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Abstract

Geologic modeling is an important step in determining the benefits and final pit 
dimensions for mining operations. Geostatistical models and distance-based functions 
are the main methods used to estimate the grade behavior. However, these two meth-
ods, despite their similar mean values, differ in spatial variability. The objective of this 
article is to prove, by comparing the two methodologies, that models with different 
spatial variability using the Lerchs-Grossmann algorithm will output subtly different 
final pit dimensions and scheduling. Furthermore, with the direct block schedule (DBS), 
these differences can be considerable. The tests compared the methodologies using the 
following three models: inverse distance (ID), ordinary kriging (OK) and turning bands 
simulation (TBS). The results demonstrate that the Lerchs-Grossmann algorithm is only 
slightly sensitive to the spatial variability of the grade; however, DBS requires the model 
populations to be better defined because of its greater sensitivity to spatial variability.

keywords: Mine Planning, Geostatistics, Geologic Modeling, Direct Block Scheduling, 
Lerchs-Grossmann.
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1. Introduction

Determining the lithology and grade 
distribution in a deposit is highly relevant 
to the mineral industry. The spatial distri-
bution of the samples directly influences 
the estimation of resources and reserves 
(NERY, 1995). The reliability of the geo-
logical spatial distribution, its shape and 
grade distribution have important effects 
on later stages of a project. However, 
when a geostatistical approach is applied, 
the following typical problems can occur 
(JOURNEL and HUIJBREGTS, 1989):

- Global and local estimation: esti-
mation methods that have local accuracy, 
usually employing interpolation methods, 
produce results that “smooth” the values, 
causing a variation of the phenomena 
as a whole. In contrast, global methods, 
usually involving simulations, have the 
opposite effect, resulting in good overall 
definition with a loss of local accuracy 
(FURUIE, 2009).

 - Supporting effect: the estimation 
process is completed by generating blocks 
with grade distribution, with separate es-
timations for each block of the model. The 
definition of the block dimensions has a 
great influence on the estimation since the 
definition is performed based on informa-
tion obtained by drill holes with much 
smaller dimensions than the estimated 
block. This situation requires the definition 
of the best block dimension to ensure the 
reliability of the resource estimation for the 
data (NERY, 1995).

- Data distribution: it is common to 
have clustered data in space, either due to 
intentional choice or to an unavoidable 
need at the moment the sample is obtained. 
These clustered data cause a bias in the 
resource estimation because the data do 
not accurately represent the study region. 
To overcome this problem, there are several 
ungrouping methods, such as influence 
polygons, moving windows, mean kriging, 
etc. (CORNETTI, 2003; SOUZA, WEISS, 
et al., 2001).

These problems can lead to mine 
planning errors, such as differences be-
tween the estimated and actual data, 
larger block estimates for actual drilling 
blocks that exceed equipment capacity, 
and increased mining costs due to as-
sumptions of different rock types than 
are actually present. It should be noted 
that the estimation methods are not free 
of errors due to the existing fundamental 
errors in the various steps that make up 
the entire process (GRIGORIEFF, COSTA 
and KOPPE, 2002); however, the method 
attempts to minimize errors. Generally, 
homogeneous deposits present good results 
for interpolation methods, such as kriging 
and inverse distance (ID). Simulations are 
used to circumvent the smoothing problem 
and provide variability of the deposit that 
may be more representative of reality than 
the values estimated with another method 
(JOURNEL and HUIJBREGTS, 1989). 
However, these simulations are not error 
free (OLEA, 1999) and do not provide a 
representative scenario but, rather, a set of 
equally likely scenarios.

The ID method is a very popular 
spatial interpolation method based on the 
premise that the points in any pair of points 
have a relationship with each other; this re-
lationship is inversely related to the distance 
between their positions (LU and WONG, 
2008). Kriging is the general name given to 
linear regression techniques that minimize 
the variance of estimates, variances that 
were defined in an earlier experimental 
semivariogram model (OLEA, 1991). Geo-
statistical simulation techniques attempt to 
generate several simulated scenarios based 
on an algorithm and do not present the 
smoothing data problem; therefore, the 
use of this technique is one possible way 
to avoid the existing problem in kriging. 
The turning band simulation (TBS) method 
simplifies the multidimensional space prob-
lem using one-dimensional simulations and 
extends them to 2D or 3D space (AFZAL, 

ALHOSEINI, et al., 2014).
The classical methodology for final 

pit definition applies the Lerchs-Gross-
mann (LG) algorithm “to draw the contour 
of an open pit in a way to maximize the 
differences between the total value of the 
exploited mineralization and the total cost 
of mining the ore and waste” (LERCHS 
and GROSSMANN, 1965). The result of 
the algorithm is an optimum final pit; how-
ever, it does not consider the time required 
for the extraction of each block, which is 
necessary to divide the pit into phases and, 
in a later stage, conduct production plan-
ning (GOYCOOLEA, MORENO and 
RIVERA, 2013). Direct block scheduling 
(DBS) has evolved (JÉLVEZ, MORALES, 
et al., 2016), enabling the algorithms to 
work by generating pits under various 
physical and operational constraints. The 
major difference is the consideration of the 
extraction time to determine the values 
of the blocks, which is more representa-
tive of reality, mainly due to the attempt 
to perform a determination of the pit 
considering operational constraints that 
commonly occur but are not considered 
in LG, such as stockpiling and multiple  
destination possibilities.

In industry, spatial variability does 
not receive proper attention; instead, the 
average values are considered, especially 
for the grade values. During mine planning, 
mining higher-graded regions can antici-
pate revenues and increase the net present 
value (NPV) of a project. This is one of the 
bases of DBS, which considers the period 
of each block extraction to calculate the 
expected income.

Existing methods for generating the 
geological model and the pit make clear 
the relevance of studying the combination 
between these methods and their different 
results to determine the best combination 
between model generation and pit deter-
mination techniques that will produce the 
minimum error to meet user objectives.

Literature review
Spatial estimates were typically per-

formed via the ID technique, in which 
weights are assigned to the samples as an 
inverse function of the distances between 
the samples and the points to be estimated. 
The power number (p) can assume any in-
teger value, most commonly 2 (BABAK and 
DEUTSCH, 2009). However, this method 
has great limitations (SRIVASTAVA, 2013); 
for example, it does not allow the variation 

of weights based in other information, it 
does not consider the possibility of redun-
dant samples, it generates errors due to the 
division by zero when the distance is zero, 
and it does not provide a mechanism to 
evaluate the reliability of the results.

Currently, estimates are made mostly 
via the kriging (RAVÉ, JÍMENEZ-HOME-
RO, et al., 2014) method, which provides 
effective solutions compared to the disad-

vantages of the ID. The kriging method was 
developed by Daniel Krige and formalized 
by Matheron in the 1960s (MATHERON, 
1963). Kriging is a generic term for a series 
of least squares methods used to provide the 
best linear unbiased estimation by minimiz-
ing data variance. Ordinary kriging (OK) 
in its original formulation (MATHERON, 
1965) is the most popular method because 
it performs well in most situations, with its 
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easily satisfied assumptions, simple data 
requirements and variogram implementation 
function (OLIVER and WEBSTER, 2014). 
The variogram is a theoretical function 
of the random study process obtained by 
an analysis of the data values for different 
distances in a certain direction. With the 
variogram function, kriging solves a set 
of linear equations, known as the kriging 
system, which contains semivariants of the 
function.

The TBS method is a stochastic spa-
tial simulation that uses a nonlinear data 
transformation for the Gaussian domain 
(MATHERON, 1973). The method is con-
sidered an approximative algorithm due to 
its random runs, in which the distributions 
are close to the multivariate Gaussian distri-
bution of the input data, since the simulated 
fields are non-ergodic (FURUIE, 2009). This 
methodology works with a reduction in the 
dimensional space; in other words, it uses 
data in two or three dimensions, simpli-
fies them to a one-dimensional space and 

performs several independent simulations 
(FURUIE, 2009).

The optimal final pit definition is 
typically defined based on the block value 
of the geological input model. The LG 
algorithm is mathematically based on the 
representation of the problem by graphs  
G = (V, A), defined as a collection of the set 
V of elements Vj (j = 1, 2,..., n) called nodes 
of G, with a set A of pairs of elements of x, 
called arcs or branches of the graphs. Each 
block corresponds to a node and receives 
a “weight” that is its value. The algorithm 
then constructs a graph from the base of the 
operation, defining “strong” and “weak” 
branches. The branches are created from the 
bottom of the pit to the surface, defining the 
optimal contour of the pit. The pit contains 
the highest possible sum of block “values,” 
respecting the constraints such as general 
slope stability and blocks of precedence 
(CARMOS, CURI and SOUSA, 2006). The 
major issue with the algorithm is that it does 
not consider time when assigning the block 

values; therefore, the generated optimum pit 
is an optimum instant pit. After the final pit 
is defined by the LG algorithm, it is neces-
sary to determine the production sequence, 
called pushbacks, to determine the sequence 
of mining according to the operational ca-
pabilities of the project.

The DBS algorithm attempts to over-
come the main LG issue, and it generates 
the most valuable pit considering the time of 
extraction for each block, its various desti-
nation possibilities and the production con-
straints. The greatest difficulty with these 
new methods is the need to use heuristics to 
achieve a solution, which does not guarantee 
an optimal final result (RAMAZAN, 2006). 
Techniques such as a tabu search, Lagrange 
decomposition and fundamental tree are 
used as tools for the development of these 
algorithms. Generally, all techniques are 
based on the same principle to maximize the 
project net present value subject to restric-
tions that may vary according to the project 
requirements and the intent of its creators.

2. Methodology

Resource estimation 
A database of drill holes from 

an iron ore mine was used in this 
study. The mine is located in the iron 

quadrilateral region in the state of 
Minas Gerais. The database contains 
geo-referenced information from drill 

holes, and a summary of the random 
variable iron grades is provided in 
Table 1.

Variable Minimum (%) Maximum (%) Mean (%) Standard deviation (%)

Iron 5.40 62.62 45.72 11.72
Table 1

Summary of iron samples.

To conduct the study of the reserve, 
three resource models were created. The 
first model was obtained with the ID 
technique with a power value of 2. The 
second model applied OK with search 

ellipsoids with the parameters obtained 
from the semivariogram analysis. The 
third model was based on 25 simulations 
using the TBS method with data from 
the search ellipsoid. For all models, a 

minimum of 4 samples and a maximum of 
12 were chosen for the estimation of each 
block. The block size was chosen based on 
operational factors and the experience of 
researchers from similar projects.

Resources modeled by kriging
The data were analyzed and validat-

ed using SGeMs (Stanford Geostatistical 
Modeling Software). It was necessary to 

decluster the data to obtain the experi-
mental semivariogram. Figure 1 shows 
the optimized result of the declustering 

process with the values at 1280 meters 
in the X- and Y-directions as well as 18.5 
meters in the Z-direction.

Figure 1
Data declustering.
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The declustered data were used to 
determine the experimental variograms 
used to build the theoretical model. The 

main direction determined was N40°, 
and the secondary direction was the per-
pendicular direction (D-90). A summary 

related to the variography stage is shown 
in Table 2 and Figure 2. The best fit was 
based on the spherical model.

Adjustment data Value

Range X 600 m

Range Y 450 m

Range Z 130 m

Sill 80

Nugget Effect 15

Table 2
Search ellipsoid data for ordinary 
kriging and inverse distance method.

Figure 2
Adjustment variogram for N40°
according to the spherical model.

Resources modeled by inverse distance
The construction of the model based 

on the ID used the same parameters for the 
search ellipsoid as in the kriging modeling 
(Table 2). A power value of 2 was used in the 

estimation, which is based on the deposit 
stratification and smooth grade transition.

Resources modeled by turning bands simulation
The data and spatial analysis deter-

mined with the kriging method were used 
on the TBS. For this simulation, a Gauss-

ian transformation of the grade data was 
necessary (Figure 3). The variogram with 
normalized iron grades is shown in Figure 

4, and the variographic parameters were 
reanalyzed to determine the new search 
neighborhood (Table 3).

Figure 3
Histogram of Fe Gaussian grades.

Figure 4
Adjusted variogram of 
Gaussian data by the Gaussian model.
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Adjustment data Value

Range X 650 m

Range Y 380 m

Range Z 150 m

Sill 0.55

Nugget Effect 0.22

Table 3
Search ellipsoid data 

for turning bands simulation.

Model
1st component 2nd component Global

Mean (%) Std. Dev. (%) Mean (%) Std. Dev. (%) Mean (%) Std. Dev. (%)

ID 40.0 4.0 58.0 6.0 44.84 8.85

OK 39.0 6.0 59.0 3.5 44.53 10.45

TBS 44.0 7.0 64.0 5.0 44.18 10.57

Table 4
Mean and standard 

deviation of the generated models.

Figure 5
Block models from ID, OK and TBS.

Production sequencing
As reported in the resource estima-

tion topic, 3 block models were developed 
according to different methods. The ID, OK 
and TBS methodologies resulted in models 
with different means (Table 4), variability 
and spatial distribution (Figure 5). Accord-
ing to (GOYCOOLEA, MORENO and 
RIVERA, 2013), DBS is more sensitive to 
changes in the benefit function; in the pres-
ent study, to change the benefit function, 

different grades were used from the three 
models. To define the benefit function, it is 
necessary to calculate the likely revenue and 
mining cost of each block. The benefit func-
tion model used is represented in Equations 
(1), (2) and (3).

(1) Benefit Function = Block Value – 
Block Costs

(2) Block Value = Recovered Material 
x Price

(3) Block Cost = Mined Material x 
Sum of Costs per Block.

For the pit definition by LG and DBS, 
the input parameters of Tables 5 and 6 were 
used. The final pit limit study for the LG 
methodology was conducted using the Mi-
cromine software , while the scheduling was 
done using Whittle software choosing the 
best case situation for pushbacks, and DBS 
was performed using the Simsched software.

Parameter Value

Dilution 0%

Mine recovery 100%

Sales Price 55 US$

Mine Cost (Ore and Waste) 2.59 US$/t

Administrative Cost 0.63 US$/t

Process Cost 5.85 US$/t

Sales Cost 10.13 US$/t (Product)

Cut-Off Rich Ore 52%

Cut-Off Poor Ore 30%

Production Target 200 Mt ROM/Year

Discount Factor 10%/Year
Table 5

Input parameters for final pit definition.
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Parameter Value

Vertical Advance 40 m

Horizontal Advance 70 m

Operational Base 50 m

Pit Base 50 m

Strip Ratio None

Grade Control None

Slope Angle 40º
Table 6
Operational input data for DBS and LG.

3. Results and discussion

The models generated in the pre-
vious section were used to delineate the 
final pit and for production sequenc-
ing. The LG method was applied only 
for the ID and OK models since it is 
not possible to use simulated block 
models in the classical methodology. 

For the DBS, it was possible to use 
all three models. A statistical sum-
mary of the grade distribution of these 
models is provided in Table 4. These 
results illustrate that all the models 
presented two distribution families 
called components and that the aver-

age grade of the simulations presented 
an overestimation of the data when 
compared to the models generated by 
the two other methods. The different 
models presented different results for 
grade, NPV and the period in which 
the blocks should be mined.

Figure 6
Results of cumulative
NPV and Fe grade tests.

Figure 6 shows that the difference 
between the grade curves reached by DBS 
is almost constant, and the grade level of 
OK is higher. The same figure indicates 
that the grade curve that represents se-
quencing by the LG method oscillates 
more for the two models. According to 
Table 4, the OK scenario presents a greater 
global standard deviation than the ID 
model, but the spatial variability of the 
model was not considered as a decisive fac-

tor for the variability of planning grades. 
The fact that the standard deviation dif-
ference was small did not decisively cause 
intense iron grade fluctuations. However, 
the two deposits presented intense oscilla-
tion when submitted to the LG methodol-
ogy. The ID in both cases (LG and DBS) 
remained below the P10 curve. The P10 
curve represents the 10% probability that 
the scenario would occur when compared 
to the simulated model. Consequently, it 

can be concluded that the ID generated 
a low realization probability scenario 
during mining operations, even when 
the average and standard deviations were 
close to those of other models.

It is well known in mining that 
estimation systems soften the grade 
transitions. Figure 7 shows that the block 
models have two populations, which rep-
resent different levels of grades classified 
in the order 40% and 60%. In OK, the 
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population of 60% is more voluminous in 
order to increase both the mean planning 
grades. In both methodologies, the OK 

model generated a mining plan closer to 
the most likely scenario. DBS is able to 
analyze each block individually; therefore, 

it was able to select blocks with higher 
grades in earlier periods in comparison 
with LG.

Figure 7
Histograms of block models (ID and OK).

The higher initial grades reached 
by the DBS made it possible to achieve 
higher NPV with this methodology, 

even when the higher-graded blocks 
were not grouped in the same region. 
Achieving selectivity or richer blocks 

in the initial periods is more difficult 
for the LG algorithm according to 
(SOUZA, 2016).

Comparison Percentage of blocks mined in different periods (%)

ID - SDB x TBS - SDB 19.05

OK - SDB x TBS - SDB 15.09

ID - LG x TBS - SDB 27.95

OK - LG x TBS - SDB 27.90

Table 7
Comparison between 

mining block periods of different models.

After the different methodologies 
were verified to have generated different 
results according to the standard grade 
deviation, Table 7 was constructed. 
This table counts the number of mined 
blocks in different periods other than 
the simulated scenario. The simulated 

scenario was adopted as a reference 
considering the different probabilities 
of geological grades. The results show 
that, as shown in Figure 6, the differ-
ence between ore populations does not 
dramatically affect the LG methodology; 
therefore, the blocks mined by ID and 

OK are almost the same in comparison 
to the simulated model. However, the 
better defined populations made DBS 
for the OK model more consistent with 
the simulated models. Thus, the better 
defined the populations in the block 
models, the more accurate the DBS.

4. Conclusion

The methods for generating a geo-
logical model differ considerably, includ-
ing differences in their mathematical 
basis and execution. The present study 
evaluated the impacts caused by different 
methods for obtaining the block model 
on mine planning steps by employing 

the deterministic method via LG and 
stochastic simulation in DBS. The results 
show that with the classical methodology, 
a difference up to 27.95% exists in mine 
scheduling regarding the timing of when 
different blocks should be mined. In the 
classical deterministic method (LG) the 

difference related to the TB model was 
19.05% and 15.09% in the comparison 
with the models generated by ID and OK, 
respectively. This paper demonstrates 
the existence of a correlation between 
the spatial variability of the deposit and 
mine planning. The scheduling of the 
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OK model, whose populations are better 
delimited, presented lower grade fluctua-
tions. Due to the greater block selectivity, 
DBS presented a higher average grade. The 
model based on the ID method generated 
an average grade close to P10, which is 
a low-probability scenario that likely 
underestimates the reserve potential. The 

LG methodology was revealed to be less 
sensitive to the block population variabil-
ity, justifying a common practice in mine 
planning and comparing models only by 
mean grades. In LG, there is no intense 
selectivity of these different populations. 
Using DBS, it is necessary to analyze the 
individual populations because changes 

in spatial distribution have great influence 
on mine scheduling. Deposits with well-
defined and numerous populations tend to 
present higher NPV results under the DBS 
methodology. The greater the variability 
and number of different populations in a 
deposit, the farther the response of the LG 
methodology is from the likely scenario.
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