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Heartbeat classification system based on neural networks and 
dimensionality reduction

Rodolfo de Figueiredo Dalvi*, Gabriel Tozatto Zago, Rodrigo Varejão Andreão

Abstract	 Introduction: This paper presents a complete approach for the automatic classification of heartbeats to assist 
experts in the diagnosis of typical arrhythmias, such as right bundle branch block, left bundle branch block, 
premature ventricular beats, premature atrial beats and paced beats. Methods: A pre-processing step was 
performed on the electrocardiograms (ECG) for baseline removal. Next, a QRS complex detection algorithm 
was implemented to detect the heartbeats, which contain the primary information that is employed in the 
classification approach. Next, ECG segmentation was performed, by which a set of features based on the 
RR interval and the beat waveform morphology were extracted from the ECG signal. The size of the feature 
vector was reduced by principal component analysis. Finally, the reduced feature vector was employed as 
the input to an artificial neural network. Results: Our approach was tested on the Massachusetts Institute of 
Technology arrhythmia database. The classification performance on a test set of 18 ECG records of 30 min 
each achieved an accuracy of 96.97%, a sensitivity of 95.05%, a specificity of 90.88%, a positive predictive 
value of 95.11%, and a negative predictive value of 92.7%. Conclusion: The proposed approach achieved high 
accuracy for classifying ECG heartbeats and could be used to assist cardiologists in telecardiology services. 
The main contribution of our classification strategy is in the feature selection step, which reduced classification 
complexity without major changes in the performance. 
Keywords: Electrocardiogram, Arrhythmia, Heart block, Automatic classification, Principal component 

analysis, Artificial neural network.

Introduction
Technological developments and cost reductions 

associated with internet access have contributed to 
the growth of telehealth services. These services are 
suitable in situations in which there is lack of health 
professionals or the nearest medical service center 
is located a great distance from those who require 
care. Among the various telemedicine modalities, 
telecardiology is related to the remote provision of 
cardiologic services. The main telecardiology service 
deals with the remote diagnostics of abnormalities 
presents in electrocardiograms (ECGs), which 
are sent through the internet to a telehealth center 
(Marcolino  et  al., 2012). The diagnostic report 
generated by the cardiologist is then sent back to 
the health professional who requested the service. 
The response time of the telecardiology service is 
critical depending on the severity of the diagnosis, 
as serious diseases require priority, early diagnosis 
and immediate treatment. To prioritize these cases, 
telecardiology services, in general, provide the health 
professional the option to manually classify that the 
request as urgent. Requests that are not classified 
as urgent are analyzed according to the arrival time 
(Andreão et al., 2013). Approximately 14% of ECG 

exams sent through a telecardiology service were 
manually classified as urgent (Sparenberg and Fetter, 
2012), although the majority of these classifications 
corresponded to healthy people who did not require 
emergency treatment. On the other hand, several of 
the patients with electrocardiographic abnormalities 
have not received priority and remained in the waiting 
queue of non-urgent cases for a specialized report. 
The delay in generating reports for normal ECGs can 
harm patients who present an abnormality because, 
for some diseases, it is essential that the treatment 
be initiated quickly.

In this context, the Espírito Santo Telehealth program 
(Telessaúde ES, 2014) is proposing an automatic triage 
service for ECG exams (Andreão et al., 2013), where 
the most urgent cases are prioritized in the waiting 
queue to be diagnosed. The automatic triage service 
is integrated with the telecardiology service, and both 
are implemented on a web-based platform called 
Salus. Each telecardiology request consists of an ECG 
generated by a digital electrocardiograph uploaded 
through the Salus platform and made available to the 
cardiologist performing the report. The idea behind 
the triage service is to automatically classify each 
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ECG stored in the waiting queue, where the abnormal 
ECGs are placed in the top positions of the waiting 
queue. Every time an ECG is stored on the platform, 
a notification is sent to the cardiologist via SMS and 
e-mail (Andreão et al., 2013).

A good classification performance is essential for 
an effective triage of urgent cases. In the literature, 
many studies proposes approaches based on machine 
learning, such as neural networks (Kim et al., 2011; 
Mohamad et al., 2013), support vector machines (She et al., 
2010; Zhang et al., 2014), fuzzy logic (Arif et al., 
2009), or linear discriminant analyses (Chazal et al., 
2004), to perform automatic ECG classification. 
This paper also proposes a classification approach 
based on neural networks. The main contribution of 
our classification strategy is in the feature selection 
step; wherein, the goal is to improve classification 
performance. The classification approach was evaluated 
using the Physionet arrhythmia database, where the 
heartbeats from the ECG records were gathered into 
six different classes. The results are compared with 
other works published on the subject.

Methods
The ECG classification approach proposed for 

the automatic triage service is basically composed of 
three stages: pre-processing of the ECG signal, feature 
extraction and, finally, the automatic classification. 
A block diagram of the entire system is shown in 
Figure 1.

Data base
The development of this work requires a database 

with digital ECG records for computational analysis of 
different patients with different pathologies. Accordingly, 
we employed the widely known Massachusetts Institute 

of Technology (MIT) arrhythmia database, which 
is available on the website of the PhysioNet group 
(Goldberger  et  al., 2000). This database contains 
48 records of two channels with half-hour durations 
each. The ECG signals were sampled at 360 Hz. 
It was necessary to apply a rescaling factor of 200 to 
the amplitude of the signal to obtain the values in 
millivolts. In addition to the ECG signal, annotations, 
made by different cardiologists in common consent, 
containing the beat localization and the beat class are 
also available. Only six beat classes were considered 
in this work: right bundle branch block (R), left 
bundle branch block (L), premature ventricular beat 
(V), premature atrial beat (A) and paced beat (PB).

The database was divided into three subsets, 
namely training, validation and testing. The training 
and validation sets were called G1 and contained the 
following records: 100, 101, 104, 106, 109, 112, 113, 
117, 118, 119, 201, 203, 207, 208, 212, 214, 217, 219, 
223, 232, 233, and 23. The testing set was called G2 
and contained the following records: 103, 105, 107, 
111, 115, 116, 121, 122, 123, 202, 205, 209, 210, 
220, 221, 222, 230, and 231. The G1 set was divided 
into a training set containing 80% of the beats and 
validation set containing 20% of the beats.

Preprocessing
Each record contains raw ECG signal, which 

is usually a combination of the cardiac electrical 
activity and noise. Because the ECG signal has low 
amplitude, it is very sensitive to noise interference 
(Igarashi, 2007). Therefore, at this stage, we sought 
to eliminate the high-frequency noise and baseline 
wander.

To reduce the baseline wander, two median filters 
(Chazal  et  al., 2004) were used. First, a 200 ms 
median filter was applied to remove the P waves 

Figure 1. Block diagram of the developed system for heartbeat classification, which included three main stages: preprocessing, feature 
extraction and classification.
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and the QRS complexes because these segments 
are shorter than 100 ms. The resulting signal was 
processed by another median filter with a window 
size of 600 ms to remove the T waves, which have 
width of approximately 150 ms. Finally, the resulting 
signal contained the baseline of the ECG signal, which 
was then subtracted from the original signal for ECG 
baseline correction (Figure 2).

On the other hand, a 12th order low-pass finite 
impulse response filter with a cutoff frequency of 
35Hz was employed to eliminate high-frequency 
noise (Chazal et al., 2004). This filter was chosen 
because it fulfills the requirements for this work, 
achieving -3 dB gain at the cutoff frequency and 
having low complexity.

Detection of beats
The ECG signal must be segmented in terms 

of beats and its different waveforms (P wave, QRS 
complex and T wave) prior to the feature extraction 
stage. For beat detection, an algorithm that detects the 
peak of the QRS complex waveform was developed 
because it is the wave with the largest amplitude in 
the heartbeat. The algorithm used is based on the 
wavelet transform of the signal. To highlight the 
QRS complex, a Mexican hat wavelet function was 
chosen (Madeiro et al., 2007). The signal resulting 
from the wavelet transform was analyzed according 
to a threshold, where only the peaks greater than 
the threshold are selected. The minimum separation 
between consecutive peaks was 83 ms, which is 
wide enough to prevent the detection of positive and 
negative peaks of a single QRS complex as different 
QRS complexes. A threshold definition was used to 
avoid misidentification of P and T waves as QRS 
complex: signal amplitude should be larger than that 
of the 4 nearest peaks and reach 30% of the largest 
of the 20 nearest peaks.

ECG segmentation
An important stage in most ECG classification 

algorithms is segmentation, which consists of 
obtaining the onset, the peak and the offset of each 
beat waveform. The entire segmentation process is 

shown in Figure 3 and was applied on the first lead 
of each preprocessed record.

The peak of the QRS complex already detected 
was taken as the reference point for segmentation 
of the other waves. After a close inspection of the 
ECG signal from the database, it was observed that 
the onsets of all P waves were located no more than 
280 ms before the QRS complex peak. Similarly, it 
was observed that the T wave offsets were located no 
more than 430 ms after the QRS peak. Thus, a good 
estimation of the limits of the heartbeat is 280 ms 
before the QRS complex peak and 430 ms after the 
QRS peak.

Considering a normal ECG, the QRS complex 
is a sequence of three waveforms (or three peaks) 
within approximately 220 ms around the QRS peak. 
The onset of the QRS complex is estimated considering 
two possible events and always selecting the event 
nearest to the largest peak. One of the events is the 
first zero crossing, and the other event is the transition 
from a smoother slope signal segment. To determine 
such a transition, the summation of a sequence of 
five values is considered, where each value is the 
difference between two consecutive samples, which 
is then applied as a threshold. The offset of the QRS 
complex, similarly to the onset, is estimated considering 
the same two events and always selecting the event 
nearest to the peak.

For the detection of the P and T wave peaks, 
the maximum amplitude points placed before and 
after the QRS complex are considered, respecting 
the limits of the heartbeat that were estimated in a 
previous processing step. Finally, the detection of the 
onset and offset of the P and T waves is performed 
according to the same strategy employed for the QRS 
complex onset and offset.

Feature extraction
The feature extraction stage takes into account 

the features commonly employed by other works in 
the field and the beat classes of the ECG database. 
As a consequence, 106 morphological features were 
selected, namely, the RR intervals, which are important 
for the detection of arrhythmias; the features obtained 

Figure 2. (a) The raw ECG signal; (b) The baseline of the ECG; (c) The baseline-corrected ECG signal.
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during the ECG segmentation, which consist of the 
peaks and durations of the different waves composing 
the signal; and some special features in the frequency 
domain, which are used in other works primarily for 
block detection. All the selected features are presented 
in Table 1.

Reduction of the feature vector dimension

A vector of 106 features is likely to have redundancy 
and strong correlation among some features. Moreover, 
the complexity of the classification stage grows with 
the number of features. Therefore, principal component 
analysis (PCA) was implemented to reduce the size of 
the feature vector. PCA is a useful statistical technique 
that has many applications in fields, such as facial 
recognition and image compression, and is widely 
used to identify patterns in high-dimensional data 
(Smith, 2002). This technique consists of reducing 
a feature vector by linear transformation as to lose 
as little information as possible.

In this work, the PCA technique was applied to 
select the best 25 features while retaining 99.93% of 
the information. Usually, the features are normalized, 
but in this study this was not necessary because their 
dynamic range was narrow (most of the features were 
measured in millivolts and milliseconds). The number 
of selected features was chosen empirically for a 
good result with low computational cost. Table 2 and 
Figure 4 show the results, indicating the percentage 

of information preserved by the number of features 
used in the reduction.

Automatic classification
For automatic classification, an artificial neural 

network (ANN) was used, which is a popular 
classification technique based on mathematical 
models that simulate biological neural structures and 
acquires computational capacity through learning 
and generalization.

The ANN implemented in this work is basically 
composed of an input layer whose size is the same as 
the feature vector, two hidden layers with 25 neurons 
each, and an output layer with the number of neurons 
equal to the number of heartbeat classes, which in our 
work was six. A hyperbolic tangent was chosen as an 
activation function. For network training, an algorithm 
called backpropagation was chosen, using 1000 epochs 
(maximum number of interactions during training) 
with minimum performance gradient of 10-6 and 
maximum of 100 validation failures. The configuration 
of the ANN was defined empirically after preliminary 
analysis of the database signals.

Performance evaluation
The performance of our algorithm was evaluated 

using statistical measures, such as sensitivity (Se), 
specificity (PP), positive predictive value (PPV), 
negative predictive value (NPV) and accuracy (Ac), 
which are described by the equations below.

Figure 3. Block diagram of the ECG segmentation of each heartbeat estimating the peaks and the limits of each wave.

321Res. Biomed. Eng. 2016 December; 32(4): 318-326



Dalvi RF, Zago GT, Andreão RV

100%TPSe
TP FN

= ×
+

 	 (1)

100%TNPP
TN FP

= ×
+

 	 (2)

100%TPPPV
TP FP

= ×
+

 	 (3)

100%TNNPV
TN FN

= ×
+
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100%TP TNAc
TP FP TN FN

+
= ×

+ + +
 	 (5)

Where TN, TP, FP and FN indicate the true negatives, 
true positives, false positives and false negatives, 
respectively, obtained from a comparison between 
diagnoses (which were made by cardiologists) and 
the results obtained from the classifier developed 
in this study. The computation of such values in a 

multiclass context takes into account that each class 
alone is considered as positive, and the other classes 
are negative. For example, all normal beats correctly 
classified account for the TP value of the Normal 
Class and all other beats correctly classified as not 
belonging to the normal class account for the TN value 
of the Other Class. Considering the same example, 
FP are the beats from the other classes classified by 
mistake as belonging to the Normal Class, and the 
FN are the beats from the normal class classified as 
belonging to the Other Class. In a multiclass context, 
the FP and FN values are influenced negatively by the 
number of classes because the mistakes in different 
classes are added together.

Results
The algorithms implemented were evaluated for 

heartbeat detection and classification performance 
on a MIT database. The results were compared 

Table 1. List of the morphological characteristics extracted from the two-channel ECG signal.

Index Characteristics Reference Description
1-4 RRI(1:4) Zhang et al. (2014) RR interval of 4 consecutive beats, starting from the 2nd previous beat.
5 RRIavg Zhang et al. (2014) Average of the 10 closest RR intervals.
6 RRIdiv Zhang et al. (2014) Standard deviation of the 10 closest RR intervals.
7 Width Christov et al. (2006) Width of the QRS complex.
8-11 Pp e Pn Christov et al. (2006) Positive and negative maximum of the QRS in both channels.

12-17 Arp, Arn e Ar Christov et al. (2006) Positive area, negative area, and the sum of the two areas under the 
QRS complex curve in both channels.

18-21 Ima e Imi Christov et al. (2006) The time from the onset of the QRS to the maximum and to the 
minimum value in both channels.

22-23 S1 Christov et al. (2006) Slope of the curve from the onset until the first peak of the QRS 
complex in both channels.

24-25 S2 Christov et al. (2006) Slope of the curve from the first peak until the second peak of the 
QRS complex in both channels.

26-27 difft She et al. (2010) Time interval between the maximum and the minimum the QRS 
complex in both channels.

28-29 diffdvt She et al. (2010) Maximum slope of the QRS curve in both channels.

30-31 diffqrs She et al. (2010) Amplitude difference between the QRS maximum and minimum in 
both channels.

32-51 QRS_amost(1:10) Zhang et al. (2014) 10 samples extracted from the center of the QRS complex in both 
channels.

52-53 P_amp e P_dur Zhang et al. (2014) Amplitude and duration of the P wave.
54-55 T_amp e T_dur Zhang et al. (2014) Amplitude and duration of the T wave.
56 PR_dur Zhang et al. (2014) Duration of the PR interval.
57 QT_dur Zhang et al. (2014) Duration of the QT interval.
58-77 P_amost(1:10) Zhang et al. (2014) 10 samples from the center of the P wave in both channels.
78-97 ST_amost(1:10) Zhang et al. (2014) 10 samples from the center of ST segment in both channels.
98-99 P_area Zhang et al. (2014) Area under the P-wave curve in both channels.
100-101 T_area Zhang et al. (2014) Area under the T-wave curve in both channels.

102-103 No Christov et al. (2006) Number of samples with amplitude up to 70% of the maximum 
value of the signal in both channels.

104-105 Av1 Christov et al. (2006) Sum of the absolute value of the speed (derivative) of the wave in 
both channels.

106 Freq Saad et al. (2006) Frequency component of higher amplitude in the Fourier transform 
of the signal.
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with similar studies using the statistical measures 
mentioned previously. Table  3 presents the QRS 
detection results, and Table 4 shows the results of the 
neural classifier implemented for a reduced feature 
vector size. Each  column of the confusion matrix 
reports the result of the classification obtained by the 
neural network, while the rows indicate the manual 
annotation made by the cardiologist.

The results of the neural classifier with and without 
the reduced feature vector size were compared to 
other studies that used the same database, as shown 
in Table 5. It can be observed that the beat classes 
employed by other studies are not similar, which is 
indicated by the number of classes.

Discussion
The work has achieved the proposed objective of 

developing an algorithm to classify heartbeats from 
digital ECG signals. The number of beat classes was 
defined according to the availability of databases 
with a significant number of examples for each class. 
In the future works, larger databases could be selected, 
following the methodology proposed in this paper.

The digital ECG signal is preprocessed and 
prepared for the QRS detection and beat segmentation 
steps. The detection of the QRS complex reached a 
sensitivity of 99.18% and a positive predictive value 
of 98.45%. The segmentation of the ECG signal was 
carried out using simple techniques based on amplitude 

Table 2. Results obtained by the PCA method presenting the percentage of information that is maintained by a selected number of features.

Number of features Information maintained 
(%) Number of features Information maintained 

(%)
1 47.08 16 98.36
2 56.89 17 98.73
3 64.33 18 99.06
4 70.69 19 99.31
5 76.69 20 99.53
6 81.08 21 99.70
7 84.51 22 99.79
8 87.48 23 99.85
9 90.04 24 99.90
10 92.20 25 99.93
11 93.80 26 99.95
12 95.31 27 99.97
13 96.27 28 99.98
14 97,09 29 99,99
15 97,78 30 99,99

Figure 4. The results obtained by the PCA method presenting the percentage of information preserved as a function of the number of 
considered features.
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and duration thresholds. From this segmentation and 
location of each beat, a vector of 106 morphological 
characteristics was extracted directly from the ECG 
signal. Because the feature vector is too large to be 
applied directly to the classifier, it was reduced using 
the PCA technique. Despite the reduction in the 
number of features from 106 to 25, the classification 
performance did not suffer significant decrease.

The results were, in general, very good compared 
to other published works, reaching an accuracy of 
97% and a sensitivity of 95%. It can be observed 
that the performance is dependent on the beat class 
because the classification complexity is also dependent 
on the beat morphology. For example, taking into 

consideration only premature ventricular beats, our 
algorithm achieved an accuracy of 98.48%. This high 
performance was not observed for the premature 
atrial beats, but the premature ventricular beats are 
more often associated to a serious heart condition, 
and for this reason its accurate detection should 
receive greater priority. Nevertheless, after a close 
analysis of the classification error in the present 
system, some limitations were identified, which will 
be the subject of future work. The most significant 
mistake is regarding the classification of premature 
atrial beats (A). In fact, normal and premature atrial 
beats have similar morphologies, except for a small 
difference in the RR interval preceding the current 
beat. Another mistake is related to the classification 

Table 3. Comparison of the QRS detection performance among different works. Statistical measures employed: True positives (TP), false 
positives (FP), false negatives (FN), sensitivity (Se) and positive predictive value (PPV).

QRS detector Algorithm Total Beats TP FP FN Se (%) PPV (%)
This Study 109500 107805 1695 896 99.18 98.45
Martínez et al. (2004) 109428 109208 153 220 99.8 99.86
Hamilton and Tompkins (1986) 109267 108927 248 340 99.69 99.77
Pan and Tompkins (1985) 109809 109532 507 277 99.75 99.54
Madeiro et al. (2007) 109494 107808 1073 1686 98.46 99.01

Table 5. Comparison of the classification performance among previous studies. 

Classification Approach Nº of 
classes

Se  
(%)

PP  
(%)

PPV  
(%)

NPV  
(%)

Ac  
(%)

This study (without PCA) 6 95.89 90.99 95.04 94.9 97.41
This study (with PCA) 6 95.05 90.88 95.11 92.7 96.97
Christov et al. (2006) 5 96.22 98.43 96.64 94.02 97.54
Chazal et al. (2004) 5 85.87 94.35 95.06 52.55 88.58
Chazal and Reilly (2006) 5 93.89 95.52 96.53 71.24 94.8
Ince et al. (2009) 5 95.58 86.76 95.84 84.26 96.63
Kim et al. (2011) 5 97.51 85.08 97.26 96.6 97.94
Llamedo and Martínez (2011) 4 78.00 96.70 95.83 41.71 81.45
Zhang et al. (2014) 4 88.35 93.34 95.31 57.24 90.19
Statistical measures: sensitivity (Se), specificity (PP), positive predictive value (PPV), negative predictive value (VPN), and accuracy (Ac). Reduction 
of features method: principal component analysis (PCA).

Table 4. Statistical results of the beat classification of the test set. Each column of the confusion matrix reports the result of the classification 
obtained by the neural network, while the row indicates the manual annotation made by the cardiologist. 

Database
Label

Classification Results Statistical

N L R PB V A Total TP FN TN FP Se 
(%)

PP 
(%)

PPV 
(%)

NPV 
(%)

Ac 
(%)

N 32404 189 7 39 206 162 33007 32404 603 6305 777 98.17 89.03 97.66 91.27 96.56
L 67 1754 0 9 222 71 2123 1754 369 37731 235 82.62 99.38 88.19 99.03 98.49
R 117 13 960 0 3 161 1254 960 294 38820 15 76.56 99.96 98.46 99.25 99.23

PB 6 10 0 2056 6 0 2078 2056 22 37952 59 98.94 99.84 97.21 99.94 99.8
V 65 22 8 11 754 38 898 754 144 38726 465 83.96 98.81 61.85 99.63 98.48
A 522 1 0 0 28 178 729 178 551 38928 432 24.42 98.9 29.18 98.6 97.55

Total 33181 1989 975 2115 1219 610 38106 Total: 95.05 90.88 95.11 92.7 96.97
Beat classes used: normal beat (N), left bundle branch block (L), right bundle branch block (R), paced beat (PB), ventricular premature beat (V) and 
atrial premature beat (A). Statistical measures: True positives (TP), false negatives (FN), true negatives (TN), false positives (FP), sensibility (Se), 
specificity (PP), positive predictive value (PPV), negative predictive value (VPN), and accuracy (Ac).
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of right bundle branch block beats (R). This beat 
class is not easy to identify in certain leads. Because 
the database uses only two leads per record and the 
lead configuration changes among the records, this 
may have affected the results. Finally, the reliable 
determination of the absence of the P wave remains 
a challenge to be addressed because this information 
affects the classification of some beat classes.

This work is being implemented in the Salus 
platform, which is a web-based environment of the 
Espírito Santo Telehealth program (Telessaúde ES, 
2014). Consequently, each ECG sent through the 
platform will be processed, and a report will be generated 
by the algorithm presented here. The report will be 
used for triage of the patients, so that cardiologists 
can prioritize the diagnosis of the critical cases with 
the least delay.
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