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Introduction
For decades, breast cancer has been the most common 

type among women. In Brazil, the breast cancer mortality 
rates remain high, as the disease is still diagnosed in advanced 
stages. Even though Mammography, Ultrasonography, 

Magnetic Resonance and clinical breast examination 
(ECM) are the most widely used and indicated methods in 
mastology, there are still many problems associated to them. 
Sometimes they are not enough to identify breast lesions 
in women with dense and surgically altered breasts or in 
women under the age of 40 years. In addition to it, some 
of these exams are extremely uncomfortable to the patient 
and there is concern about the risk associated to the use of 
ionizing radiation (American..., 2015; Instituto..., 2015).

In search for imaging techniques complementary to 
the above mentioned, thermography started being used in 
mastology in 1982, but at the time specialists discredited the 
method and therefore it was not recommended for breast 
diseases diagnosis. With the technological improvement 
of the thermographic cameras, many tools using image 
processing and image analysis could be developed to 
facilitate the detection of changes in the breast’s images, so 
thermography became more popular and continued to be 
explored as a complementary screening test in mastology 
(Milosevic et al., 2015; Walker and Kaczor, 2012).
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Thermography uses infrared technology to create a 
temperature map of the surface. When applied to medicine, 
the distribution of temperature gives several physiological 
information in a way that highly metabolic tissues appears 
in the images as warmer spots, so lesions such as cancers 
and places where angiogenesis is happening may be seen 
through thermograms. Regarding to the identification 
of lesions in the breast, the lack of depth has not been 
considered to be a limitation of this technique since these 
accelerated metabolic activities tends to increase the surface 
temperature of the breast (Etehadtavakol and Ng, 2013).

According to Etehadtavakol and Ng (2013), breast 
thermography has been shown to be efficient during early 
stages of tumor growth, since physiological changes 
usually precedes anatomical changes. Moreover, it is 
a completely non-contact method, with no form of 
radiation and compression and may be used for all 
women of all ages, including pregnant and breastfeeding 
women. This technology also works better to women 
with dense/fibrocystic breasts than the other screening 
methods vastly used nowadays.

A limitation of this method is the fact that it is easily 
influenced by changes in the environment, so aspects such 
as room temperature and humidity have to be severely 
controlled to guarantee exam validity.

In view of the above, several studies have been 
carried out on the application of thermographic images in 
mastology. Resmini et al. (2012), which perform several 
feature extractions, these features were analyzed using 
Support Vector Machines (SVM), k-Nearest Neighbors 
(KNN) and Naïve Bayes classifiers to detect the existence 
of lesions in thermographic images of the breast. In this 
work, the authors reach an approximate accuracy of 
90%, and an area below the ROC curve close to 0.9. 
Aguiar et al. (2013) report several extracted features 
and the multilayer perceptron classifier was used for the 
detection of breast lesions in thermographic images and 
presented 75% of correctly classified regions. Belfort et al. 
(2015) perform feature extraction using the Artificial 
Crawlers model. The SVM classifier was used and the 
process presented 78% accuracy, 50% sensitivity and 
84% specificity. Another work, from Acharya et al. 
(2012), describes the extraction of sixteen features, but 
uses only four, as the authors defined these as clinically 
significant in comparison with the others. The results 
obtained were 88.10% accuracy, 85.71% sensitivity 
and 90.48% specificity.

The aim of this work is to investigate the performance 
of different classification methods while grouping the 
thermographic images into one of the groups: cyst, benign 
lesion and malign lesion by using Haralick and Zernike 
descriptors for attributes extraction. Classifiers based on 
artificial neural networks, decision trees and Bayesian 
classifiers were used to perform the classification. 
To assess classification, rates of correctly classified 
instances and kappa indexes were compared.

Related works
Acharya et al. (2012) evaluated the feasibility of using 

thermal imaging as a potential tool for detecting breast 
cancer. Field data were collected from the Department of 
Diagnostic Radiology, Singapore General Hospital using 
non-contact thermography. Infrared thermograms were 
acquired using NEC-Avio Thermo TVS2000 MkIIST 
System 3.0-5.4 μm short wavelength (30 frames/sec), 
Stirling cooler, InSb detector with (256×200) elements 
(Japan), which has a measuring accuracy of ±0.4% 
(full scale) and temperature resolution of 0.1 °C at 30 °C 
black body, with the instrument placed 1 m away from 
the chest with lens (FOV 15°×10°, IFOV 2.2 mrad) 
attached. 90 patients were chosen at random to undergo 
the thermography examination. Examination was done 
in a temperature-controlled room with the temperature 
range of 20-22 °C (within ±0.1 °C). Humidity of the 
examination room was maintained at 60±5%. The patients 
were required to rest for at least 15 min to stabilize and 
reduce the basal metabolic rate, which will result in 
minimal surface temperature changes, and therefore, 
satisfactory thermograms. Also, the patients were asked 
to wear a loose gown that does not restrict airflow. 
Furthermore, it was ensured that the patients were within 
the recommended period of the 5th to 12th and 21st day 
after the onset of menstrual cycle since during these 
periods the vascularization is at basal level with least 
engorgement of blood vessels. In this work, we have 
used a total of 50 thermograms, where 25 thermograms 
were from cancer patients (age: 51±8 years) and 25 were 
from normal subjects (age: 46±10 years).

In the malignant class, 15 patients had stage III cancer 
and rest had stage II cancer. 50% of the lumps were found 
in the upperouter quadrant, 35% in the area behind the 
nipple, and 15% were located in the upper-inner quadrant. 
We have analyzed the cancerous breast in each of the 
25 malignant cases and one normal breast in each of 
the 25 normal cases.

Acharya et al. (2012) demonstrated the utility of 
breast surface temperature as an indicator for malignancy. 
Since a thermogram presents a visual representation of 
‘hot spots’ of the breast, and hence, the interpretation 
may be subjective. Therefore, Acharya et al. (2012) 
extracted texture features from the thermograms in 
order to feed into classifiers for automatic classification. 
This makes the interpretation more objective and 
automatic, and therefore, inter-observer variability of 
diagnostic prediction is highly reduced.

Acharya et al. (2012) have extracted 16 texture features: 
homogeneity, energy, entropy, moment1, moment2, 
moment3, moment4, entropy, angular second moment, 
contrast, mean, short runs emphasis, long runs emphasis, 
run percentage, gray level non-uniformity, and run length 
non-uniformity. But, only four features: moment1, 
moment3, run percentage, and gray level non-uniformity 
were selected as they were clinically significant.
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By using the SVM classifier and the texture features, 
Acharya et al. (2012) obtained a classification accuracy of 
88.10% in differentiating normal and malignant breasts. 
The sensitivity and specificity were also considerably 
high (85.71% and 90.48%, respectively).

Hankare et al. (2016) present color analysis as 
per the classification on the basis of segmentation. 
The distinguishable features which are used to detect 
abnormalities are based upon the variations shown 
as per the image shape of the hottest regions and it is 
confirmed by comparing with professional diagnoses. 
The authors claim their results demonstrate the suitability 
of infrared thermography as a diagnostic tool in breast 
cancer detection.

Hankare et al. (2016) employ an image segmentation 
approach using K-means clustering technique based 
on color features from the images. Segmentation of 
hot region is carried out into two steps. In first step, 
the pixels are clustered based on their color and spatial 
features, where the clustering process is carried out. 
They claim the advantages of their proposed method 
are: 1) It can segment the cancer regions from the image 
accurately; 2) It is useful to classify the cancer images 
for accurate detection; 3) Early stage detection of cancer 
from images. However, Hankare et al. (2016) present 
only qualitative results, based on color distribution. 
Since pseudo-color maps are not unique, this approach 
could not be generalized.

Araújo et al. (2014) evaluated the feasibility of using 
interval data in the symbolic data analysis (SDA) framework 
to model breast abnormalities (malignant, benign and 
cyst) in order to detect breast cancer. SDA allows a more 
realistic description of the input units by taking into 
consideration their internal variation. In this direction, 
a three-stage feature extraction approach is proposed. 
In the first stage, four intervals variables are obtained by 
the minimum and maximum temperature values from 
the morphological and thermal matrices. In the second 
one, operators based on dissimilarities for intervals are 
considered and then continuous features are obtained. 
In the last one, these continuous features are transformed 
by the Fisher’s criterion, giving the input data to the 
classification process. This three-stage approach is 
applied to a Brazilian’s thermography breast database 
and it is compared with a statistical feature extraction 
and a texture feature extraction approach widely used 
in thermal imaging studies. Different classifiers are 
considered to detect breast cancer, achieving 16% of 
misclassification rate, 85.7% of sensitivity and 86.5% of 
specificity to the malignant class.

The thermograms used by Araújo et al. (2014) 
were acquired with a FLIR S45 infrared (IR) camera. 
The analysis was performed using a data set obtained 
from a patient group (size n = 50) of the Hospital of 

the Federal University of Pernambuco (UFPE), Recife, 
Brazil. This data set consists of patients aged greater 
than 35 years with a suspected mass, whose diagnoses 
were confirmed by clinical examination and followed 
by ultrasound, mammographic and biopsy exams. 
A standardized protocol was used for the infrared image 
acquisition. For this purpose, an apparatus was designed 
and constructed. A protocol for image acquisition was 
generated and it is described in Bezerra et al. (2013). 
This apparatus consists of two rails used for the 
displacement of a small carriage that supports the tripod, 
that is attached to the infrared camera. A support for 
the patient’s arms made of steel, aluminum, and wood 
was fitted to a swivel chair. This support has a movable 
horizontal bar designed to move up and down. The bar 
is used to position the patient’s hands allowing four 
different positions so as to comfortably accommodate 
patients of different heights (Bezerra et al., 2013).

Thermographic imaging should be performed in a 
controlled temperature room to avoid or minimize the 
thermal interference from external sources. To achieve 
better thermal conditions, the patients were subjected to 
an acclimatization period at least of 10 min, in order to 
their bodies reach the thermal equilibrium with the room. 
Considerations for the environment conditions as well 
for the patients are described in Bezerra et al. (2013). 
The infrared images used in this work were obtained 
from the frontal planes of each patient.

Belfort et al. (2015) used the same thermogram 
database employed by Araújo et al. (2014), but limited to 
34 images, where 15 images for mammary lesion (benign 
or malignant) and 19 for healthy patients. Colored JPEG 
images were converted to grey levels and, afterwards, 
the regions of interest are manually extracted in left 
and right mammary regions. These two ROIs are then 
registered using b-splines (Klein et al., 2007) and used 
to generate a dissimilarity map. From this dissimilarity 
image, Belfort et al. (2015) used Artificial Crawlers 
Model for feature extraction (Gonçalves et al., 2014). 
The generated feature vectors are then classified using 
linear Support Vector Machines, giving an accuracy of 
78%, sensitivity of 50%, and specificity of 84%.

Our proposal is based on the investigation of texture 
and shape descriptors to represent mammary thermograms. 
We used the same database studied by Araújo et al. 
(2014). Since we are interested in lesion classification, 
as Araújo et al. (2014), we also considered the following 
classes: malignant, benign and cyst. Acharya et al. (2012), 
Belfort et al. (2015) and Hankare et al. (2016) are interested 
in lesion detection. However, differently from Araújo et al. 
(2014), our feature extraction is based on the combining 
texture and shape features using Haralick moments and 
Zernike features, respectively, extracted from grey-level 
temperature matrices generated from pseudocolor JPEG 
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images. We also tested more sophisticated classifiers, 
like multi-layer perceptrons, random forests, and support 
vector machines. Our proposal returned 88.10% accuracy, 
85.71% sensitivity and 90.48% specificity, without manual 
intervention, against the results of Araújo et al. (2014), 
which returned 84% of accuracy, 85.7% of sensitivity 
and 86.5% of specificity for the malignant class.

Methods
The images that feed the system came from 

thermographic images acquired at Hospital das Clínicas, 
Federal University of Pernambuco, where cyst, malignant 
and benign classes are selected (Araújo et al., 2014; 
Bezerra et al., 2013). For the pre-processing step of 
the images, the RGB-JET conversion was performed 
to temperature gray levels and the post-processing step 
was performed to balance the classes. The Zernike and 
Haralick moments are used to extract attributes based on 
geometry and texture. The next stage performs the training 
and subsequent classification with several classifiers 
based on artificial neural networks, decision trees and 
Bayesian classifiers. Finally, the performance of the 
system was evaluated through accuracy and the Kappa 
index. Figure 1 is a flowchart of the proposed system.

Images acquisition

The thermographic images used in this study were 
acquired at Hospital das Clinicas da Universidade Federal 
de Pernambuco (University Hospital of the Federal 
University of Pernambuco, HC-UFPE, Brazil) by using 
a FLIR infrared camera of the model S45.

In order to avoid significant changes in patients 
positions during the acquisition process, a mechanical 
device was built, this device is shown in Figure 2 and 
is further described in Oliveira (2012).

The car is connected to the rails in order to move 
the camera closer or further away from the patient; 
furthermore, the arms support is connected to the chair 
through two (2) horizontal bars, so they rotate together 
to change the position of the patient.

Eight (8) JPG images were obtained for each patient, 
each image was acquired from a different position, such 
as follows: T1 (frontal with hands on waist), T2 (frontal 
with hands raised, holding the bar located above the 
head (Figure 2)), MD (right breast only), ME (left breast 
only), LIMD (internal lateral of the right breast), LIME 
(internal lateral of the left breast), LEMD (external lateral 
of the right breast) and LEME (external lateral of the 
left breast). Figure 3 illustrates examples of images in 
each of the positions.

The image acquisition protocol was first described 
in Oliveira (2012) and is illustrated in Figure 4, below.

Creation of the thermographic breast image 
database

In this work, the images in all the positions were used 
(T1, T2, MD, ME, LIMD, LIME, LEMD and LEME). 
These images were divided into malign, benign, cyst 
and normal classes, according to specialists diagnoses, 
which were given by using consolidated methods for 
each case. The malign class comprises of all cases of 
breast cancer proven by biopsy. The benign class refers to 
cases of benign tumors, also proven by biopsy. The cyst 
class includes cases with this diagnosis proven by fine 
needle aspiration (PAAF) or ultrasonography (Silva, 
2015). The final database contains 1052 images.

Considering that the purpose of this approach is to 
verify the classification of an existing lesion, the normal 
class (227 images) was removed from the database for 
this study. Therefore, only three classes were used: 
malign, benign and cyst. For this study, images were 
taken from 100 female patients; 219 cyst images were 
used, 371 images with benign lesions and 235 images 
containing malignant lesions.

Figure 1. Flowchart of the system.

Figure 2. Mechanical device to place patient in the right position during 
images acquisition. (1) the trails used to move the camera support car, 
there are two (2) of them and they are placed on the floor; (2) plate-shaped 
car to support camera’s tripod; (3) swivel chair where the patient is 
placed on; (4) arms support, which consists of a horizontal bar that 
moves vertically so the patient can put the hands up during the exam.
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Figure 3. Example of image positions: T1 and T2 are associated to frontal acquisition with arms curved down and up, respectively; MD and 
ME corresponds to frontal acquisition from center to right, and from center to left, respectively; LEMD and LEME corresponds to right and left 
medio-lateral acquisition, in this order; LIMD and LIME are almost the same as LEMD and LEME, respectively, but closer.

Preprocessing
The thermal image uses pseudo-coloring techniques 

which, in this case, were used in the acquisition of the 
JET color palette. Therefore, it was necessary to use 
RGB-JET conversion to Grayscale.

Attributes extraction
The definition of the feature extraction method is one 

of the most important factors for computational system 
performance in support of the Diagnostic (Cheng et al., 

2006). According to the characteristics, the attributes 
were based on geometry or texture. We used the Zernike 
moment attribute extractors based on the extraction of 
geometry and the Haralick moment based on the extraction 
of texture features. The first are projections of the image 
function in orthogonal basis functions and only the rotation 
is invariant (Shanthi and Bhaskaran, 2013). The second 
one is a value calculated from the co-occurrence matrix 
of the image, which quantifies some characteristics of the 
variation of the gray levels of these images (Cheng et al., 
2006; Shanthi and Bhaskaran, 2013).

Figure 4. Scheme of acquisition protocol.
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Post-processing
After the extraction of the attributes, we performed 

a class balancing, due to the thermal images database 
having varying amounts of images from the different 
classes. Therefore, it is necessary to use the linear 
balancing technique.

Classification
After the extraction of attributes and class balancing, 

these attributes are used as input for the classifiers that 
will be trained and then later perform the classification of 
breast lesions (malignant, benign and cyst). In this article 
we present a comparison between eight classifiers in order 
to verify their capacity to classify lesions in the breast in 
thermographic images. The classifiers used were Bayes 
Network, Naive Bayes, Support Vector Machines (SVM), 
Knowledge Tree J48, Multi-Layer Perceptron (MLP), 
Random Forest, Random Tree, and Extreme Learning 
Machines (ELM) (Breiman, 2001; Cheng and Greiner, 
2001; Geurts et al., 2006; Haykin, 1999; Librelotto, 2014).

During the tests, we perform the training using a 
percentage split approach, in which part of the database 
is used for training while the rest is just used for test, to 
verify the quality of the training step. For all the classifiers 
above mentioned, tests were performed using percentage 
split and a k-folds cross validation method (Jung and Hu, 
2015). To first tests the database was randomly divided 
in a way that 75% of the database was used for training 
and 25% for testing. In a second time, cross-validation 
method with k equals to 10 folds was used to perform 
the tests; in this method the dataset is randomly divided 
into k samples and these samples are used one by one to 
perform both training and testing. At the end, all database 
end up being used for both steps of classification.

The classification stage was performed using the free 
software Weka (Waikato Environment for Knowledge 
Analysis), version 3.8, developed at the University of 
Waikato, New Zealand. We used the configuration of 
the Bayes Net, Naive Bayes, SVM, J48, MLP, Random 
Forest, and Random Tree classifiers as available in the 
Weka 3.8 library; Table 1 shows the parameters we 
chose to change to each classifier.

For the ELM classifier we performed tests using the 
following configurations: 100, 200, 300, 400 and 500 neurons 
in the hidden layer with linear kernel, grade 2 polynomial, 
grade 3 polynomial, grade 4 polynomial, and 
grade 5 polynomial.

There were performed 20 tests per configuration of 
each classifier.

Performance evaluation
Finally, the system performance is evaluated through 

the average accuracy and average Kappa index for each 
configuration. Accuracy is the percentage of correctly 
classified data considering the classes also used correctly 
(Landis and Koch, 1977). The Kappa index is a statistical 

method to assess the level of agreement or reproducibility 
between two sets of data; it can vary between -1 and 1. 
We used Cohen’s Kappa index. The interpretation of 
the Kappa index is show in Table 2.

Extreme Learning Machine (ELM)
ELM consist of a training approach for single-tiered 

neural networks. This proposed learning technique is for 
training single-layer feedforward neural networks that 
accelerates learning through the random generation of 
input weights and the hidden layer (Huang et al., 2006).

Results
We acquired results using percentage split of 75%. 

Classifiers performance was assessed through the 
values for accuracy and Kappa indexes, which may be 
seen at the tables below. For all the configurations, we 
performed tests using Haralick extractor only (Table 3), 
Zernike only (Table 4) and using both extractors at the 
same time (Table 5).

Table 1. Configuration of the classifiers used to perform the tests.
Classifier Parameters
BayesNet -

NaiveBayes -
J48 -

SVM Linear kernel
MLP Hidden Layers: a *

Learning Rate: 0.3
Momentum: 0.2
Iterations: 500

Random Forest Trees: 100
Random Tree -

ELM Number of neurons in the hidden layer: 
100, 200, 300, 400 and 500;

Polynomial kernel: degrees 1, 2, 3, 4 and 5
* ‘a’ = (attribs + classes) / 2 = 85 hidden layers.

Table 2. Interpretation of the Kappa index.
Kappa Values Level of Agreement

< 0 Poor
0-0.20 Slight

0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.0 Excellent

Table 3. Results of the classifiers with Haralick attribute extractors.
Classifier Accuracy Kappa Index
BayesNet 51.80% 0.7690

Naive Bayes 51.44% 0.2736
MLP 60.97% 0.4138
SVM 56.47% 0.3480
J48 50.54% 0.2577

Random Forest 59.17% 0.3876
Random Tree 48.38% 0.2256

ELM* 65.95% 0.4892
*Using 500 neurons and linear kernel.
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Tables 6 to 8 show the results of accuracy and Kappa 
index obtained for the tests from 10-folds cross-validation 
method using only Haralick extractor, only Zernike 
extractor and combining both extractors, respectively.

Based on the tables above, it was verified that when 
using only Haralick as attributes extractor we obtained 
better results using ELM as the classifier, which were 
65.95% of accuracy and a Kappa index of 0.4892, for 
the tests using percentage split and accuracy of 71.22% 
and 0.6676 for Kappa, for tests from cross-validation 
method. On the other hand, MLP classifier showed to 
be more efficient in the cases in which we used only 
Zernike as extractor and when we combined Haralick 
and Zernike.

The best result was obtained when we associated 
Haralick and Zernike attributes extractors. In this situation, 
73.38% of the instances were correctly classified using 
MLP as the classifier, resulting in a Kappa index of 
0.6007 when the percentage split approach was used, 
and we obtained the maximum value of 76.01% correctly 
classified instances and Kappa of 0.6402, also using MLP.

Qualitatively, this result showed sensitivity around 
78% and specificity of 88% in the identification of 
malignant lesions through thermographic images. Overall, 
these values indicate that the system had an efficiency 
of 83%, which is close to the maximum value of 1 (one) 
implying in a satisfactory performance.

Table 4. Results of the classifiers with Zernike attribute extractors.

Classifier Accuracy Kappa Index
Bayes Net 47.30% 0.2103

Naive Bayes 54.14% 0.3138
MLP 72.12% 0.5817
SVM 62.41% 0.4365
J48 43.88% 0.1581

Random Forest 66.01% 0.4904
Random Tree 44.42% 0.1663

ELM* 70.43% 0.5564
*Using 500 neurons and linear kernel.

Table 5. Results of the classifiers with Haralick and Zernike attribute 
extractors.

Classifier Accuracy Kappa Index
BayesNet 51.80% 0.2780

Naive Bayes 51.62% 0.2786
MLP 73.38% 0.6007
SVM 67.81% 0.5173
J48 52.70% 0.2904

Random Forest 64.57% 0.4688
Random Tree 52.16% 0.2820

ELM* 72.94% 0.5940
*Using 500 neurons and linear kernel.

Table 6. Results of the classifiers with Haralick attribute extractors using 
10-fold cross-validation.

Classifier Accuracy Kappa Index
BayesNet 51.12% 0.2668

Naive Bayes 49.87% 0.2480
MLP 62.26% 0.4340
SVM 56.38% 0.3457
J48 51.48% 0.2722

Random Forest 59.88% 0.3982
Random Tree 47.71% 0.2156

ELM* 71.22% 0.6676
*Using 500 neurons and linear kernel.

Discussion
The results presented in Tables 3 to 8 showed that 

the best values of accuracy and Kappa index were 
obtained by classifiers based on artificial neural networks. 
The classifiers used were selected because they were 
able to achieve good results according to the nature of 
the data. Bayes’ naive classifier achieves good results 
when attributes are statistically independent. Thus, 
decision boundaries can be modeled through products of 
one-dimensional Gaussian distributions. Thus, evaluating 
the performance of Bayes’ naive classifier also implies 
indirectly evaluating the degree of independence of 

Table 7. Results of the classifiers with Zernike attribute extractors using 
10-fold cross-validation.

Classifier Accuracy Kappa Index
Bayes Net 50.13% 0.2520

Naive Bayes 51.66% 0.2749
MLP 69.32% 0.5398
SVM 60.47% 0.4070
J48 48.65% 0.2298

Random Forest 64.87% 0.4730
Random Tree 47.84% 0.2177

ELM* 67.41% 0.6267
*Using 500 neurons and linear kernel.

Table 8. Results of the classifiers with Haralick and Zernike attribute 
extractors using 10-fold cross-validation.

Classifier Accuracy Kappa Index
BayesNet 51.66% 0.2749

Naive Bayes 50.99% 0.2648
MLP 76.01% 0.6402
SVM 65.54% 0.4832
J48 52.92% 0.2938

Random Forest 64.87% 0.4730
Random Tree 49.78% 0.2466

ELM* 70.06% 0.6566
*Using 500 neurons and linear kernel.
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attributes. Bayesian networks are important to investigate 
how decision boundaries can be modeled by fairly 
complex rules. Connectionist learning machines, such as 
artificial neural networks and support vector machines, 
return good results when the classification problem is 
easily generalizable. Decision trees, in turn, model the 
situation in which data are difficult to generalize, requiring 
more ad hoc classifiers, composed of many complex 
rules. Random Forest classifiers are in an intermediate 
position, and can be used both when the data are easier 
to generalize (many trees) and more specific (few trees), 
since they are based on knowledge tree sets.

The generalization capacity of the classifiers is best 
measured when using cross-validation, since the random 
division of the data set into training and testing allows to 
evaluate the generalization capacity without subjecting 
the classifier to overfitting. Table 6, with results for use 
only of texture attributes (Haralick) shows that Bayesian 
and decision tree-based classifiers had similar accuracy 
scores, around 50%, while support vector machines and 
neural networks (MLP and ELM) had a performance of 
60% and 71%, respectively. For the kappa index, the 
performance difference is even more evident, with clear 
advantage for ELM networks. This shows that, from the 
clinical point of view, although they are still not enough 
to diagnose breast lesions, the texture attributes have a 
great contribution to the results.

Analyzing only the Zernike attributes, the classifiers 
performance was proportionally similar, but with the 
accuracy of the MLP greater than that of the ELM. 
The situation is reversed for the Kappa index: higher 
for ELM than for MLP. When we combine texture 
and shape attributes, joining moments of Haralick and 
Zernike, the situation repeats, but with little advantage 
to MLP over ELM in the case of accuracy. However, 
the advantage of ELM in relation to MLP considering 
the Kappa index is quite reasonable. Considering that 
the ELM has the advantage of rapid training, the results 
point to the use of neural networks of random weights as 
important tools for the construction of intelligent systems 
to support the diagnosis of breast lesions.

This article presented a proposal of a classification 
method of breast lesions, using features extracted from 
the texture and geometry of lesions in thermal images, 
and making comparisons with several classifiers. The use 
of Zernike alone proved to be very promising in this 
application and the less satisfactory results occurred 
when only Haralick attributes were used. However, 
the best results were obtained by combining Haralick 
and Zernike moments, what indicates that both texture 
and geometry information are relevant to differentiate 
breast lesions through thermographic images. In general, 
ELM and MLP proved to be quite efficient classifiers for 
classification of breast lesions in thermographic images. 

Using 75% of the database for training, the maximum 
value obtained for accuracy was 73.38%, with a Kappa 
index of 0.6007. These results increased to 76.01% 
of accuracy and Kappa of 0.6402 when using 10-fold 
cross-validation method to perform the tests. The overall 
efficiency of the system was 83%.

Furthermore, this study obtained significant and 
promising findings using ELM as the classifier, which is 
a much less computational costing machine, and its use 
may decrease the time to perform the classification without 
losing classification quality. Future studies may optimize 
the obtained results by testing other configurations for 
the classifiers, specially the extreme learning machine, 
which may become more efficient for the classification 
of breast lesions in thermographic images than the most 
commonly used classifiers.
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