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Collapse probability and 
resistance factor calibration of 
2D steel frames under gravity loads
Abstract

The current advanced analysis techniques for steel frames generally use structur-
al analyses with geometric and material nonlinearities to capture the collapse strength 
of the steel frame. Unfortunately, the true strength of a steel frame cannot be predicted 
with accuracy because of the uncertainties of the most significant design variables. 
Building codes of steel structures apply a resistance factor to account for the uncertain-
ties present in the design variables and thus ensure a target level of structural reliability. 
This article examines the reliability of planar steel frames subject to gravitational loads 
by advanced structural analysis (second-order inelastic analysis). To calculate the col-
lapse probability of planar steel frames, we utilized the first-order reliability method 
(FORM). The advanced analyses were performed using the program MASTAN2 and 
considered the geometric nonlinearities and inelasticity of the steel. The collapse prob-
abilities of planar steel frames were evaluated and the adequacy of the resistance factor 
applied was discussed. The current inelastic design procedure of ANSI 360 reduces 
the yield strength and stiffness of all members by a factor of 0.90. Thus, the present 
study suggests that the adopted resistance factor must be equal to 0.85 for the target 
reliability index equal to 3.0, or it must be equal to 0.69 for the target reliability index 
equal to 3.8.

Keywords: collapse probability, resistance factor, steel frame structures, inelastic 
behavior, structural reliability, target reliability index.
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The current advanced analysis tech-
niques for steel frames generally use struc-
tural analyses with geometric and mate-
rial nonlinearities to capture the collapse 
strength of the steel frame. The advanced 
analysis may result in more efficient de-
signs due to more accurate predictions of 
the true strength of the structural system. 
It simultaneously evaluates the strength 
and stability of the structure without the 
necessity of individually checking the 
capacity of the members.

Unfortunately, even with the ad-
vanced nonlinear structural analysis 
method, the true strength of a steel 
frame cannot be predicted with accuracy 
because of the uncertainties of the most 
significant design variables, which are the 
properties of the material, the applied ex-

ternal loads, and the geometric properties 
of the cross-sections of the steel shapes.

Current codes have a deterministic 
format. However, the effect of uncertain-
ties is considered through the application 
of safety factors (Shayan, 2013). Building 
codes for steel structures apply a resis-
tance factor to account for the uncer-
tainties present in the design variables. 
However, this semi-probabilistic method 
does not allow real knowledge of the 
collapse probabilities of the structure in 
service (Agostini et al., 2018). Reliability 
methods allow the direct evaluation of 
the structure's failure probability.

In the present study, we utilized the 
first-order reliability method (FORM) to 
calculate the failure probability of planar 
steel frames to collapse; this method 

uses the probability density function of 
each uncertain variable to determine the 
failure probability.

In this article, through the ad-
vanced analysis (second-order inelastic 
analysis), the reliability of the system of 
planar steel frames subject to gravita-
tional loads was evaluated. Such analy-
sis was performed using the program 
MASTAN2 (McGuire, Gallagher, and 
Ziemian, 2000) and considered the 
geometric nonlinearities and inelastic-
ity of the steel. The failure probabilities 
of numerical examples of planar steel 
frames were compared to other authors, 
after which the reliability implications of 
this methodology and the adequacy of 
the resistance factor were then evaluated 
and discussed.

1. Introduction
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2. Structural reliability

In the structural reliability analysis, 
random variables model the maximum 
demand (load effect), S, and the available 
resistance (structural capacity), R. The 
aim of the reliability analysis is to ensure 

the event R>S throughout the structure's 
lifespan in terms of probability.

Failure occurs if R is less than S, and 
this event can be represented in terms of 
probability as P(R<S). If both the R and S 

random variables have normal distribu-
tions and are statistically independent, 
then the Z random variable can be entered 
as Z=R-S. The failure probability can be 
defined as:

where μ
Z
=μ

R
- μ

S
,                               , Φ is the 

CDF of the standard normal distribution 
and β is the reliability index (Cornell, 
1969), defined below:

Initially, the reliability index was 
evaluated in the FOSM method simply as 
a function of the means and standard de-

viations of the available resistance, R, and 
the maximum demand, S, as indicated in 
Eq. (2). Subsequently, the reliability index 

is initially obtained by analytical methods 
based on approximations in the first-order 
Taylor series (FORM method).

In the FORM method, the ran-
dom variables U, whose distributions 
can be normal and non-normal and 
may or may not be dependent on each 
other, are transformed into standard 
normal V variables that are statisti-
cally independent, with the failure 

function G(U) written in the space of 
the reduced variables (space V) as g(V). 
Hence, the failure surface defined by 
g(V) = 0 is approximated by a linear 
surface (or hyperplane) at the point 
with the shortest distance to the origin, 
identified as V* (design point in the 

space of the reduced variables). One 
of the steps of the FORM method is 
the transformation of U variables with 
any distributions into statistically in-
dependent standard V variables using 
the Nataf transformation (Melchers & 
Beck, 2017):

where m is the vector with the means of 
the variables U, σ is the diagonal matrix 
containing the standard deviations of 
the variables U and Γ= L-1, where L is the 
lower triangular matrix obtained from the 
Choleski decomposition of the matrix of 

the correlation coefficients of U. Another 
important step of the FORM method 
is the search for the point on the failure 
surface closest to the origin of the reduced 
system (design point).

To find the design point, the algo-

rithm called HLRF, developed by Hasofer 
& Lind (1974) and improved by Rackwitz 
& Fiessler (1978), is commonly used. The 
iterative process generated by the HLRF 
algorithm searches for the design point by 
solving the following equation:

During the iterative process, the 
reliability index β is determined by cal-

culating | V i+1 |, and the process stops 
when the β value converges. The failure 

probability can then be obtained using 
Eq. (1).

In this study, two-dimensional ad-
vanced analyses were performed using 
the software MASTAN2 (McGuire, Gal-
lagher, and Ziemian, 2000). Version 3.5.5 
of MASTAN2 was used for second-order 
inelastic analyses and to obtain the ultimate 
load factor (λ

u
), which is necessary to assess 

the performance function in structural reli-

ability analyses. In the nonlinear structural 
analysis of the frames, the plastic hinge 
formulation presented in MASTAN2 and 
the strategy of a constant increase of the 
load parameter with a predictor-corrector 
solution scheme were used. Also, the modi-
fied tangent elastic modulus ( E

tm
 ) and the 

incremental load factor fixed at 1% of 

the applied load were considered. Each 
structural element (beams and columns) 
was discretized into 4 finite elements. The 
yield surface used in MASTAN2 is a func-
tion of a member's axial force and bending 
moment. The yield surface, developed by 
McGuire, Gallagher, and Ziemian (2000), 
is expressed by the polynomial equation:

(1)

(2)

(3)

(4)

(5)
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where p=P/P
y
 is the ratio of the axial force 

to the squash load and m
x
=M

x
/M

px
 is the 

ratio of the strong axis bending moment 
to the corresponding plastic moment. The 
load, P

y
, and the plastic moment, M

px
, are, 

respectively, the section's area and plastic 
section modulus times σ

y
.

The performance function (limit 
state equation) is usually an implicit 
function of random variables in the reli-
ability of complex structures analysis. 
The reliability analyses performed were a 
combination of the FORM method and 
the deterministic finite element method 

implemented in MASTAN2. The per-
formance function was formulated as a 
function of the available resistance (R) of 
the structural system and as a function of 
the maximum load (S) in the structural 
system. The performance function was 
formulated according to the equation:

In Eq. (6), the overall resistance of 
the structure was expressed as a function 

of a load factor λ=R/S, which provides how 
many times the resistance to the collapse of 

the structure is greater than the acting load, 
based on the structure’s advanced analysis.

In this section, we present the results 
of the structural reliability analysis of steel 
structures. Reliability analyses made it 
possible to assess the collapse probabilities 
of the structures designed by ANSI 360 
(AISC, 2010). By analyzing the obtained 
results and comparing them with those 
found by other authors, it was possible to 
validate the computational implementation, 
attesting its accuracy and efficiency in the 
structural reliability analysis of steel frames.

In the first example, a continuous 
beam subjected to a concentrated vertical 
load is presented and the failure prob-
ability regarding the plastic collapse is 
investigated. In the second example, the 
failure probability was obtained for an 
unsymmetrical two-story steel frame 
with two bays that was under gravity 
loads. The two structures have significant 
load redistribution capacity following 
initial yielding. In the third example, we 

obtained the failure probability of a beam-
column frame (inverted “L” frame). In this 
structure, the strength is governed by a 
single critical member.

All beams and columns for the 
structures were compact and laterally 
braced, so the plastic capacity of each 
section could be achieved without local 
buckling. Connections were assumed to 
be fully rigid. The steel material property 
is modeled as elastic-perfectly plastic.

As for the first example, we consid-
ered a continuous beam subjected to a 
concentrated vertical load in the middle 
span.  The geometric dimensions, load, 
and support conditions of the structure 
are shown in Fig. 1. The following load 
combination suggested in ASCE 7-10 
(ASCE, 2010) is used to select the size of 
the members: 1.2D

n
 + 1.6L

n
, where D

n
 and 

L
n
 are nominal dead load and nominal live 

load, respectively. The cross-sections of the 
beam are laminated steel shapes: W690 × 
125 in the first span, W410 × 46.1 in the 

second span, and W460 × 52 in the third 
span. All members are made of the same 
grade of steel: the nominal yield stress 
(F

yn
) is 345 MPa with a nominal Young's 

modulus (E
n
) of 200 GPa.

Performing the inelastic analysis 
of the continuous beam, and reducing 
nominal values of yield stress (0.9F

yn
) 

and modulus of elasticity (0.9E
n
) for all 

members according to ANSI 360 (AISC, 
2010), it was found that the first plastic 
hinge is formed in section B, with a load 
factor λ1 = 0.981; the second plastic 

hinge is formed in section C with a load 
factor λ2 = 1.20; and the third plastic 
hinge is formed in section D with a load 
factor λ

u
 = 1.29. Zhang et al. (2018) 

also performed the advanced analysis 
of this beam and came to the same con-
clusion:  the continuous beam supports 
approximately 129% of the total load  
P = 349.19 kN applied in Fig. 1, and the 
first hinge is formed with a load factor 
λ1 = 1.00. The beam had a significant 
capability for redistributing forces after 
the first yield.

Figure 1 - Three-span continuous beam.

In order to investigate the collapse 
probability of the continuous beam, reli-
ability analyses were performed consider-
ing the basic random variables: live load 
(L), dead load (D), cross-sectional area (A), 
moment of inertia (I), yield strength (F

y
) 

and Young’s modulus (E). Table 1 summa-

rizes the statistical information for these 
basic random variables. The structural 
load shown in Fig. 1 represents the gravity 
load combination P = λ * (1.2D

n 
+ 1.6L

n
 ), 

with the nominal live-to-dead load ratio 
assumed to be L

n 
= 1.5D

n 
= 145.5 kN.

Table 2 summarizes the reliability 

indexes obtained for two load levels: load 
to form the first plastic hinge (λ = 1.00) 
and load to the plastic collapse (λ = 1.29). 
Based on the results of the reliability 
analysis in Tab. 2, some observations can 
be made: the reliability index β = 4.05 ob-
tained when the beam was designated to 

4. Results and discussion

4.1 Example 1: Three-span continuous beam

(6)( ) 1
  1    1  

S

R
= =
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Table 1 - Description of basic random variables.

Table 2 - Reliability indexes obtained for the continuous beam (L
n
=1.5D

n
).

Variable Mean Coefficient of Variation (COV) Distribution Reference

D (kN) 1.05 D
n

0.10 Normal Ellingwood et al. (1982)

L (kN) L
n

0.25 Type I Largest Ellingwood et al. (1982)

F
y
 (MPa) 1.10 F 

yn
0.06 Lognormal Bartlett et al. (2003)

E (MPa) E
n

0.04 Lognormal Bartlett et al. (2003)

A (cm2) A
n

0.05 Normal Ellingwood et al. (1982)

I (cm4) I
n

0.05 Normal Ellingwood et al. (1982)

Load Level Reliability index (present study) Reliability index  Zhang et al. (2018)

λ = 1.00 β = 4.05 β = 3.90

λ = 1.29 β = 2.95 β = 2.76

If the desired reliability was a 
failure probability less than 0.13499% 
(β > 3.0), the total load applied to the 
structure could not exceed 127% of 
the total load shown in Figure 1. If the 
desired reliability was a failure prob-
ability less than 0.00723% (β > 3.8), 
the total load applied to the structure 
could not exceed 106% of the total load 
shown in Figure 1.

The target rel iabi l ity index  
β = 3.8 corresponds to the minimum 
value recommended in Table B2 of 
EN 1990 (European Committee for 
Standardization, 2002) for CC2 con-
sequence class structures for a 50-year 
reference period for the ultimate limit 
state, which is commonly considered 
in reliability analyses carried out in 
the Eurocode framework. The target 

reliability index β = 3.0 corresponds to 
the minimum value recommended for 
buildings (steel members) for a 50-year 
design life in the design code AISC as-
sociated with component ultimate limit 
states (Liu et al., 2021).

The reliability results shown in Table 3 
were obtained for an imposed-to-permanent 
load ratio of L

n 
= 3D

n 
= 174.6 kN,which 

corresponds to a typical load ratio 
in Chapter B – Design Basis of the  
ANSI 360 (AISC, 2010).

Based on the results of the reli-
ability analysis in Tab. 3, it can be 
observed that the reliability index 
β = 3.76 obtained when the beam 
is designed with a load level for the 
formation of the first plastic hinge (λ 
= 1.00) results in a failure probability 
of the structural system on the order 

of 0.00850%. The reliability index 
β = 2.78 obtained when the beam is 
designed with a load level of plastic col-
lapse (λ = 1.29) results in a probability 
of failure of the structural system on 
the order of 0.27179%. If the desired 
reliability was a failure probability less 
than 0.13499% (β > 3.0), the total load 
applied to the structure could not ex-
ceed 121% (λ = 1.21) of the total load 
shown in Figure 1, which would cor-
respond to a system resistance factor 
equal to 0.85: 0.85F

yn
 and 0.85E

n
. If the 

desired reliability was a failure prob-
ability less than 0.00723% (β > 3.8), 
the total load applied to the structure 
could not exceed 99% of the total load 
shown in Figure 1, which would cor-
respond to a resistance factor equal to 
0.69: 0.69F

yn
and 0.69E

n
.

a load level for the formation of the first 
plastic hinge (λ = 1.00) results in a failure 
probability of the structural system on 
the order of 0.00256%. The reliability 
index β = 2.95 obtained when we design 
the beam to a load level of plastic collapse 
(λ = 1.29) results in a failure probability 
of the structural system on the order  
of 0.15889%.

Comparing the reliability indexes 

obtained in the present study with 
those obtained by other authors, it was 
observed, that the reliability indexes 
obtained by Zhang et al. (2018) are 
close to those obtained in the present 
study, and the probabilities of failure 
are similar, see Table 2. This table 
also shows that the reliability indexes 
obtained by Zhang et al. (2018) are 
slightly lower than the rates obtained in 

the present study. Such a slight differ-
ence between the results can be justified 
because Zhang et al. (2018) used the 
Monte Carlo direct simulation method 
to assess the probability of failure and 
used the plastic zone method (discretiza-
tion of the cross-section in fibers) with 
residual stresses in the inelastic analysis 
and incorporated the strain hardening 
effect in the steel stress-strain curve.

Table 3 - Reliability indexes obtained for the continuous beam (L
n
=3D

n
).

Load Level Reliability index (present study)

λ = 0.99 β = 3.80

λ = 1.00 β = 3.76

λ = 1.21 β = 3.03

λ = 1.29 β = 2.78
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Figure 2 - Two-story unsymmetrical frame.

As for the second example, an un-
symmetrical two-story, two-bay rect-
angular steel frame as shown in Fig. 2 
was considered. The geometric dimen-
sions, support conditions, and loads are 
shown in the same figure. All members 
are made of the same grade of steel: the 
nominal yield stress (F

yn
) is 248 MPa 

with a nominal Young's modulus (E
n
) of  

200 GPa. The cross-sections of the frame 
are laminated steel shapes: W310×28.3 as-
signed to column C1; W360×237 assigned 
to column C2; W360×216 assigned to 
columns C3, C5 and C6; W150×13.5 as-
signed to column C4; W760×173 assigned 
to beams B1 and B4; W920×271 assigned 
to beam B2 and W610×82 assigned to beam 
B3. The reference load P

0
 is 146.95 kN/m.

When performing the inelastic analy-
sis of the steel frame and reducing nominal 
values of yield stress (0.9F

yn
) and modulus 

of elasticity (0.9E
n
) for all members, it was 

found that the first plastic hinge is formed 
with a load factor λ1 = 0.99, and collapse is 
reached when a load ratio λ

u
 = 1.18 is ap-

plied. Zhang et al. (2018) also performed an 

advanced analysis and concluded that the 
steel frame supports approximately 119% 
of the total load P

0
 applied in Fig. 2, and 

the first hinge is formed with a load factor  
λ1 = 1.00, which is due to the significant 
load redistributing ability of the frame.

To investigate the collapse probabil-
ity of the steel frame, reliability analyses 
were performed considering the same 
basic random variables summarized in 
Table 1. The structural load, shown in  
Fig. 2, represents the gravity load combina-
tion  P

0
=λ*(1.2D

n
+1.6L

n
 ), with the nominal 

live-to-dead load ratio assumed to be 
L

n
=1.5D

n
=61.23 kN/m. Table 4 summarizes 

the reliability indexes obtained for two load 
levels: load to form the first plastic hinge 
(λ = 1.00) and load to collapse (λ = 1.19).

Based on the reliability analysis re-
sults in Table 4, it can be observed that the 
reliability index β = 3.65 obtained when 
the frame designed with a load level for the 
formation of the first plastic hinge results 
in a probability of failure of the structural 
system on the order of 0.01311%. The reli-
ability index β = 2.90 is obtained when the 

frame designed for a load level of collapse 
results in a probability of failure of the 
structural system on the order of 0.18658%. 
Comparing the reliability indexes obtained 
in the present study with those obtained by 
other authors, it is observed in Table 4 that 
the reliability indexes obtained by Zhang 
et al. (2018) are close to those obtained in 
the present study and the probabilities of 
failure are similar. This slight difference 
between the results is justified in the previ-
ous example. If the desired reliability was 
a failure probability of less than 0.13499% 
(β > 3.0), the total load applied to the 
structure could not exceed 116% of the 
total load shown in Figure 2. If the desired 
reliability was a failure probability less 
than 0.00723% (β > 3.8), the total load 
applied to the structure could not exceed 
96% of the total load shown in Figure 2.

The reliability results shown in Table 5 
were obtained for an imposed-to-perma-
nent load ratio of L

n
=3D

n
=73.475 kN/m, 

which corresponds to a typical load 
ratio in Chapter B – Design Basis of the 
ANSI 360 (AISC, 2010).

Table 4 - Reliability indexes obtained for the two-story unsymmetrical frame (L
n
=1.5D

n
).

Load Level Reliability index (present study) Reliability index  Zhang et al. (2018)

λ = 1.00 β = 3.65 β = 3.62

λ = 1.19 β = 2.90 β = 2.89

Table 5 - Reliability indexes obtained for the two-story unsymmetrical frame  (L
n
=3D

n
).

Load Level Reliability index (present study)

λ = 0.90 β = 3.81

λ = 1.00 β = 3.40

λ = 1.11 β = 3.00

λ = 1.19 β = 2.73

4.2 Example 2: Two-story unsymmetrical frame
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Based on the results of the re-
liability analysis in Table 5, some 
observations can be made: the reliabil-
ity index β = 3.40 obtained when the 
frame designed with a load level for 
the formation of the first plastic hinge  
(λ = 1.00) results in a failure probability 
of the structural system on the order 
of 0.03369%. The reliability index  

β = 2.73 obtained when we design 
the frame to a load level of collapse  
(λ = 1.19) results in a probability of 
failure of the structural system on the 
order of 0.31667%. If the desired reli-
ability was a failure probability less 
than 0.13499% (β > 3.0), the total 
load applied to the structure could not 
exceed 111% of the total load shown in  

Figure 2, which would correspond to a 
system resistance factor equal to 0.85: 
0.85F

yn
 and 0.85E

n
. If the desired reli-

ability was a failure probability less than 
0.00723% (β > 3.8), the total load ap-
plied to the structure could not exceed 
90% of the total load shown in Figure 2, 
which would correspond to a resistance 
factor equal to 0.69: 0.69F

yn
 and 0.69E

n
.

4.3 Example 3: inverted “L” frame
As for the third example, an inverted 

“L” steel frame as shown in Fig. 3 was 
considered. The geometric dimensions, 
support conditions and load are shown in 

the same figure. All members are made of 
the same grade of steel: the nominal yield 
stress (F

yn
) is 248 MPa with a nominal 

Young's modulus (E
n
) of 200 GPa. The 

cross-sections of the frame are laminated 
steel shapes: W460×52 assigned to the 
beam and W360×101 assigned to the col-
umn. The reference load P=2571.07 kN.

Performing the inelastic analy-
sis of the steel frame and reducing 
nominal values of yield stress (0.9F

yn
) 

and modulus of elasticity (0.9E
n
) for 

all members, we observed that the 
collapse is reached when a load ratio  
λ

u
 = 1.0 is applied. Liu (2019) also per-

formed an advanced analysis of this 
structure and concluded that the steel 
frame supports approximately 103% 
of the total load P applied in Fig. 3.

To investigate the collapse prob-
ability of the steel frame, reliability 
analyses were performed consider-
ing the same basic random variables 
summarized in Table 1. The struc-
tural load shown in Fig. 3 repre-
sents the gravity load combination 
P=λ*(1.2D

n
+1.6L

n
), with the nominal 

live-to-dead load ratio assumed to be 
L

n
=1.5D

n
=1071,28 kN.

Table 6 summarizes the reli-
ability indexes obtained for the two 
load levels. Based on the results of the 
reliability analysis in Table 6, some 
observations can be made: the reli-
ability index β = 2.94 obtained when 

the frame is designed for a load level  
λ = 1.0, results in a probability of 
failure of the structural system on 
the order of 0.16411%. The reliabil-
ity index β = 2.81 obtained when the 
frame is designed for a load level of 
collapse, results in a probability of 
failure of the structural system on 
the order of 0.24771%. Comparing 
the reliability indexes obtained in the 
present study with those obtained by 
other author, we can observe that 
in Table 6 the reliability indexes ob-
tained by Liu (2019) are the same as 
those obtained in the present study. 
If the desired reliability was a fail-
ure probability less than 0.13499%  
(β > 3.0), the total load applied to 
the structure could not exceed 98% 
of the total load shown in Figure 3. 
If the desired reliability was a fail-
ure probability less than 0.00723%  
(β > 3.8), the total load applied to the 
structure could not exceed 82% of the 
total load shown in Figure 3.

The reliability results shown 
in Table 7 were obtained for an 

imposed-to-permanent load ratio of 
L

n
=3D

n
=1285.535 kN, which corre-

sponds to a typical load ratio in Chap-
ter B – Design Basis of the ANSI 360 
(AISC, 2010). Based on the results of 
the reliability analysis in Table 7, it 
can observed that the reliability index 
β = 2.65 obtained when the frame is 
designed for a load level of collapse 
(λ = 1.03) results in a probability of 
failure of the structural system on the 
order of 0.40246%.

If the desired reliability was a 
failure probability less than 0.13499% 
(β > 3.0), the total load applied to the 
structure could not exceed 94% of 
the total load shown in Figure 3, 
which would correspond to a system 
resistance factor equal to 0.85: 0.85F

yn
 

and 0.85E
n
. If the desired reliability 

was a failure probability less than 
0.00723% (β > 3.8), the total load 
applied to the structure could not 
exceed 76% of the total load shown 
in Figure 3, which would correspond 
to a resistance factor equal to 0.69: 
0.69F

yn
 and 0.69E

n
.

Figure 3 - Inverted “L” steel frame.
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In the present study, reliability 
analyses of 2D steel structures were 
carried out through advanced struc-
tural analyses considering the effects 
of geometric nonlinearity and steel 
inelasticity. The FORM method was 
used to assess the failure probability of 
the system in relation to the ultimate 
limit state of the collapse. The first and 
the second structures analyzed have 
significant capacity for redistribution 
of the inelastic load. Through reliability 

analysis, it was possible to determine the 
failure probability for the two design 
load levels: formation of the first plastic 
hinge and the plastic collapse. The third 
structure analyzed fails in an elastic 
instability mode with limited yielding 
developed, and through the reliability 
analysis, it was possible to determine 
the collapse probability.

The results of the numerical exam-
ples showed that it is essential to obtain 
the collapse probability to account for 

uncertainties inherent to design vari-
ables so that safer structures with target 
reliability can be obtained. The current 
inelastic design procedure of ANSI 360 
(AISC, 2010) reduces the yield strength 
and stiffness of all members by a factor 
of 0.90. The present study suggests that 
the adopted resistance factor must be 
equal to 0.85 for the target reliability 
index equal to 3.0 or it must be equal 
to 0.69 for the target reliability index 
equal to 3.8.
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