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Inelastic second-order 
analysis of steel columns 
under minor-axis bending
Abstract

The inelastic second-order behavior of steel structural columns under minor-axis 
bending is presented in this article. To study this behavior, a nonlinear frame element 
formulation is adopted in which the steel’s plasticity process is accompanied at the 
nodal points of each finite element through the refined plastic-hinge method (RPHM). 
A tangent modulus approach is employed in order to consider the stiffness degrada-
tion in function of the internal forces’ variation, and the second-order effects, residual 
stresses and geometric imperfections are considered in the modeling of column behav-
ior. As a criterium for defining the ultimate limit state of the column cross-section, 
strength surfaces are adopted. These surfaces describe the interaction between the 
axial force and bending moment (N-M interaction diagrams). To solve the nonlinear 
equilibrium equation for the structural system, the Newton-Raphson method is used, 
coupled with continuation strategies. Columns with different slenderness, boundary 
and loading conditions are analyzed, and the results obtained are comparable to those 
found by other researchers. The results lead to the conclusion that the numerical ap-
proach adopted in this study can be used for a better behavioral understanding of the 
steel column under weak-axis bending.

Keywords: Steel columns, inelastic second-order analysis, minor-axis bending, 
finite element method, refined plastic-hinge method.
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1. Introduction

Nowadays, steel material is com-
monly employed in civil construction. 
Besides being a completely recyclable 
material, steel has important characteris-
tics such as strength and durability, good 
ductility and speedy manufacturing and 
assembly times. For the steel member 
and frame structure analysis, highlighted 
herein is an advanced analysis that has 
the capacity to simultaneously evaluate 
its strength and stability.

In a nonlinear finite element context 
for steel member and frame numerical 
analysis, two inelastic analysis approaches 
are usually employed: the plastic zone 

method (PZM) and the refined plastic-
hinge method (RPHM). In the PZM 
(Clarke, 1994; Alvarenga, 2010), the 
cross-section of each finite element is 
discretized in fibers and the second order 
effects and residual stresses can be di-
rectly considered in the analysis. Another 
important characteristic is that with the 
stress state obtained in each fiber, it is 
possible to monitor the gradual yielding 
in the cross-section. Due to the efficiency 
of this method, its solutions are usually 
treated as “exact solutions” in literature 
(Chen and Kim, 1997). However, the 
PZM is not routinely used in engineer-

ing offices, since it requires an intense 
computational effort. Because of this, 
its application is usually restricted to the 
simulation of simple structures that serve 
as comparisons and/or calibrations for the 
development of other numerical models 
and formulations.

In the RPHM (Liew et al., 1993; 
Chan and Chui, 2000), the consideration 
of material plasticity is concentrated at 
the nodal points of each finite element. 
At these nodes, the formation of plastic 
hinges can occur, characterizing the 
plasticity of the entire cross-section. This 
method is computationally more practical 
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and captures, in an approximating man-
ner, the advance of the plasticity in the 
element cross-sections before the forma-
tion of the plastic hinges. Residual stresses 
effects can also be considered.

The objective of this study is to use 
an RPHM that permits adequate model-
ing for the inelastic behavior of steel col-
umns with type I compact sections under 
weak or minor-axis bending. Although 
unusual, the columns where the bend-
ing occurs under this axis can present 
important benefits such as the capacity 
to develop all of their plastic strength 
without lateral-torsional buckling (BS 
5950, 2000; AISC, 2005). Besides this, 

for profiles having wide flanges, the shape 
factor is approximately 35% greater than 
the referent for the major axis (Kanchana-
lai and Lu, 1979).

To achieve the proposed objective, 
the tangent modulus equation suggested 
by Ziemian and McGuire (2002) is 
implemented in the CS ASA (Computa-
tional System for Advanced Structural 
Analysis; Silva, 2009). In this equation, 
the cross-section stiffness degradation 
varies in function of the axial force and 
bending moment around the minor axis. 
The numerical formulation proposed also 
employs the strength surfaces (McGuire 
et al., 2000; BS 5950, 2000), adequately 

evaluating the interaction between the 
axial force and bending moment at the 
minor axis. Validation of these strate-
gies is made by analysis of the columns 
under various boundaries, slenderness 
and loading conditions. The results 
obtained are compared with analytical 
and numerical solutions obtained using 
the PZM. In this study, the second order 
effects are simulated, and the nonlinear 
solution methodology is based on the 
Newton-Raphson method coupled with 
continuation strategies. The details of this 
methodology are presented on the next 
two sections. Section 4 presents three 
numerical examples.

2. Inelastic formulation based on rphm

In this section, the inelastic for-
mulation based on the RPHM imple-
mented in CS-ASA is presented along 
with the main interventions made for 
this study. The following assumptions 
are considered in the column modeling: 
all finite elements are initially straight 
and prismatic and their cross-sections 

remain plane after a deformation, the 
steel profiles are compact, rigid body 
large displacements and rotations are 
permitted, and the shear deformation 
effects are ignored. The finite element 
utilized is the frame element delimited 
by nodal points i and j, with fictitious 
springs at the ends, as illustrated in 

Fig. 1a in the co-rotational system 
(Belytschko and Galum, 1979). Also in  
Fig. 1a, P, M

i
, M

j and δ, θ
i
, θ

j
 are the in-

ternal forces and natural displacements 
in the co-rotational system, respectively; 
the spring parameter ψ

i
 (or ψ

j
) is associ-

ated with the plastic level of the node i 
(or j) and is detailed below.

(a) (b)

Figure 1
Finite element 
adopted for the modelling of columns.

The objective of the RPHM is to 
capture the advance of the plastification 
at the nodal points of elements, from the 
beginning of the yielding to its total plas-
tification with the plastic hinge formation. 
To achieve this goal, the inelastic formula-
tion adopted in this study is based on the 

proposal made by Chan and Chui (2000), 
where it is considered that the plasticity 
development in the structural members 
is simulated through fictitious springs  
(Fig. 1b). To monitor the stiffness degra-
dation of the cross-section at the element 
nodal points, the parameter ψ is used, 

which assumes a unitary value (ψ = 1) 
when the element is under elastic regime, 
and it is annulled (ψ = 0), when the forma-
tion of a plastic hinge occurs. When in an 
elasto-plastic regime, the stiffness of the 
spring S

s
 can be expressed as (Gonçalves, 

2013; Silva, 2009):

6
1s

EI
S

L
= , with pr

rerp

M M

M M M M
=

+
 and ( )/M f f P A  W=  

y r

where E is the elasticity modulus, I is the 
moment of inertia and L is the length of the 
frame element; M

er
 is the bending moment 

when yield begins and M
pr
 is the reduced 

bending moment when plasticity occurs, 
defined according to the choice of strength 
surface (see Section 3); f

y
 is the yield stress, 

f
r
 is the residual stress, A is the cross-section 

area and W is the section elastic modulus.
In Fig. 1b, the flexural equilibrium 

conditions in the spring elements are 
expressed by equations: 

isis si si

si si ibib

M S -S

-S SM
=   and  

jsjs sj sj

sj sj jbjb

M S -S

-S SM
=  

where ΔM
s
, Δθ

s
 and ΔM

b
, Δθ

b
 are the 

bending moments and rotation incre-
ments in the joints of the spring element 

with the global node and with the beam 
element, respectively.

For the internal beam element (Fig. 

1b), the moment-rotation relationship 
is given by:

(1)

(2)
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with E
t
 representing the tangent modulus 

and L the element length.
Associating the Eqs. (2) and (3), one 

can arrive in the following matrix equation:

0 0

0

0

0 0

isis si si

ibib

jbjb ji sj jj sj

sj sj jsjs

M S -S

M

M k S k -S

-S SM

+
=

+  

Now, assuming that the loads 
are applied only in the global nodes 
of the element (ΔM

bi
 and ΔM

bj
 are 

equal to zero), making some matrices 
algebraic manipulations and includ-
ing the axial effect (frame element), 

one can arrive in the following force-
displacement relationship in the element  
co-rotational system:

0 0

0

0

2

2

EA / LP

M

  or, 

with b = (S
si
 + k

ii
) (S

sj
 + k

jj
) - k

ji 
k

ij
. The sub-

script c indicates the coordinate system 
utilized; A is the cross-section area; ΔP 
is the increment of axial force and Δδ 

is the increment of axial deformation.
The tangent modulus E

t
 captures, 

in an approximate manner, the reduc-
tion of the element’s sectional stiffness 

due to the axial force. The strength 
equations for the columns of AISC 
(2005) define the variation of the tan-
gent modulus as:

where E is the material modulus of 
elasticity, P is the active axial force, 
and P

y
 is the axial yield force. These 

equations include the effect of the 

initial imperfections as well as the 
residual stresses in the columns. 
However, this is only valid for axial 
forces of compression (P < 0). For axial 

tension forces (P > 0), the strength 
equations for columns proposed by 
CRC (Galambos, 1998) can be used 
and are given by:

where the residual stresses effects are 
implicitly considered.

Ziemian and McGuire (2002) pro-

posed a modification to the equations 
presented in the CRC (Galambos, 1998) 
in which the tangent modulus varies in 

function of the axial force and the bend-
ing moment about the weakest axis. In 
this case:

where the term β is an empirical value, 
which, in the inelastic second-order 
analysis, is equal to 0.65 for members 

under minor-axis bending (Ziemian 
and McGuire, 2002); M

y
 and M

Py
 are the 

bending moment and the plastic bending 

moment, both in relation to the minor 
axis. Using these equations in the analysis 
of structural members under minor-axis 

(9)

(8)

(7)

(6)

(5)

(4)

=
ibib ii ij

ji jj jbjb

M k k

k kM  

where ΔM
bi
, ΔM

bj
, Δθ

bi
 and Δθ

bj
 are the 

bending moments and rotation incre-
ments associated with the nodal points 

i and j of the beam element. The terms 
k

ii
, k

ij
, k

ji and k
jj
 are responsible for simu-

lating the bending stiffness and second-

order effects. They are defined as (Yang 
and Kuo, 1994):

(3)
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bending, Ziemian and McGuire (2002) 
obtained results that were compatible with 

those encountered when using the PZM. 
Considering only the axial forces, Fig. 2 

displays a comparison between the above 
Eqs. (7), (8) and (9).

Figure 2
Tangent modulus variations.

To reach the proposed objective 
herein, the tangent modulus equations 
are utilized as indicated by Ziemian and 

McGuire (2002), which depend on the 
axial force and moment under minor-axis 
bending. Since this moment is evaluated 

at the i and j ends of the finite element 
(Fig. 1), the tangent modulus can be 
calculated as:

with E
t,i
 and E

t,j
 representing the modified 

tangent modulus at the i and j element 
ends, respectively.

The terms k of the stiffness ma-

trix in Eq. (6) are recalculated tak-
ing to consideration that the tangent 
modulus varies linearly along the 
length of the finite element. Using 

the appropriate interpolation func-
tions, the first part of k

ii
, k

ij
, k

ji
 and k

jj 

are redefined considering E
t
, through  

the relationships:

(10)

(11a)

(11b)

(11c)

(12a)

Resolving the previous integrals, the coefficients k
ii
, k

ij
, k

ji
 and k

jj
 become:

(12b)

(12c)

Equation (6) is valid until the 
internal forces reach the section plastic 
strength. From then on, with the section 
having already suffered total plastifica-
tion, the increase of the axial force, for 

example, creates a condition where the 
strength of the section is less than that 
of the forces acting upon it. As such, 
an alteration in the force-displacement 
relationship is necessary so that the 

strength plastic equations for the sec-
tion are not violated. This alteration 
and the transformation of Eq. (6) into 
the global coordinates system is detailed 
in Gonçalves (2013) and Silva (2009).
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In an inelastic analysis, it is neces-
sary to accurately estimate the ultimate 
capacity of the structural members. To 
achieve this, criteria are established that 
define the plastic strength limit of the 
structural member. Amongst the various 
existing criteria (von Mises, Tresca, etc.) 
defined from the stress state, the surface 
strength in which the plastic limit is 
reached can be determined through the 

combination of internal forces in the 
cross-section (Orbison et al., 1982; Duan 
and Chen, 1990). In the RPHM context, 
these surfaces are responsible for defin-
ing the instant in which the plastic hinge 
occurs (cross-section total plastification). 
For this study, two strength surfaces are 
adopted where the interaction between 
axial force and the bending moment in 
the transversal sections are evaluated. 

The behavior of the structural member 
when the bending moment acts on the 
weakest axis is illustrated in Fig. 3, where 
Δx indicates the deformation due to the 
load applied to provoke bending.

The first strength surface, pro-
posed by McGuire et al. (2000), is 
valid for standard American profiles 
of light to medium weight and can be 
expressed by:

Figure 3
Structural column 

under minor-axis bending.

3. Strength surfaces

where M
pry

 is the reduced plastic moment 
and M

py
 is the plastic moment, both in 

relation to the minor axis. In this equa-
tion, p is the relationship between the 

active axial force and the axial yield 
force (p = P/P

y
).

The British Standard BS 5950 
(2000) supplies expressions for the re-

duced plastic moment (M
pr
) for compact 

I or H profiles in the presence of axial 
force. In relation to the minor axis bend-
ing, these equations are given by:

(13)

(14b)

(14a)

where, as illustrated in Fig. 3, t
w
 is the 

web thickness, t
f
 is the flange thickness, 

B
f is the flange width, D is the height of 

the profile’s section and A is the area of 
the profile’s section. The term Z

y
 is the 

minor-axis plastic section modulus. 

Figure 4 illustrates the two strength 
surfaces obtained by the equations 
previously presented.

Figure 4
Initial yield and 

strength surfaces adopted.
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The effects caused by residual 
stresses are considered in an implicit 
manner on the tangent modulus. How-
ever, these stresses are expressed in an 
explicit form to determinate the bending 

moment when yield begins (Eq. 1) and 
to obtain the initial yield surface (Fig. 
4). In the present article, these stresses 
were defined following standard recom-
mendations (ECCS, 1983; AISC, 2005; 

see Fig. 5). It is worth mentioning that in 
members under weak-axis bending, the 
effect of residual stresses is more pro-
nounced, since they affect the extreme 
fibers more.

Figure 5
Residual stresses as 
recommended by ECCS (1983).

4.  Numerical examples

In this section, the adopted numeri-
cal strategies for the inelastic second-order 
analysis of columns under minor-axis 
bending are evaluated. Specifically, the 
importance of considering the modified 
tangent modulus model proposed by Zi-
emian and McGuire (2002) to simulate the 
stiffness degradation of the cross-section 
will be highlighted. Also studied are the 

two plastic strength surfaces that were 
previously described. To demonstrate 
this, three columns with different load 
and boundary conditions are studied and 
the results compared with those found in 
literature. As nonlinear solver strategy, the 
generalized displacement strategy (load-
increment strategy) and the minimum 
norm of residual displacement strategy 

with the Newton-Raphson method (itera-
tive strategy) are adopted (Silva, 2009). A 
tolerance factor of 10-4 is used.

To facilitate the presentation of 
the results, a simplified notation is used, 
given in Table 1, to refer to the different 
tangent modulus models. As indicated, 
the use of the constant modulus of  
elasticity is also possible.

Notation Description:  Equation

E
t0

Constant value

E
t1

AISC (2005) and CRC (Galambos, 1998): Eqs. (7) and (8)

E
t2

CRC (Galambos, 1998): Eq. (8)

E
t3

Ziemian and McGuire (2002): Eq. (9)
Table 1
Tangent modulus notation.

4.1 Fixed-Free column
Consider a fixed-free column submit-

ted to a permanent vertical load P and a vari-
able horizontal load H applied perpendicu-

larly to the minor axis as illustrated in Fig. 
6. This example was previously analyzed by 
Zubydan (2011) to validate his numerical 

formulations. This figure also includes the 
member material and geometry data, as well 
as the finite element discretization.

Figure 6
Fixed-free column and 
the finite element discretization.

The behavior of the column is 
investigated taking into consideration 
three permanent load P levels: 20%, 40% 
and 60% of the axial yield load, Py. By 
controlling the horizontal displacement u 
at the top of the column, the equilibrium 
paths illustrated in Fig. 7 are obtained. 

The values obtained for the horizontal 
load at collapse are summarized in 
Table 2.

The results obtained by Zubydan 
(2011), who utilized the PZM, are used 
for comparison. The residual stresses are 
defined according to recommendations 

from ECCS (1983). The strength surfaces 
proposed by McGuire et al. (2000) are 
chosen, and the results are presented 
varying the representative model for the 
tangent modulus.

By analyzing the load-displacement 
curves and the collapse loads in Table 2, 
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it is possible to conclude that the tangent 
modulus E

t3 is more efficient in forecasting 
the load limit. The other models overes-
timate the collapse load limit, especially 

for high values in the P/P
y
 relationship.

Now, maintaining the tangent 
modulus E

t3
, another analysis involving 

the variation of the strength surfaces is 

performed. Figure 8 displays the equi-
librium paths obtained. Notice the good 
agreement between the two strength 
surfaces studied.

Figure 7
Free-fixed column equilibrium paths.

Figure 8
Equilibrium paths 

for different strength surfaces.

Tangent modulus
Collapse load H (kN)

P/P
y
 = 0.2 P/P

y
 = 0.4 P/P

y
 = 0.6

E
t0

88.50 61.44 29.72

E
t1

88.50 61.44 28.18

E
t2

88.50 61.44 28.18

E
t3

81.88 41.97 9.69
Table 2

Horizontal collapse load H.

4.2  Pinned column
Assuming that there is a permanent 

axial load P acting at the ends of the 
pinned column, two loading conditions 
are evaluated: the variable bending mo-
ment acting at the two ends and the vari-
able horizontal load applied to the center 
of the column, as shown in Fig. 9. The 
column bending in both loading cases 
occurs under the weak-axis.

Ten finite elements are used in the 

discretization of the member. The cross-
section and the material data used are also 
presented in Fig. 9. In the analysis, the 
strength surface used is that which is recom-
mended in BS 5950 and the residual stresses 
indicated in ECCS (1983) are adopted.

The interaction curves (axial force 
x bending moment) for each of these 
investigated columns are presented in 
Fig. 10. The study was made taking into 

consideration the slenderness parameter 
L/r

y
 (where L is the column length and ry 

the radius of gyration) equal to 40, 80 
and 120. The analyses adopted E

t1
 and E

t3
 

for the tangent modulus. With the finality 
of validating results, analytical solutions 
developed by Kanchanalai and Lu (1979) 
were employed. For the case of the column 
with moments at the two ends, the results 
obtained by Zubidan (2011) are also used.
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Figure 9
Pinned column under
different loading conditions.

It is observed in Fig. 10a that 
when L/r

y
 = 120 is used with the E

t1
 

tangent modulus, the interaction curve 
obtained is almost coincident with the 
analytical solution. However, for less 
slender parameters, the strength for 

the column is overestimated. In turn, 
the tangent modulus E

t3
 furnished con-

servative curves for all of the situations 
related to the analytical solutions, and 
it is more precise when compared to the 
solutions by Zubidan (2011), who used 

the PZM. This is also verified with the 
column under a horizontal load, as can 
be seen in Fig. 10b. In this case, with 
Et1, good results are also obtained when  
L/r

y
 = 40; however, for L/r

y
 = 80, the 

strength is still overestimated.

(a) (b)

Figure 10
Pinned column interaction curves.

4.3 Pinned column with initial curvature
The last column studied is a 

pinned column with an initial curva-
ture, as presented in Fig. 11. Its physi-
cal and geometrical properties, as well 
as the load applied on the column, are 
also presented in Fig. 11. It is assumed 

that the initial imperfection is a sinu-
soidal function of L/1000 amplitude in 
the direction of the minor axis.

The column discretization is 
made with four finite elements. The 
study was done by altering the column 

length so that the slenderness param-
eter of the column L/(r

y
π)(f

y
/E)0.5 var-

ied from 0 to 2.5, approximately. The 
column’s load limit was obtained for 
each situation and its variation with 
the slenderness index is illustrated in 

Figure 11
Pinned column with initial curvature 
and its finite element discretization.
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Fig. 12a. A residual stress of 30%fy 
was adopted and the strength surface 
was taken from BS 5950 (2000). The 
results were validated when compared 
with those by Ziemian and McGuire 
(2002), who used the NIFA computa-
tional program with the PZM.

Once again, observing the results 
shown in Fig. 12a, the tangent modulus 
E

t3
 proposed by Ziemian and McGuire 

(2002) stands out as the best represen-
tation for the column behavior. When 
utilizing the modulus E

t1
 and E

t2
, the 

critical load P is overestimated.

The structural response obtained 
using the tangent modulus E

t3
 with the 

strength surface suggested by McGuire 
et al. (2000) was also estimated. From the 
results presented in Fig. 12b, it is possible 
to conclude that when using this surface, 
the efficiency of modulus E

t3
 is maintained.

(a) (b)

Figure 12
Pinned column:

load limit (P/P
y
) x slenderness index λ.

5. Conclusions

Acknowledgments

This article presented a numerical 
methodology that permits the inelastic 
second-order analysis of steel columns 
under minor-axis bending. The residual 
stresses and geometric imperfections 
were also considered in the modeling 
of the column behavior.
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represent the steel column under 
minor-axis bending behavior include 
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the nodal points of each finite element, 
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the advancement of the plasticity in the 
element cross-sections before the for-
mation of the plastic hinges (RPHM), 
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load-displacement curves and load-
slenderness curves of the investigated 
columns. Better accuracy of the results 
compared to the analyses performed 
with another tangent modulus available 
in the computational platform CS-ASA 
were also observed. In general, the 
other tangent modulus models overes-

timated the columns’ critical load. Fur-
thermore, in the interaction curves (PM 
interaction diagrams), the adoption of 
the modified tangent modulus showed 
good agreement with the numerical 
results found in literature.

The utilization of the strength 
surface proposed by McGuire et al. 
(2000) or the interaction diagram 
recommended by the BS 5950 (2000), 
together with the modified tangent 
modulus proposed by Ziemian and 
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