed density, slurry particle size,dosages 

of the collectorand pulp pH, labeled as: 
V = (v

1
,v

2
......v

5
);

(2)	Image features are taken as other 
input variables, including the R mean 
value, the G mean value, the relative red 
components, the B mean value, bright-
ness, energy, entropy, correlation, local 
homogeneity, steepness, inverse difference 
moments, average froth sizes, stability, 
speed, froth load and froth collapse rates, 
labeled as: U = (u

1
, u

2
......u

15
);

(3)	KPCA is used to extract the 
non-linear principal components of vari-
able V and variable U; they are then used 
construct the input samples set;

(4)	The concentrate grade and the 
tailing grade are taken as output vari-
ables of the predictive model, labeled as 

y = (y1, y2) ;
Step 2: Construct the WRELM 

predictive model and select the model 
parameters;

(1)	Select the hidden-layer activa-
tion function; the Morlet wavelet is 
used here;

(2)	Determine parameter γ and the 
number of hidden-layer knots, followed 
by the set weight value vector ω

i
 and the 

hidden-layer threshold value b
i
.

(3)	Calculate the hidden-layer output 
matrix using Eq.(5);

(4)	Calculate the hidden-layer 
output weight value vector    using 
Eq.(10);

(5)	Calculate the network output: 
Y = Hβ .

β̂

3.3 Hybrid predictive model based on entropy
Weight factors in a hybrid model 

are typically determined by manual 
experience or expertise. Thisstudy ad-
opted the entropy method (WANG et 
al., 2014) to determine the value of the 
weight factor and to improve reliability 

because industrial conditions are not 
stable and easily fluctuate.

By separately calculating the es-
timate values of y"

1K
 and y"

2K
 at time k 

when the input is the feed parameters 
and the image features, the estimate 

value of the hybrid model is y"
K
 . Defin-

ing e
nK

 to represent the relative error of 
the nth predictive model at time k, ac-
cording to the following expression, it 
can be seen that

''''

''

1  ,  0 1 1

1,   1 1  

nk k nk k

nk

nk k

y y y y
e

y y

⎧ − ≤ − <⎪
= ⎨

− ≥⎪⎩

where y
K  
is the actual value of the grade at 

time k; n=1…M, where M is the number of 
models. In this model,M=2; k=1, 2…N1, 

where N1 is the number of samples. The 
steps for determining the entropy value 
are as follows: 

Step 1: Calculate the predictive error pro-
portion of the nth single predictive model 
at time k.

1

M

nk nk nk
n

p e e
=

= ∑

Step 2: Calculate the entropy value  E
n
 of the nth single predictive model.
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1

11

1
ln  

ln

N

knknn
k

E p p
N =

= − ∑ (14)

(15)

(16)

(17)

(18)

(19)

Step 3: Calculate the sequence muta- tion degree d
n
 of the relative error sequence of the nth single predictive model.

1n nd E= −

Step 4: Calculate the weighted coef- ficients of every single predictive model.

Step 5: Calculate the output of the integrated model of entropy.

Finally, the concentrate grade and the tailings grade were obtained using the above methods.

3.4 Online model updating strategy based on the sliding time window
In the continuously running baux-

ite flotation process, the above model 
considered the multi-influencing fac-
tors of non-linearity and complexity. 
However, the model based on the data 
is easily influenced by disturbance vari-

ables in the flotation process, resulting 
in atime-varying property in the data; 
the model could not exactly reflect the 
production state when fluctuating. 
To avoid these problems, an online 
model updating strategy is constructed 

based on the sliding window approach 
(Kaartinen et al., 2005, CHAI, 2013) 
in this paper. 

Assuming that a set of learning 
samples obtained using the sliding win-
dow are expressed as S = {(x,y)}, where

y
ne
 is the corresponding actual output 

value of the new sample, and y(x
ne

) is 
the predictive value. Then, comparison 
between the predictive errors and the-
model accuracy threshold is achieved 
to judge whether the model needs to be 
trained again.If the predictive error is 
less than the threshold value (usually, 
±5% ), there is no need to train the 

model. Otherwise, the model needs to 
be trained again.

Step2: Determine whether samples 
need updating 

If the model needs to be trained 
again, the correlation coefficients δ2 
between the new collective data samples 
and the original training samples should 
be calculated. If the correlation is large, 

it may be considered that there is no new 
information brought by the new sample. 
In fact, because of noise interference, 
new samples are impossible to be com-
pletely expressed by the samples in the 
original training set. Therefore, the 
following approximation condition is 
used to judge whether the new samples 
have retention value:

*
2 2δ δ≤

If δ
2
 ≥ δ*

2
 , the latest sample should 

be abandoned. If  δ
2
 ≤ δ*

2
, the new samples 

should be added to the training of the 
next stage and the oldest training sample 

should be deleted.

4. Application validations in bauxite flotation

To test the working property of 
model, 385 groups of samples collected 
from April to June 2011 were analyzed. 
The Gaussian function was selected as 
the kernel function. Experiments de-

termined that the width was σ = 2.3. 
KPCA was used to perform dimension 
reduction towards the principal and 
subordinate input variable, E=85% 
(Schölkopf et al. 1998); the results are 

shown in Table1 and Table2. It can be 
observed from the tables that the number 
of principal elements was 4 and 3, respec-
tively. Principle elements were taken as 
the input parameters.

R

are the process output variables, and 
L

3
  is the sliding window length, then 

in the newly composed data sample 
set, S

1
 = {(x5,y5), s = L

3
+1,...,N

2
} repre-

sents the retained data samples in 
the original data sample sets, while  

S
2
 = {(x5,z5), s = N

2
+1,...N

2
+L

3
} represents 

the new data samples. The following 
method is used to judge whether there 
is a need to update the model samples.

Step1: Calculate the model pre-
dictive error.

The model predictive error at 
the new sample moments should be 
calculated with Eq.18.

are the input variables, R
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Principle Element Characteristic 
Value

Variance Percent-
age / %

Contribution Rate 
/%

1 1.3603 39.12 39.12

2 1.0146 28.64 67.76

3 0.648 17.19 84.95

4 0.196 5.32 90.27Table1
Analysis of feed parameterKPCA.

Table2
Analysis of image feature KPCA.

Principle Element Characteristic 
Value

Variance Percent-
age / %

Contribution 
Rate %

1 8.500 60.714 60.714

2 2.732 19.514 80.228

3 1.222 8.729 88.957

4 0.679 4.853 93.81

The WRELM predictive model was 
used to predict the concentrate grade. The 
parameters of the model, whose input 
sare the feed parameters, areas follows: 4 
input layer nodes, 9 hidden layer nodes, 
and 2 output layer nodes. The parameters 
of the model, whose input sare the im-
age features, areas follows: 3 input layer 
knots, 7 hidden-layer knots, and 2 output 
layer nodes. The Morlet wavelet was used 
as the activation function of the hidden 
layer; the ratio parameter of two types 
of risk is obtained by the cross-validation 
with γ = 0.01. The training time of the 

ELM algorithm was spent on solving 
the Moore-Penrose generalized inverse 
matrix of matrix H.However, RELM and 
WRELM include only one inverse opera-
tion of the LxL matrix, and the complexity 
of the model descended dramatically. 
Amodel whose sliding window size for 
model updating is N = 100was selected by 
the experiments as the training model; its 
precision threshold is 0.04 and δ*

2 = 0.05. 
All operations and solutions were simu-
lated on the MATLAB2011a platform. 

To demonstrate the effect of the 
proposed model, the study initially used 

one group of samples for training and the 
remaining87 groups of samples for test-
ing. The testing results areshown in Fig.2 
and Fig.3. Fig.2 gives the comparison of 
the concentrate grade after using these 
different models including the online 
hybrid predictive model (ON-HPM), the 
hybrid predictive model (HPM) and the 
measured value. Fig.3 gives the compari-
son of the tailings grade after using these 
different models including the online 
hybrid predictive model (ON-HPM), the 
hybrid predictive model (HPM) and the 
measured value.

Figure 2 
Comparison of 

concentrate grades between 
the predictive value and the actual value.
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Figure 3 
Comparison of tailing 
grade between the predictive 
value and the actual value
To measure the property of the 
proposed online hybrid predictive model, 
the study analyzed the predictive precision 
using mean relative error (MRE), root 
mean square error (RMSE) and correla-
tion coefficient R between the predictive 
result and the actual value. 
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where y
i
 is the actual value of the ith test-

ing sample and  is the predictive result of 
the ith testing sample. Table3 and Table4 
represent comparisons of the models of 

the two types.

Network model MRE RMSE R

ON-HPM  5.28 0.7453 0.93

HPM  8.12 1.6791 0.85

Table3
Predictive error 
analysis of the concentrate grade.

Network   model MRE RMSE R

ON-HPM 6.87 0.9254 0.88

HPM 11.43 2.1370 0.76

Table4
Predictive error 
analysis of the tailing grade.

It can be observed from Fig.2 and 
Fig.3 that the predicted value of ON-
HPM proposed by this paper is closer 
to the actual value. It is much more 
satisfactory than HPM, especially when 
the production state fluctuates, which 

indicates the significanceof the online 
update of the model. It can be observed 
from Tables 3 and 4 that the MRE and 
RMSE values of ON-HPM are the small-
est, which indicates the veryhigh precision 
of the proposed model. Compared with 

HPM, the precision of the online hybrid 
predictive model (ON-HPM) improves 
significantly. The average relative error of 
the concentrate grade is reduced to 5.28 
from 8.12, and the error of the tailings 
grade is reduced to 6.87 from 11.43.

5. Conclusions

Considering that the problems 
concerning the concentrate grade and 
the tailings grade of the flotation process 
are very difficult to be measured on-
line, an online hybrid predictive model 
is proposed. The regularized extreme 
learning machine is presented to the 
single hidden-layer fee forward network 
to solve the problems of low velocity and 
large error. The generalization property 

and the ability to process local data are 
improved using the wavelet function as 
the activation function. An online up-
dating strategy for the hybrid model is 
constructed, aimed at the fluctuation of 
the working conditions. The industrial 
validation results of the diasporic-bauxite 
flotation process show that the proposed 
method has higher predictive accuracy 
and generalization capacity. The average 

relative error of the concentrate grade is 
reduced to 5.28 from 8.12, and the error 
of the tailings grade is reduced to 6.87 
from 11.43. The correlation coefficients 
R between the predictive values and the 
actual values are 0.93 and 0.88, which is 
very satisfactory. Thus, this method can 
lay the foundation for the optimal control 
of operation parameters (reagent, pulp 
level, etc.) in the flotation process.
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