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Abstract

The problem of symmetric cross-section beams under oblique bending is well 
known to professional designers and academy. In fact, symmetric elements make 
up most of the cross-sections defined in design. The case of the asymmetric cross-
sections is, however, little discussed in literature, but is a particular problem, es-
pecially in bridge girder design, joined in loco. The asymmetry generates oblique 
bending when the load is out of the principal inertia planes. Thus, this article 
presents a comparison of results between a numerical solution of the elastic curve 
differential equations, and a Finite Element Model (FEM), for a 10m span rein-
forced concrete beam, with gutter-shaped asymmetric cross-section, whose only 
load is its own weight. The required geometric properties were determined by 
the Green Theorem. From theoretical study, the elastic curve differential equa-
tions were obtained, in the vertical and horizontal directions. The angular dis-
placement conditions at the beginning of the span were obtained by the Virtual 
Work Method. After integration using the Runge-Kutta Method, the maximum 
displacements in the vertical and horizontal directions, in the middle span, are 
0.904cm and 0.611cm, respectively (1.091cm resultant displacement). The Finite 
Element Model was performed in ANSYS 9.0. The resultant displacement of the 
numerical model was 1.16cm. Concurrently, the axial stresses were studied in 
the middle span. The stress results for both approaches (Runge-Kutta and FEM) 
differed by no more than 8.72%. These results guarantee reliability to the Runge-
Kutta integration, from a design view point, to the proposed problem analysis in 
Serviceability Limit State.

Keywords: asymmetric cross-sections. elastic curve. Runge-Kutta Method. Finite 
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1. Introduction

Most structural elements in civil 
construction (beams, columns) consist 
of straight bars with symmetric cross-
section. The bending moments are treated 
separately in both directions (vertical and 
horizontal) and the bending axial stresses 
are superimposed, since the element has 
axes of symmetry.

In the case of the symmetric cross-
sections, if a bending moment is applied 
in the direction of an axis of symmetry, 
the element displacement will occur in the 
plane perpendicular to that bending mo-
ment, and the Elastic Neutral Axis (ENA) 
will coincide with the bending moment.

The asymmetric cross-sections 
are frequently applied, for example, in 

roofing purlins, where steel profiles have 
unconventional cross-sections. These 
situations do not characterize a great 
problem, considering the low loads and 
spans to which they are submitted.

An important problem for asym-
metric cross-sections is the case of 
precast concrete girders with unconven-
tional geometry, which are joined at the 
construction site to form a symmetric 
section. Thus, during their casting and 
prestressing, and even the transport to 
the construction site, they are asymmetric 
cross-section girders subject to oblique 
bending. Besides the prestressing, other 
loads that also cause oblique flexion in 
this type of element are the dead load and 

other live loads.
For these situations, the transverse 

displacement occurs in 2 directions for 
any applied load; in a direction perpen-
dicular to the Elastic Neutral Axis. The 
ENA direction is also unknown in the 
problem.

This work presents the study of 
a gutter-shaped cross-section beam 
(asymmetric) under its dead load, ap-
plied in vertical direction, determina-
tion of the geometric properties using 
Green Theorem, flexure axial stresses 
and transversal displacements by 
numerical method (Runge-Kutta). A 
finite element model is introduced to 
corroborate the results.
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2. Materials and methods

2.1 Green Theorem
According to Kreyszig (2009), 

the Green Theorem transforms dou-
ble integrals in a region R of the xy 
plane into contour integrals in the C 

contour of this region, according to  
Equation 1:

This equation can be worked 
for discrete straight fragments in 
the plane and, thus, it is possible to 
obtain the equations that determine 

the geometric properties of any cross-
section, from the coordinates of their 
vertices. The geometric properties, 
area, static moments in x and y axes, 

moments of inertia in x and y axes, 
and product of inertia are given by 
Equations (2) to (7), respectively 
(KREYSZIG, 2009):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

With the definition of a matrix of 
coordinates of the cross-section N ver-

tices, and using the previous equations, 
the direction of the principal axes of 

inertia can be found.

2.2 Axial stresses - Fundaments
According to Oden and Ripperger 

(1981), the axial stresses in a coplanar 
curved beam, are obtained from the force 
resultants acting in the cross-section. For 

this, the strain of a “y” generic position 
in the cross-section is studied (Figure 1).

Figure 1
Axial and tangential stresses for 
curved beams (ODEN; RIPPERGER, 1981).

The validity of the hypothesis of 
plane sections (Bernoulli Hypothesis) is 

assumed and that the displacements in 
the cross-section are contained in a plane. 

One has, therefore, in the s-direction 
(Equation 8):

The constants a̅ , b̅  and c̅  are func-
tions of s (cross-section axis). The ratio 

between the lengths Δs and Δsy is given by 
Equation 9, from the analysis of Figure 1:
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(9)

(10)

(11)

(12)

(13)

(14)

(15)

The axial strain in the generic y-position in the cross-section is given by Equation 10:

After differentiating the function 
u (Equation 8), and applying the chain 
rule with Equation 9, the axial strain 

of the generic y-coordinate is obtained. 
By Hooke's Law for elastic materials, 
and neglecting the Poisson effects, the 

axial stress in the y-coordinate is given 
(Equation 11):

With Equation 11, the resultants 
of axial stresses (Ns axial force, My and 
Mz moments) can be reached by inte-
gration along the cross-section area. 

With the aid of Maclaurin series to 
simplify the integrals of the resultants, 
the constants a, b and c of Equation 
11 are determined. By eliminating the 

subscript y of this equation, the axial 
stresses of flexo-compression/tension 
are given by Equation 12:

In this equation Jy, Jz and Jyz are constants of inertia of the cross-section, Equation 13:

By making R→∞, they are particular-
ized for straight bars, and the constants of in-

ertia become moments of inertia and product 
of inertia (see Equation 14). With Equation 

14, the direction of the Elastic Neutral Axis 
(ENA) and the axial stresses can be found.

2.3 Elastic curve – Fundaments
Considering isotropic elastic-linear 

material, the principle of superimposition 
can be applied. The cross-section displace-

ment is a superimposition of the baricen-
tric axis displacement (u0), shortening of 
the cross-section vertical coordinates by 

wedging (u1) and displacement by cross-
section rotation around the y and z axes 
(u2), according to Equation 15:

Figures 2 to 3 illustrate the displacements.

Figure 2
Axes and displacement u0 

(ODEN; RIPPERGER, 1981).
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Figure 3
Displacements u1 e u2 
(ODEN; RIPPERGER, 1981).

For a generic vertical y-position, the Equation 15 can be particularized according to:

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Thus, the cross-section y-position 
strain is given by the derivative of the 

Equation 16 with respect to the sy fiber, 
according to Equation 17:

To the first term of Equation 17, the chain rule can be applied, since u0y (u0(s (sy))), in analogy to Equation 9, resulting:

For the second term of Equation 17, the strain εs1 can be obtained from the left-hand side of Figure 3. Thus, Equation 19:

For the third term of Equation 17, 
the right-hand side of Figure 3 is taken 

as the composition for displacement u2. 
Therefore, Equation 20:

Finally, the sum of the strains given 
by Equations 18, 19 and 20 is equal to 

the axial stress σs (given by Equation 
12) divided by the modulus of elasticity 

(Hooke's Law):

Working the terms, along with 
Equation 12, the differential equations of 
the elasticity curve for a coplanar curved 

beam under oblique bending are given 
by the Equations of (22): Working the 
terms, along with Equation 12, the dif-

ferential equations of the elasticity curve 
for a coplanar curved beam under oblique 
bending are given by the Equations of (22):
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2.4 Elastic curve – case study

The first Equation of (22) refers to 
the barycentric elasticity curve; that is, 
displacements along the element axis. 
The second equation is the elasticity 
curve in the y-direction; and the third 
one, in the z-direction. These equations 

were simplified in this study by making 
R→∞ for straight bars. The first Equation 
of (22) was neglected in the displacement 
calculations in this study. The equations 
of (22) suggest that the displacement will 
occur in two directions, even with load-

ing in only one direction.
Note that if the cross section 

is symmetric (Iyz = 0), the last two 
equations of (22) are reduced to the 
classical differential equations of the 
elastic curve.

Herein is presented the case of a 
gutter-shaped cross-section reinforced 
concrete beam, therefore asymmetric, 
simply supported and with a 10m span, 
submitted only to its own weight (Fig-
ure 4). Due to the asymmetry of the 
cross-section, this is a case of oblique 

bending. The reinforced concrete 
specific weight is γ = 25kN/m³ and its 
modulus of elasticity is defined as E = 
26070MPa. Thus, the own weight dead 
load to which the beam is subjected is 
13.6kN/m, applied in the y-direction in 
the beam geometric center.

Figure 4 illustrates its cross-section 
(dimensions in centimeters), its prin-
cipal inertia axes direction (θp), and 
the geometric properties determined 
by the Green Method (programmed in 
MathCad), from a coordinate matrix 
of its vertices.

Figure 4
Cross-section, principal 

axes of inertia and geometric properties.

With the own weight dead load 
and the span (10m), the equation of 
the bending moment in the z-direction 
was defined, for a section in a generic 
position (x) in the element’s longitudi-
nal axis, as: Mz(x) = -6.8x² + 68x [kN.m]; 
the My moment, in the other direction, 
is null.

Through the geometric properties 
and the bending moment equations, 
one can integrate the second and third 
equations of (22) with the Runge-

Kutta Method, and obtain the final 
elasticity curves in both directions.

However, since two-order dif-
ferential equations are involved, two 
boundary conditions are required for 
their resolution (BURDEN, FAIRES, 
2013). Since the beam is simply sup-
ported, one condition is the null dis-
placement at x=0m in both directions 
(v(0)=0m and w(0)=0m). The second 
condition is the elastic curve slope (an-
gular displacement) at x=0m, which 

can be determined by the Virtual 
Work Method (Figure 5).

By neglecting the effect of shear 
effort, the elastic curve slope is de-
termined from the definition of a 
unitary virtual moment in the position 
x=0m (SORIANO; LIMA, 2006). 
The angular displacement by bend-
ing moment of real loads is obtained 
from the analysis of Equations 22 of 
the elasticity curve for asymmetric 
sections.

Figure 5
Virtual work 

method –Angular displacement.

Thus, the virtual bending moment 
equation and the final equations of the 

Virtual Work Method (VWM) for the ini-
tial elasticity curve slope of the asymmet-

ric cross-sections are given by Equations 
23 to 25, respectively (MARTHA, 2010).

(23)

(24)
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In this way, all the necessary data 
to perform the differential equations in-
tegration by Runge-Kutta are given. The 
initial slope conditions resulted: v'(0)=-

0.002893rad and w'(0)=-0.001955rad.
The Runge-Kutta Method, for 

higher-order equations, is given by a 
simplification of the original equation 

for two first-order equations, and is sum-
marized in Equation 26. The term h is the 
integration step; in this study, its value was 
h=0.1m (PRESS et al., 2007).

(25)

(26)

These equations were programmed 
in MathCad, in the y and z directions, 
to obtain the displacement curves. A 3D 

model in finite element, with isoparametric 
elements of 8 nodes and 3 degrees of free-
dom per node, was defined to corroborate 

these results (BATHE, 1996). The linear 
own weight dead load was also applied 
to the numerical model geometric center.

3. Results

3.1 Axial stresses of oblique bending – Finite element model
The finite element model was per-

formed with the software ANSYS 9.0 
(element SOLID45). Figure 6 illustrates 
the bending axial stresses for the own 

weight dead load in a cross-section of the 
middle span.

It is observed that the numerical 
compression axial stress in the upper 
center of the beam left flap is -12155kN/
m²; at the same point, the analytical 
axial stress (obtained with Equation 

14), is σs(-16.7cm, -62.6cm)=-11610kN/
m². The numerical compression axial 
stress in the upper center of the beam 
right flap is -5102kN/m²; at the same 
point, the analytical axial stress is  

σs(19.2cm, -7.6cm)=-4657kN/m². The 
numerical tension axial stress at the 
lower left corner is 9005kN/m²; at the 
same point, the analytical axial stress 
is σs(-18.94cm, 27.4cm)=9097kN/m².

Figure 6
Axial stresses of 
oblique bending – span center [kn/m²].



215

Bruno Tasca de Linhares

REM, Int. Eng. J., Ouro Preto, 72(2), 209-216, apr. jun. | 2019

3.2 Elastic curve displacements – Finite element model
The numerical displacements in the middle span are given in Figures 7 and 8.

Figure 7
Displacements in 

y-direction [m] – vmax = -0.935cm.

Figure 8
Displacements in 

z-direction [m] – wmax = -0.683cm.

It is observed that the displace-
ments in the middle span resulted: 
v(5m)=-0.935cm; w(5m)=-0.683cm. The 
resultant displacement is (in modulus) 
1.16cm. It should be noted that the 

ANSYS 9.0 axis convention is different 
from the one adopted in the analytical 
method.

Figure 9 shows the resulting 
displacements from the integration 

of the differential equations by Run-
ge-Kutta. The displacements were: 
v(5m)=0.904cm and w(5m)=-0.611cm. 
Thus, the resultant displacement is 
1.091cm.

Figure 9
Displacements in the 

y and z directions – Runge-Kutta Method.

4. Discussion

The result analysis, in terms of 
axial stresses, shows that the analytical 
equation approximated well the values 
of the numerical model. The maxi-

mum difference observed at the points 
analyzed was 8.72%. From the axial 
stress diagram (Figure 6), it can be seen 
that the Elastic Neutral Axis (ENA) is 

inclined, following the direction of the 
presented axial stress boundaries. In 
fact, working the Equation 14 to zero, 
it results, approximately, in a 34º slope 
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for the ENA with respect to the hori-
zontal axis (clockwise), which coincides 
with the stress diagram from Figure 6.

It is noted in the numerical model, 
as expected, that there were displace-
ments in the horizontal and vertical 

directions. An inspection of the Equa-
tions of (22), had already predicted 
this effect.

5. Conclusion

This research aimed to highlight 
the structural effects that occur in an ele-
ment with asymmetric cross-section. The 
cross-section’s lack of symmetry produces, 
even for loading in only one direction, 
displacements in both directions, as well 
as a slope on the Elastic Neutral Axis 
(ENA). Generally, structural analysis 
programs neglect this effect, presenting 
only the displacement in the load direc-
tion, independently of the cross-section 
characteristics. Therefore, it is important 
to verify the asymmetry effects, especially 
in elements submitted to prestressing, 
considering that this type of structure is 
verified in the Serviceability Limit State 
(SLS), through axial stress and displace-
ments control.

The asymmetry effect is evident 
when the angular displacement in a bar 
by the Virtual Work Method is studied 
(Equations 24 and 25). The real displace-
ment is a function of the cross-section 
product of inertia and moments of inertia 
in both directions. Thus, the angular dis-
placement given by Equation 24, is only 
the y-component of the resultant angular 
displacement in both directions.

The analytical displacement, in the 
middle span, resulted: v(5m)=0.904cm, 
w(5m)= -0.611cm, with resultant dis-
placement of 1.091cm. This results in an 
angle of 55.94° (~56° counter-clockwise) 
with the horizontal axis. Since the Elastic 
Neutral Axis (ENA) has an angle of ~34° 
clockwise with respect to the horizontal 

axis (from Equation 14), this means that 
the resultant displacement is ~90° to the 
ENA, i.e. the final beam displacement is 
perpendicular to the ENA; a result con-
sistent with the symmetric cross-section 
case. This last statement corroborates the 
fact that for symmetric cross-sections, the 
elastic curve represents the ENA curvature 
(BEER et al., 2006).

The finite element model (FEM) 
displacements were very close (5.95% 
difference) to those obtained by the 
differential equations integration by 
Runge-Kutta. Therefore, in a Service-
ability Limit State, and from a design 
view point, the elastic curve integration 
by Runge-Kutta is validated with the 
finite element model adopted.
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