Acessibilidade / Reportar erro
Research on Biomedical Engineering, Volume: 33, Número: 2, Publicado: 2017
  • Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus Original Articles

    Cesar, Reinaldo; Leivas, Tomaz Puga; Pereira, Cesar Augusto Martins; Boffa, Ricardo Simionato; Guarniero, Roberto; Reiff, Rodrigo Bezerra de Menezes; Mandeli, Antônio; Fortulan, Carlos Alberto; Rollo, João Manuel Domingos de Almeida

    Resumo em Inglês:

    Abstract Introduction Biomechanical assessment of trabecular bone microarchitecture contributes to the evaluation of fractures risk associated with osteoporosis and plays a crucial role in planning preventive strategies. One of the most widely clinical technics used for osteoporosis diagnosis by health professionals is bone dual-energy X-ray absorptiometry (DEXA). However, doubts about its accuracy motivate the introduction of congruent technical analysis such as calcaneal ultrasonometry (Quantitative Ultrasonometry - QUS). Methods Correlations between Bone Quality Index (BQI), determined by calcaneal ultrasonometry of thirty (30) individuals classified as normal, osteopenic and osteoporotic, and elastic modulus (E) and ultimate compressive strength (UCS) from axial compression tests of ninety (90) proof bodies from human vertebrae trabecular bone, which were extracted from cadavers in the twelfth thoracic region (T12), first and fourth lumbar (L1 and L4). Results Analysis of variance (ANOVA) showed significant differences for E (p = 0.001), for UCS (p = 0.0001) and BQI. Spearman’s rank correlation coefficient (rho) between BQI and E (r = 0.499) and BQI and UCS (r = 0.508) were moderate. Discussion Calcaneal ultrasonometry technique allowed a moderate estimate of bone mechanical strength and fracture risk associated with osteoporosis in human vertebrae.
  • Three-dimensional geometric model of the middle segment of the thoracic spine based on graphical images for finite element analysis Original Articles

    Aroeira, Rozilene Maria Cota; Pertence, Antônio Eustáquio de Melo; Kemmoku, Daniel Takanori; Greco, Marcelo

    Resumo em Inglês:

    Abstract Introduction: Biomedical studies involve complex anatomical structures, which require specific methodology to generate their geometric models. The middle segment of the thoracic spine (T5-T10) is the site of the highest incidence of vertebral deformity in adolescents. Traditionally, its geometries are derived from computed tomography or magnetic resonance imaging data. However, this approach may restrict certain studies. The study aimed to generate two 3D geometric model of the T5-T10 thoracic spine segment, obtained from graphical images, and to create mesh for finite element studies. Methods A 3D geometric model of T5-T10 was generated using two anatomical images of T6 vertebra (side and top). The geometric model was created in Autodesk® Maya® 3D 2013, and the mesh process in HiperMesh and MeshMixer (v11.0.544 Autodesk). Results The T5-T10 thoracic segment model is presented with its passive components, bones, intervertebral discs and flavum, intertransverse and supraspinous ligaments, in different views, as well as the volumetric mesh. Conclusion The 3D geometric model generated from graphical images is suitable for application in non-patient-specific finite element model studies or, with restrictions, in the use of computed tomography or magnetic resonance imaging. This model may be useful for biomechanical studies related to the middle thoracic spine, the most vulnerable site for vertebral deformations.
  • Performance evaluation of nebulizers based on aerodynamic droplet diameter characterization using the Direct Laminar Incidence (DLI) Original Articles

    Araújo, Luciana Martins Pereira de; Abatti, Paulo José; Araújo, Walter Duarte de; Alves, Rafael Fabrício

    Resumo em Inglês:

    Abstract Introduction Optical microscope images can be useful to evaluate nebulizers considering the size of droplets produced by these devices. From this perspective, the proposed method was compared to the classic concept of Mass Median Aerodynamic Diameter (MMAD) for the ideal droplet size between 0.5-5.5 µm. Methods We tested a sample of five home nebulizers sold on the Brazilian market. A high-speed camera coupled to a microscope obtained images of the droplets during the nebulization process, which allowed us to characterize the diameter of the aero-dispersed droplets. The Count Median Aerodynamic Diameter (CMAD) was used as measurement parameter. Results The images obtained during the nebulization process with the five different nebulizers provided data to determine the frequency distribution of the aero-dispersed droplet population. Successive images were obtained in the range of 2.0s to evaluate the dynamic behavior of the droplets. The generated data also allowed the elaboration of histograms emphasizing the ideal diameter range of droplets between 0.5 and 5.5 μm. Conclusion The Direct Laminar Incidence (DLI) model using digital image processing technique allowed the characterization of respirable particles. This model proposes the creation of a range of optimum absorption of the droplets by the respiratory tract. Although there is a technical limitation in the direct acquisition of images due to the depth of focus, presenting an error of 9.3%, the described method provides consistent results when compared to other droplets characterization techniques. Thus, the authors believe that Direct Laminar Incidence (DLI) is a viable method to assess the performance of nebulizers despite the requirement of adjustments and possible improvements required to minimize measurement errors.
  • Reliability and minimal detectable change of between-limb synchronization, weight-bearing symmetry, and amplitude of postural sway in individuals with stroke Original Articles

    Martello, Suzane Ketlyn; Boumer, Tatiane Caroline; Almeida, Juliana Carla de; Correa, Katren Pedroso; Devetak, Gisele Francine; Faucz, Rodrigo; Manffra, Elisangela Ferretti

    Resumo em Inglês:

    Abstract Introduction: Recently, variables related to between-limb synchronization of the centers of pressure (COP) have been proposed as measures of postural control in post-stroke patients. Although it is crucial in verifying their potential clinical use, the reliability of these variables is unknown. The aim of this work was to determine the reliability and minimal detectable change (MDC) of the peak of synchronization (ρmax) in the anteroposterior (AP) and mediolateral (ML) directions, the time lag for the peak (ρmaxlag), synchronization at lag zero (ρ0), weight-bearing symmetry, and amplitude of postural sway, measured as the root mean square (RMS) values of the COP displacements in both directions (AP and ML COP displacement). Methods COP data of 16 participants with stroke were collected at quiet standing with two force plates at two sessions separated by 2 to 7 days. The procedure was repeated three times in each session. The within and between sessions reliability was determined by the intraclass correlation coefficient (ICC), and the MDC was obtained from the ICC between sessions. Results The variables ρmaxlag in the AP and ML directions, as well as ρ0 in the AP direction, exhibited poor within session reliability (ICC ≤ 0.4). The findings revealed excellent within and between sessions reliability (ICC ≥ 0.89) for weight-bearing symmetry and the RMS displacement in the AP direction, with MDC values of 5% and 2.07 mm, respectively. The remaining variables exhibited moderate reliability. Conclusion Weight-bearing symmetry and AP COP displacement can be considered reliable variables for use in clinical practice.
  • Evaluation of scoliosis using baropodometer and artificial neural network Original Articles

    Fanfoni, Caroline Meireles; Forero, Fabian Castro; Sanches, Marcelo Augusto Assunção; Machado, Érica Regina Marani Daruichi; Urban, Mateus Fernandes Réu; Carvalho, Aparecido Augusto de

    Resumo em Inglês:

    Abstract Introduction: One of the most recurrent pathologies in the spine is scoliosis. It occurs in the frontal plane and is formed by one or more curves in the spinal column. The scoliosis causes global postural misalignment in an individual. One of the modifications produced by postural misalignment is the way in which an individual distributes weight to the feet. We aimed to implement an electronic system for separating patients with Degree I scoliosis (i.e., 1° to 19° scoliosis according to the Ricard classification) into two groups: C1 (1°-9°) and C2 (10°-9°). The highest percentage of patients with scoliosis is in this range: those who do not need to wear vests or undergo surgery and whose treatment is performed via special physical exercise and frequent evaluations by healthcare professionals. Methods The electronic system consists of a baropodometer and artificial neural networks (ANNs). The classification of patients in the scoliosis groups was performed with MATLAB software and a Single Layer Perceptron network using the backpropagation training algorithm. Evaluations were performed on 63 volunteers. Results The mean classification sensitivity was 93.7% in the C1 group and 94.5% in the C2 group. The classification accuracy was 83.3% in the C1 group and 96.0% in the C2 group. Conclusion The implemented system can contribute to the treatment of patients with scoliosis grades ranging from 1° to 19°, which represents the highest incidence of this pathology, for which the monitoring of the clinical condition using noninvasive techniques is of fundamental importance.
  • Automated and observer based light field indicator edge evaluation in diagnostic X-ray equipment Original Articles

    Bottaro, Márcio; Nagy, Balázs Vince; Soares, Fernanda Cristina Salvador; Rosendo, Danilo Cabral

    Resumo em Inglês:

    Abstract Introduction To analyze edge detection and optical contrast calculation of light field-indicators used in X-ray via automated- and observer-based methods, and comparison with current standard approaches, which do not give exact definition for light field edge determination. Methods Automated light sensor array was used to measure the penumbra zone of the edge in the standard X-ray equipment, while trained and naïve human observers were asked to mark the light field edge according to their own determination. Different interpretations of the contrast were then calculated and compared. Results In contrast to automated measurements of edge definition and detection, measurements by human observers showed large inter-observer variation independent of their training with X-ray equipment. Different contrast calculations considering the different edge definitions gave very different contrast values. Conclusion As the main conclusion, we propose a more exact edge definition of the X-ray light field, corresponding well to the average human observer’s edge determination. The new edge definition method with automated systems would reduce human variability in edge determination. Such errors could potentially affect the approval of X-ray equipment, and also increase the radiation dose. The automated measurement based on human observers’ edge definition and the corresponding contrast calculation may lead to a more precise light field calibration, which enables reduced irradiation doses on radiology patients.
  • Study on patient dosimetry and image quality in digital mammography Original Articles

    Xavier, Aline Carvalho da Silva; Andrade, Marcos Ely Almeida; Pinto, Beatriz Villa-Chan Cantalupo; Barros, Vinícius Saito Monteiro de; Kramer, Richard; Khoury, Helen Jamil

    Resumo em Inglês:

    Abstract Introduction Digital mammography present many advantages in comparison to conventional mammography, such as high dynamic range and the post-processing of acquired images. One problem is that protocols may not be optimized, resulting in higher absorbed doses to patients. The objective of this work is to evaluate image quality and to estimate mean glandular doses (MGD) in patients submitted to mammography examinations with three digital systems and one screen-film system in Recife, Brazil. Methods To estimate the MGD, the parameters used to acquire images of 5475 patients, with ages between 40 and 64 years and compressed breasts between 2 and 9 cm, were registered. The MGD was calculated by multiplying the incident air kerma with conversion coefficients depending on the anode/filter, breast glandularity and half-value layer. The image quality evaluation of the digital systems was made using objective and subjective European criteria. Results The results showed MGDs in the range of 0.4-10.3 mGy and the higher values were observed with digital systems. It was also observed that in the digital systems the use of compression force is not adequate and the irradiation parameters are not optimized. The images failed to reproduce the pectoral muscle and the contrast-to-noise ratio was not adequate for one system, indicating the need to improve the patient’s positioning and the exposure parameters. Conclusion It can be concluded that the use of non-optimized irradiation parameters is causing the higher doses with digital systems, highlighting the insufficient compression force.
  • Power amplifier circuits for functional electrical stimulation systems Review Articles

    Souza, Delmar Carvalho de; Gaiotto, Marcelo do Carmo; Nogueira, Guilherme Nunes; Castro, Maria Claudia Ferrari de; Nohama, Percy

    Resumo em Inglês:

    Abstract Introduction: Functional electrical stimulation (FES) is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI). One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator) and (circuit or design))” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical hazards and discomfort to the individual submitted to FES application.
  • Phantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives Review Articles

    Souza, Edna Marina de; Costa, Eduardo Tavares; Castellano, Gabriela

    Resumo em Inglês:

    Abstract: Introduction Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) combine magnetic resonance imaging (MRI) techniques and diffusion measures. In DWI, the contrast is defined by microscopic motion of water protons. Nowadays, DWI has become important for early diagnostic of acute stroke. DTI images are calculated from DWI images acquired in at least six directions, which give information of diffusion directionality, making it possible to reconstruct axonal or muscle fiber images. Both techniques have been applied to study body structures in healthy and pathological conditions. Currently, it is known that these images and derived parameters are quite sensitive to factors related to acquisition and processing. Magnetic field inhomogeneity, susceptibility, chemical shift, radiofrequency (RF) interference, eddy currents and low signal-to-noise ratio (SNR) can have a more harmful effect in diffusion data than in T1- or T2-weighted image data. However, even today there are not reference phantoms and guidelines for DWI or DTI quality control (QC). Review Proposals for construction and use of DWI and DTI QC phantoms can be found in literature. DWI have been evaluated using containers filled by gel or liquid with tissue-like MRI properties, as well as using microfabricated devices. DTI acquisitions also have been checked with these devices or using natural or artificial fiber structures. The head phantom from American College of Radiology (ACR) is also pointed out as an alternative for DTI QC. This article brings a discussion about proposed DWI and DTI phantoms, challenges involved and future perspectives for standardization of DWI and DTI QC.
  • SOA-BD: Service Oriented Architecture for Biomedical Devices Technical Communication

    Lacerda, João Marcos Teixeira; Paiva, Jailton Carlos de; Carvalho, Diego Rodrigues de; Morais, Philippi Sedir Grilo de; Fernandes, Yáskara Ygara Menescal Pinto; Valentim, Ricardo Alexsandro de Medeiros

    Resumo em Inglês:

    Introduction: The communication of information systems with biomedical devices has become complex not only due to the existence of several private communication protocols, but also to the immutable way that software is embedded into these devices. In this sense, this paper proposes a service-oriented architecture to access biomedical devices as a way to abstract the mechanisms of writing and reading data from these devices, thus contributing to enable the focus of the development team of biomedical software to be intended for its functional requirements, i.e. business rules relevant to the problem domain. Methods The SOA-BD architecture consists of five main components: A Web Service for transport and conversion of the device data, Communication Protocols to access the devices, Data Parsers to preprocess data, a Device Repository to store data and transmitted information and Error handling, for error handling of these information. For the development of SOA-BD, technologies such as the XML language and the Java programming language were used. Besides, Software Engineering concepts such as Design Patterns were also used. For the validation of this work, data has been collected from vital sign monitors in an Intensive Care Unit using HL7 standards. Results The tests obtained a difference of about only 1 second in terms of response time with the use of SOA-BD. Conclusion SOA-BD achieves important results such as the reduction on the access protocol complexity, the opportunity for treating patients over long distances, allowing easier development of monitoring applications and interoperability with biomedical devices from diverse manufacturers.
  • Erratum Erratum

Sociedade Brasileira de Engenharia Biomédica Centro de Tecnologia, bloco H, sala 327 - Cidade Universitária, 21941-914 Rio de Janeiro RJ Brasil, Tel./Fax: (55 21)2562-8591 - Rio de Janeiro - RJ - Brazil
E-mail: rbe@rbejournal.org