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Abstract	  Introduction: Relaxometry images are an important magnetic resonance imaging (MRI) technique in the clinical 
routine. Many diagnoses are based on the relaxometry maps to infer abnormal state in the tissue characteristic 
relaxation constant. In order to study the performance of these image processing approaches, a controlled simulated 
environment is necessary. However, a simulated relaxometry image tool is still lacking. This study proposes a 
computational anatomical brain phantom for MRI relaxometry images, which aims to offer an easy and flexible 
toolkit to test different image processing techniques, applied to MRI relaxometry maps in a controlled simulated 
environment. Methods: A pipeline of image processing techniques such as brain extraction, image segmentation, 
normalization to a common space and signal relaxation decay simulation, were applied to a brain structural 
ICBM brain template, on both T1 and T2 weighted images, in order to simulate a volumetric brain relaxometry 
phantom. The FMRIB Software Library (FSL) toolkits were used here as the base image processing needed to 
all the relaxometry reconstruction. Results: All the image processing procedures are performed using automatic 
algorithms. In addition, different artefact levels can be set from different sources such as Rician noise and radio-
frequency inhomogeneity noises. Conclusion: The main goal of this project is to help researchers in their future 
image processing analysis involving MRI relaxometry images, offering reliable and robust brain relaxometry 
simulation modelling. Furthermore, the entire pipeline is open-source, which provides a wide collaboration 
between researchers who may want to improve the software and its functionality. 
Keywords: Relaxometry, Magnetic resonance imaging, Brain phantom, Simulation.

Introduction
Magnetic resonance imaging (MRI) is crucial 

for many applications in the clinic routine. Due to 
its clinical importance, several MRI techniques are 
being intensely researched for better image acquisitions 
and processing. One classical MRI technique is the 
relaxometry, which measures the characteristic energy 
decay after a radio-frequency pulse, also known as 
the relaxometry constants (T2 or T1, depending the 
weighted imaging technique used) (Carneiro et al., 
2006; Deoni, 2010; Haacke et al., 1999). This process 
is widely used for different studies, especially for 
brain research in clinical applications (Cheng et al., 
2012; Ellingson  et  al., 2012; Hasan  et  al., 2012; 
Kosior et al., 2011), which plays an important role in 
the diagnosis of several brain diseases, e.g. in Parkinson 
(Barbosa  et  al., 2015), Alzheimer (House  et  al., 
2006) and Multiple Sclerosis (Burgetova et al., 2010; 
Ellingson et al., 2012). For this reason, this classical 
imaging technique still has an intensive investment.

Following the MRI acquisition and hardware 
improvement, investigation into image processing 
related to the relaxometry acquisitions also increased 
in the scientific literature. Signal decay modelling 

(Lebel and Wilman, 2010), image denoising 
algorithms (Feng  et  al., 2014; Senra  et  al., 2014) 
and multi-echo spatial acquisition (Kumar  et  al., 
2012) are some examples of the different image 
acquisition and processing applied to relaxometry 
images in order to obtain a more precise relaxation 
estimate. However, a simulated environment is also 
important for the development of the research, giving 
a standard and controlled environment to test new 
image acquisitions and image processing techniques. 
In contrast, some computational brain simulations 
for structural and functional MRI images are well 
known and widely used in many studies (Chau and 
McIntosh, 2005; Cocosco et al., 1997; Drobnjak et al., 
2006; Rykhlevskaia et al., 2008), but, unfortunately, 
the relaxometry image simulation is still lacking for 
brain studies.

In this study, a computational tool for brain MRI 
relaxometry simulation is proposed. The method described 
here is based on structural brain templates and results 
in three-dimensional relaxometry simulations, with 
controlled image parameter settings. The purpose of 
this software is to offer a simple, flexible and reliable 
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image processing toolkit to generate brain relaxometry 
images for research development.

Methods

The image used as ground-truth tissues to build 
the simulated relaxometry dataset here is based on 
the ICBM MRI template (MNI152 brain templates), 
providing both T1 and T2 weighted MRI images 
(Chau and McIntosh, 2005; Grabner et  al., 2006). 
The ICBM template is well-known in the scientific 
literature in several brain studies, which provides a 
standard brain anatomical template from a sample 
of registered and normalized group of healthy 
individuals (Chau and McIntosh, 2005). Furthermore, 
with the ICBM template, the brain could be divided 
in different tissues, namely the white matter (WM), 
gray matter (GM) and cerebrospinal fluid (CSF), 
among others (Cocosco et al., 1997; Collins et al., 
1998). For simplicity, this version of relaxometry 
simulation only uses the WM, GM and CSF tissues 
in the simulation process.

In summary, the brain tissues classification and 
further signal decay simulation are based on a sequential 
image processing pipeline (Figure 1). Firstly, the brain 
extraction procedure follows with the neck removal 
option in the FSL-BET toolkit (Jenkinson  et  al., 
2012; Popescu  et  al., 2012), which seems to be 
more appropriate for structural MRI brain extraction 
(Popescu et al., 2012) and results in an image without 
voxels belonging on non-brain tissue. Secondly, the 
image segmentation process follows to extract each 
brain tissue, i.e. WM, GM, and CSF. In the tissue 
segmentation step, the expectation maximization 
algorithm, based on the image histogram classification 
by the Gaussian mixture models (Jenkinson et al., 
2012) and a Markov Random Field classifier are used 
to separate each brain tissue (Woolrich et al., 2009). 
Finally, the signal decay is simulated using a first 
order exponential decay, providing the T1 and T2 
characteristic tissue signal behaviour for each voxel 
in the whole brain. The  mathematical model 
(Equation 1) used here is a first order exponential, 
which is expected to simulate a first approximation 
of the natural magnetization relaxation seen in the 

Figure 1. Computational pipeline to reconstruct the tridimensional magnetic resonance imaging relaxometry maps. The entire image processing 
(brain extraction, segmentation and signal decay simulation) is made using FMRIB Software Library (FSL). It is possible to change the noise 
intensity and the type of relaxometry image, i.e. T1 or T2 mapping.
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MRI phenomena (Haacke et al., 1999). The T1 and 
T2 tissue decay constants are set using the normal 
brain tissue characteristics, reported in the literature 
(Wansapura et al., 1999), but the user can set other 
brain tissue relaxation constants according to their 
own criteria.
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Where S0 is the first signal acquired from the first echo, 
the S(t) is the signal acquired after a time t, T is the 
tissue characteristic relaxation constant (T1 or T2) and 
C is an offset for exponential adjustment. The entire 
image processing pipeline used here uses the FMRIB 
Software Library (FSL) tools (Jenkinson et al., 2012).

In order to add more complexity in the brain 
simulations, two different image artefact possibilities 
are available: the Rician noise background and the 
radio-frequency (rf) coil inhomogeneity. Both types of 
artefacts are commonly assumed in anatomical MRI 
acquisition techniques and have an important impact 
for the majority of image processing approaches 
(Cárdenas-Blanco et al., 2008; Haacke et al., 1999). 
The Rician noise intensity is based on the brightest 
tissue for each image acquisition, i.e. the WM signal 
intensity for T1 images and the CSF signal intensity 
on T2 images, and the rf inhomogeneity is based on 
low-frequency rf coils templates (Cocosco et al., 1997). 
Therefore, three different artefact levels for both the 
Rician noise (0%, 3% and 9%) and rf inhomogeneity 
artefacts (0%, 20% and 40%) are available. Here, 
for the image noise estimate, the same procedure 
was applied as that described in the BrainWeb brain 
simulation toolkit (Cocosco et al., 1997).

Furthermore, to provide a comparison between 
the simulation and real relaxometry estimative, 
a statistical analysis was conducted using real 
relaxometry data. A set of 10 real relaxometry images 

from control asymptomatic subjects, with the same 
imaging acquisition protocol, was used. The imaging 
parameters were set as following: GRASE sequence, 
TR = 3000 ms, EPI factor 3, FOV = 230 × 230 mm2, 
in-plane resolution = 0.479 × 0.479 mm2, 20 slices, 
slice thickness = 2 mm, eleven time echos (TE = 24, 
36, 48, 60, 72, 84, 96, 108, 120, 132 and 144 ms), 
and acquisition time = 6 min. A two-tailed statistical 
t-test (significance level of 95%) was used to show 
whether the simulation images provide the same T2 
estimate as given in the real data. Furthermore, the 
absolute error (AE) analysis, between the simulated 
and real T2 estimate, was also calculated in the same 
dataset. Only a T2 relaxometry was conducted, but 
it is assumed that these results could reflect a similar 
performance in a T1 weighted relaxometry case.

Results
After the image preparation, i.e. brain extraction, 

brain tissue segmentation and noise simulation 
procedures, the relaxometry reconstruction is conducted. 
These initial image preparation steps are illustrated 
in Figure 1, where the image voxel-wise relaxometry 
signals are modelled using Equation 1. Each brain 
tissue has a different relaxation constant value and 
for this reason, the WM, GM, and CSF tissues must 
be segmented before the signal decay simulation.

It were reconstructed a whole-brain T2 relaxometry 
map for each real relaxometry subject. The same 
first order exponential was used here. The mean T2 
value, for each brain tissue, found in the real data was 
used as initial parameter to create the T2 simulation. 
All  segmented brain tissues (GM, WM, and CSF) 
were used as samples to calculate the mean T2 values. 
Figure 2A, B show an example for each T2 image, 
simulated and real, respectively. The noise and rf 

Figure 2. Comparison between the real and simulated T2 relaxometry maps. A middle brain axial slice is given for (A) simulated and (B) real 
T2 relaxometry, which the first echo is illustrated. The cerebrospinal fluid (CSF), gray (GM) and white matter (WM) are used here with noise 
and rf non-uniformity set as 3% and 20%, respectively. (C) Mean T2 value is given by each subject in the real (GM-R, WM-R, and CSF-R) 
and simulated (GM-S, WM-S, and CSF-S) dataset, which showed that both are equivalent (p<0.05). (D) Absolute error (AE) between real 
and simulated T2 estimative infer the precision of the simulated reconstruction, recovering the expected variability given by real estimative.
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inhomogeneity intensity for the simulated comparison 
were set as 3% and 20%, respectively, which gives 
a reasonable approximation for the artefact found 
in the real data. In addition to the T2 estimate, it is 
possible to compare the Absolute Error (AE) given 
by the absolute difference between the simulated and 
real relaxometry maps, which infer the accuracy of 
the simulation procedure. Figure 2C, D illustrate the 
results for the T2 relaxometry estimate and AE analysis.

Discussion
The brain relaxometry simulation models created 

here show a reliable brain structural dependence and 
also offer a better alternative when compared with 
the geometrical brain phantom provided in other 
image simulation tools (Hellerbach  et  al., 2013; 
Koay et al., 2007; Van De Walle et al., 2000). Brain 
structural and functional MRI image simulations are 
already available for different open-source toolkits, 
but only for limited options of MRI acquisitions 
(Jenkinson et al., 2012). The relaxometry mapping 
simulation still needs further developments and the 
toolkit presented here could be a further step in this 
necessary development.

Figure 2C shows the T2 values for each subject 
for GM, WM, and CSF tissues. Firstly, the T2 value 
variability is expected, due to image artefacts, where 
for both the real and simulated dataset offered a T2 
variation of around 10%. For this reason, it is important 
to simulate those Rician and rf coil inhomogeneities in 
order to obtain a realistic signal variability. Secondly, 
the T2 simulated values (GM, WM, and CSF) also 
showed a statistical equivalence compared with the 
real data. Here the statistical test was evaluated, for all 
brain tissues, and maintained the H0 hypothesis, i.e. the 
simulated and real T2 estimate are not statistically 
different from each other. Finally, the AE analysis 
reveals that the simulated dataset offers T2 variability 
similar to what is seen in the real situation, roughly 
10% of the mean value, where its signal fluctuation 
is directly referred with the noise intensity given in 
the initial simulation parameters.

Additionally, this entire project is freely available 
for download on the internet (http://acsenrafilho.github.
io/relaxophantom) and it has an open-source license, 
which provides the liberty to use, adapt and share. 
Suggestions and collaborations of other researchers 
are also welcome for the improvement of this tool. 
At this stage, the toolkit only offers a limited range 
of noise and simulation parameters, which restricts a 
more complex study approach. However, in the near 
future, there is a plan for the expansion of new features 
such as other non-linear exponential decay simulations, 
magnetic susceptibility field inhomogeneity, partial 
segmentation to simulate the partial volume effect in 

near structural boundaries (WM/GM interface and deep 
gray matter structures) as well as adding other brain 
tissues such as fat, blood and others (Cocosco et al., 
1997). Moreover, a graphic user interface could be 
implemented to offer a friendly interaction between 
the user and the software, which is at the moment, 
only via command terminal lines.

In conclusion, the tool described here is a suitable 
alternative for recreating a reasonable brain relaxometry 
acquisition with controlled imaging artefacts, bringing 
the convenience of a robust neuroscience toolkit for 
future research and brain image processing studies.
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