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Abstract  

Resumo

In this work, a coupled fluid-structure problem is approached, comparing the result with the modal analysis of a structure. The objective of this work 
is to analyze the physical phenomenon of fluid-structure interaction of a flexible structure. For this, the coupled problem solved using an Arbitrary 
Lagrangean-Eulerian (ALE) approach. As support for solving the mathematical equations of coupled problem, ANSYS® physical analysis software 
was used. An experimental modal analysis, using the Rational Fractional Polynomial method was developed for a small scale steel structure, and 
the result of this was compared with the result obtained from the model simulated in the software. Their vibration modes and natural frequencies 
obtained by numerical modeling were validated experimentally. Whit the numerical modeling of the modal analysis of a structure experimentally 
validated, attempted to analyze the dynamic behavior of the structure when it is subjected to a load due to a fluid-flow through a coupled fluid-
structure problem. The results presented in this work show that the structure subjected to loads due to the fluid-flow, moves according to its vibra-
tion modes.

Keywords: modal analysis, fluid-structure interaction.

Neste trabalho é abordado um problema acoplado fluido-estrutura, sendo comparados os resultados com a análise modal de uma estrutura. O 
objetivo do trabalho consiste em analisar o fenômeno físico da interação fluido-estrutura de uma estrutura flexível. Para tal, o problema aco-
plado é resolvido utilizando uma abordagem Lagrangeana-Euleriana Arbitrária (ALE). Como apoio para resolução das equações matemáticas 
do problema acoplado, foi utilizado o “software” de análises físicas ANSYS®. Uma análise modal experimental, utilizando o método “Rational 
Fractional Polynomial”, foi desenvolvida para uma estrutura de aço em escala reduzida, e o resultado desta foi comparado com o resultado 
obtido no modelo simulado no “software”. Seus modos de vibração e frequências naturais obtidos na modelagem numérica foram validados 
experimentalmente. Com a modelagem numérica da análise modal de uma estrutura validada experimentalmente, buscou-se analisar o com-
portamento dinâmico da estrutura quando ela está sujeita a uma carga devido a um escoamento, através de um problema acoplado fluido-
-estrutura. Os resultados presentes neste trabalho mostram que a estrutura sujeita a cargas devido ao escoamento, movimenta-se conforme 
seus modos de vibração. 

Palavras-chave: análise modal, problema acoplado fluido-estrutura.
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1.	 Introduction

Coupled fluid-structure problems play a key role in the develop-
ment of various engineering areas. In civil engineering, emphasis 
is put on dams, water reservoirs, fuel tanks, marine platforms, tur-
bines, piping systems and also in structures in general. In addition, 
this approach is also used to solve biomedicine problems, such as 
cadiovascular behavior in the human body.
In cases in which the presence of a moving fluid, when in con-
tact with a structure, causes the dynamic behavior of the fluid to 
change, the problem must be handled with a fluid-structure ap-
proach. In this type of approach, the formulations describe and 
model the problem in an integrated manner, where the solutions to 
the structure and fluid domains are coupled.
Coupled fluid-structure problems can be classified in several ways, 
according to some references, for example, Souza Jr. [1] and Gil-
bert [2]. But, according to Zienkiewicz and Taylor [3], there are two 
major classes of coupled problems: class (I) contains the prob-
lems in which, by an imposition of the boundary condition of the 
fluid-structure interface region, the coupling occurs, using differ-
ent discretizations in the domains, as they are different physical 
situations; while class (II) contains the problems in which several 
domains overlap totally or partially over each other, and although 
the equations describe different physical phenomena, the coupling 
takes place through differential equations.
Initially developed for application in aquatic structures, the analy-
ses of coupled fluid-structure problems began as soon as the Ti-
tanic tragedy occurred in 1912. Junger [4] shows the submarine 
project for studies with this method during World War I. In the field 
of mechanical engineering, Tabarrok [5] expanded the studies for 
problems of acoustic-structural vibration, also contributing to aero-
space engineering.
Regarding conventional building structures, research can bring 
benefits, mainly in relation to the development of safer projects, 
with new materials and a lower cost. According to Leitão [6], struc-
tural calculation norms simplify second order effects on structures, 
which can cause large displacements in them and consequently 
their imminent collapse. These second-order effects can often be 
caused by a gust of wind, especially in steel structures, which are 
light and not very rigid.
In the last decades, through the finite element method (FEM) and 
the finite volume method (FVM), coupled fluid-structure problems 
have been solved in several ways and with good precision in the 
results. Despite this, there are several numerical techniques dif-
ferent from each other for solving this type of problem. What most 
influences the way the problem is addressed is the way the fluid 
domain is modeled. The fluid variable is associated with several 
quantities, such as pressure, displacement, potential velocity and/
or potential displacement, while the unknown for the solid is the 
displacement field, (Everstine, [7]). Depending on the variable cho-
sen for the fluid domain, the problem might not be solved, that is, 
each of the possible variables for the fluid presents applications 
restricted to a certain type of problem.
Usually, the structure is modeled by the finite element method, for 
any type of structure, such as beams, plates, solids or more com-
plex bodies, such as shells or blunt bodies, these last structures 
being studied by Gomes [8]. In relation to the fluid domain, the flow 

is generally discretized using the finite volume method. Soares Jr. 
[9] combined several numerical techniques, applying the finite ele-
ment method to the structure and the boundary element method 
(BEM) to the flow, in this way contemplating the problem of fluid-
structure interaction.
Bazilevs et. al. [10] were inspired by the analytical solutions and 
developed a beautiful work, consisting in the development of the 
governing equations of the phenomenon, aside from presenting 
methods and applications using computational mechanics.
According to Zienkiewicz and Bettess [11], there are two classical 
ways of approaching a coupled fluid-structure problem, Lagrangian 
and Eulerian. According to these authors, the Eulerian formulation is 
characterized by using one of the following quantities as unknowns 
for the fluid domain: the pressure or displacement potential, which 
generates asymmetric matrices for resolution. However, the La-
grangian formulation considers the displacement as a variable for 
both domains, fluid and structure, the fluid being considered as an 
elastic solid without shear modulus. The disadvantage of the La-
grangian approach is that the fluid is considered without a shear 
modulus, which can generate illegitimate results due to the large 
number of degrees of freedom generated by this hypothesis.
Most of the methods studied by scientists dealing with coupled 
fluid-structure problems have some limitations for solids, such as 
the consideration of linear elastic behavior with constant elasticity, 
constituted of a homogeneous, isotropic material and subjected 
to small displacements. For the fluid, it must be incompressible, 
without viscosity and the process is adiabatic.
For problems where the solid has large displacements, such as a 
structure being excited at a frequency close to its natural frequency 
or a flexible structure, and where the fluid is Newtonian and may 
have viscosity, Wall and Ramm [12] present a method based in the 
Arbitrary Lagrangian-Eulerian (ALE) method. Dettmer and Peric 
[13] and Teixeira and Awruch [14] also have research related to 
this approach that is worth highlighting.
An arbitrary consideration including the two approaches, i.e., the 
Arbitrary Lagrangian-Eulerian (ALE) approach, is used to explain 
the deformation of the fluid domain resulting from the displacement 
of the flexible structure.
These techniques presented require the execution of a specified 
sequence of resolution components, with communication between 
data at the boundaries, transferring the data from the structure 
to the fluid and vice versa (Dettmer and Peric, [13]). Often, these 
methods do not have much accuracy, unless a time constraint is 
imposed, which should be small enough for data transfer to take 
place effectively (Wall and Ramm, 12).
These diverse coupled fluid-structure problem solving techniques 
focus on the development of numerical methods, which are being 
incorporated by various multi-physical analysis software.
The numerical methodology used in this work uses different dis-
cretizations among the domains, the finite element method being 
used in the discretization of the structure and the finite volume 
method being used in the discretization of the flow. The approach 
used is the Arbitrary Lagrangian-Eulerian (ALE) method, where 
coupling is done in the fluid-structure interface region by imposing 
the relevant boundary conditions.
In the next sections of this work, it will be shown that this numerical 
methodology brings satisfactory results, comparing the resolution of 
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a problem of experimental modal analysis and structural dynamics 
with the behavior of this structure when subjected to oscillations of 
the lift coefficient due to the flow on its exterior. A specific focus of 
this work is to show which solution procedure is best suited to solve 
the coupling of a flexible structure with a Newtonian fluid. To aid in 
the resolution of mathematical formulations, the Ansys® software 
was used, both for the modal analysis of the structure under study 
and for the resolution of the coupled fluid-structure problem.

2.	 Governing equations

2.1	 Incompressible newtonian fluid with a moving 
domain

The Navier-Stokes equations representing the incompressible 
Newtonian fluid are written in terms of the equations of continu-
ity and Newton´s second law of motion. These equations can be 
written as:

(1)

(2)

where ρ represents the density of the fluid, F the volume force vec-
tor, σ the Cauchy tensor. The time interval of interest is denoted 
by D = [0, t].
An essential feature of the problems that are addressed in this article 
is the movement of the boundary of the fluid in contact with the flex-
ible solid. The geometry of the fluid domain may change significantly 
during the time domain of interest. Therefore, it is convenient to for-
mulate the problem in the ALE approach, where conservation laws 
are expressed considering this movement of the boundary. Thus, 
the derivative in time of the velocity u is described as:

(3)

where  is the velocity at the referred fluid-structure itera-
tion point. 
The operator  denotes the derivatives with respect to the cur-
rent  coordinates reference. The expression  corresponds to 
the change in particle velocities observed by an observer traveling 
with a point in the reference system. The velocity difference  
is called the relative velocity. 

2.1.1	 Boundary conditions for the fluid

The boundaries Γ of Ω can be divided into subsets ,  and , 
where the indices q, g represent, respectively, the boundary at 
the input and output of the fluid domain. The index f - s represents 
the boundary of the fluid in contact with the structure. The bound-
ary conditions can be prescribed in these subsets, as follows: 

(4)

(5)

(6)

(7)

(8)

The values of q and g are prescribed and represent, respectively, 
the velocity of the fluid at the inlet and the pressure of the fluid 
at the exit of the domain by the respective boundary. The bound-
ary condition at the fluid-structure interface  is shown in equa-
tion (6), which means that there is a non-slip condition. Also at the 
boundary  there is a need to satisfy the condition prescribed in 
(7), which represents that the boundary  of the fluid with the 
structure should be coincident with the contour of the deformed 
structure, with each step of time. The pressure equilibrium along 
the fluid-structure interface is expressed by the ratio (8), where the 
values ps and pf  represent the pressure vectors exerted by the fluid 
at the interface with the flexible structure.

2.2	 Dynamics of the structures

The conservation of energy in a solid can be expressed in its spa-
tial condition as follows:

(9)

where ρ is the density of the deformed solid, the vector “d repre-
sents the displacement of the structure, while the body forces are 
given by vector F. Here the Cauchy tensor is also represented by 
σ. For simplification, this work deals with a structure with linear 
elastic behavior.
As in the boundary of the fluid domain, the outline of the structure 
can be subdivided into three subsets Γq, Γg and Γf-s, its boundary 
conditions being as follows:

(10)

(11)

(12)

(13)

where the values q, g and n are prescribed and signify, respective-
ly, the displacement, the traction vector and the normal unit vector 
to the contour surface of the structure. Conditions (12) and (13) 
clearly come in accordance with conditions (6) and (8) of the fluid, 
respectively.
Initially, the configuration of the structure is known as d = 0 and  
‘d = 0  ∀ x ∈ Ω at t = 0.

2.3	 Modal analysis – RFP method 

Modal analysis is a way of analyzing the vibration parameters of 
a structure through experimental methods (Ewins, [15]). The RFP 
(Rational Fraction Polynomial method) is serving as the standard for 
modal analysis in the frequency domain. Schwarz and Richardson 
[16] state that this method is a curve fitting technique applied in the 
frequency domain and is easy to apply across any frequency range.
The numerical modeling of the RFP method is given by:

(14)
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where H (ω) is the frequency response function (FRF), ω is the 
natural frequency, ak and K start at zero and end at a value equal 
to twice the number of modes. For the numerator, bk and K start at 
zero and end at N.
For the determination of the peaks and zeros, the equation used 
is the following:

(15)

here, the parameters Pk and K take values between one and two 
modes of vibration. In the numerator we have the interval from zero 
to N for the variables zk and K.
For waste, the following is used:

(16)

where the intervals of Pk, Rk and K start at one and end at a value 
equal to the number of modes.

3.	 Methodology

With the objective of analyzing the physical phenomenon involved 
in the fluid-structure interaction, the numerical methods used to 
solve the problem will not be discussed here, but rather, the model 
that best fits this analysis will be demonstrated.
The resolution scheme of the coupled fluid-structure problem us-
ing an Arbitrary Lagrangian- Eulerian approach (ALE) is shown in 
figure 1 and can be referred to as a two-way method because the 
two domains are solved separately.
 The variable adopted for the resolution of the fluid domain is the 
pressure. In the first step, the governing equations for the fluid are 
solved, in order to transfer the pressure value at the fluid-solid 
interface. This pressure generates a certain displacement in the 
structure, which is the variable chosen for the structure domain. 
In sequence, the dynamics equations of the structures are solved 
for the solid, and the displacement is transferred to the solid-fluid 
interface. From there, the first step is finalized, and the next ones 
follow the same logic. For each step, the equations are resolved 

until the response has converged to the chosen parameter or a 
predetermined maximum number of iterations has been reached.
In this work, the influence of the oscillation of vortices generated in 
the flow of the fluid in a flexible structure, with constant linear mod-
ulus of elasticity, was studied. For this, the fluid domain is relatively 
large in relation to the structure, trying to simulate a structure in 
an open environment. Since only the region close to the interface 
between the two domains is influenced by the displacement of the 
structure, the domain of the fluid can be divided into two parts. In 
the distant region of the structure, an Eulerian approach is used 
to solve the Navier-Stokes equations, while in the region close to 
the structure, a Lagrangian approach is used, that is, an Arbitrary 
Lagrangian-Eulerian (ALE) approach is used for the fluid domain.
In light of the foregoing, it is understood that this methodology is 
the most appropriate when it is necessary to consider a flexible 
structure. In order to solve the problem of fluid mechanics, the 
computational code FLUENT [17] will be used, which solves the 
field of fluid flow through the finite volume method, whereas for the 
structure, the finite element method is used.

3.1	 Vibration of a beam induced by a flow

In this section, the objective is to show a methodology that is con-
sistent to couple the fluid problem with the structure problem, verify 
the effect of the influence of the fluid flow on an object, and also the 
effect that a pressure load variation (through the analysis of the lift 
coefficient) exerts on a structure. It is intended to couple the two 
types of problems, transferring the effect of the flow to the struc-
ture, and the effect of the displacement of the structure caused by 
that flow to the domain of the fluid.
For the comparison of the fluid-structure interaction model, the 
problem is presented where a flow induces the vibration of a flex-
ible beam. This problem was solved by several authors, such as 
Wall and Ramm [12]; Dettmer and Peric [13], Bazilevs et. al. [10] 
among others. The problem was modeled and the result compared 
to that available in the literature.
A rigid and stationary cube-shaped body is submerged in a flow of 
a Newtonian fluid, generating vortices in the fluid, which, in contact 

Figure 1
Resolution scheme for fluid-structure interaction
Source: Dettmer e Peric, [13]
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with the beam, cause the lift coefficient on it to oscillate and con-
sequently make it vibrate . The scheme is shown in figure 2, where 
the dimensions are in centimeters (cm).
In relation to the approach and boundary conditions, an Arbitrary 
Lagrangian-Eulerian (ALE) approach was adopted, where in the 
region of the fluid domain close to the structure, mobile meshes 
were used to follow the structure displacement. The properties 
adopted for the fluid and the solid were the same as those used 
by Wall and Ramm [12], the viscosity and the density of the fluid re-
spectively being μf = 1,82 x 10-4 kg/(m.s) and ρf = 1,18 x 10-3 kg/m³. 
The density, modulus of elasticity and the Poisson coefficient of 
the solid are, respectively, ρs = 0,1 kg/m³, E = 2,5 x 106 N/m² 
and υ = 0,35. It is a solid with low rigidity and, therefore, large 
deformations are expected in the beam. The objective of this ap-
proach is to demonstrate the strong coupling between fluid and 
structure when this approach (ALE) is adopted. The constant ve-
locity of the flow at the input of the domain is u∞ = 51,3 m/s in the 
x-direction. This means that the Reynolds number for the case is  
Re = (ρf Dμ∞) / μf = 333, where D is the hydraulic diameter of the 
rigid body of square geometry that is submerged in the flow with the 
intention of generating vortices, which induce the vibration in the beam.

The finite volume mesh for the flow is shown in figure 3, while the fi-
nite element mesh of the beam is shown in figure 4. It was decided 
to use a well-refined quadrilateral mesh in order to obtain more 
precise results. The fluid domain mesh has 47,854 elements and 
23,552 nodes, while the structure domain mesh has 400 elements 
and 3,053 nodes.
For the coupling, the pressure data was transferred from the fluid 
to the structure, while the displacement of the structure was trans-
ferred to the fluid domain.

3.2	 Modal analysis of a small-scale steel structure

It is very important to know what the modes of vibration are of a 
structure and the natural frequency corresponding to each mode. 
Therefore, in this section, the modal parameters of a steel struc-
ture were estimated using the experimental modal analysis meth-
od RFP. The results obtained experimentally were compared with 
the results via FEM.
For the study, three steps were performed: steel structure mod-
eling by the ANSYS® software to acquire the modal parameters 
in the FEM; reading the data and obtaining Frequency Re-
sponse Functions (FRF) through an experiment and using the 
Rational Fraction Polynomial method (RFP) for the comparison 
of results.

3.2.1	 Experiment setup 

In this experiment, a steel structure constructed in the laborato-
ry was used, following the parameters presented in table 1. The 
structure was fixed by mechanical clamps to simulate a crimping 
and ensure the boundary conditions in the supports during the 
measurements. The structure assembly is shown in figure 5. 46 
points were measured for vertical and horizontal vibration modes. 
The transverse modes were not evaluated in this work.

Figure 2
Vibration of a beam induced by a fluid flow: 
boundary conditions and geometry
Source: Dettmer e Peric, [13]

Figure 3
Finite volume mesh for the fluid domain

Figure 4
Finite element mesh for the structure domain

Table 1
Properties of steel structure

Properties of steel structure Numeric values
Height (H) 0.6 m

Partial height (D) 0.15 m
Section thickness (a) 0.00615 m

Section lenght (b) 0.0131 m
Density of mass (r) 7,850 kg/m3

Young module (E) 200 GPa
Poisson module (u) 0,26 –

Cross-sectional area (A = a.b) 8.06 x 10 -05 m2

Moment of inertia (I = b.a3/12) 2.54 x 10 -10 m4
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3.2.2	 Experimental procedure 

Data was acquired using a dynamic vibration analyzer, Figure 6b. 
The sampling frequency was fixed at 400 Hz. The input and output 
signals were filtered through a power window and an exponential 
decay window respectively, while the resolution of the measure-
ment was 0.25 Hz.
The structure was excited with an impact hammer (Figure 6b) at 
node 24, pushing it into the negative direction of the x-axis. The 
hammer has a load cell with a sensitivity of 2.27 mV/N to detect the 
magnitude of the excitation force.
The vibration response was measured at all nodes with an acceler-
ometer. The accelerometer was positioned in the structure to mea-
sure only the accelerations perpendicular to the surface thereof 
(Figure 6a).
The RFP method was implemented and inserted into the EasyMod 

toolbox (Kouroussis, [18]). Thus, it was possible to obtain the ex-
perimental modal parameters. 

3.3	 Coupled fluid-structure problem 

The case analyzed in this work has the objective of studying 
the dynamic behavior of a structure subjected to oscillations 
of pressure loads. To simulate this, a rigid cube-shaped body 
is submerged in an air flow, generating vortices which, conse-
quently, make the lift coefficient on the structure oscillate. To 
compare with the vibration modes of the structure, a modal 
analysis was performed through the ANSYS® software, where 
the modes of vibration and natural frequencies for several simi-
lar porticos with different sizes and rigidities were determined. 
Table 3 gives a summary of this study, while Figure 7 shows the 
structure and its main dimensions.
It is noticed that the natural frequency of the structure is changed 
as its dimensions change. For example, a portico 120 cm high by 
60 cm wide, made with 0.615 x 1.31 cm cross-section bars, has a 
natural frequency close to 7.8 Hz. This was the portico used in the 
coupled fluid-structure problem simulated and figure 8 shows the 
model and the boundary conditions.
A similar approach to the case of fluid-structure coupling in 
section 3.1 of this work was considered. That is, a mobile 
mesh for the fluid in the region near the structure, constant 
air inflow, non-slip condition at the contacts between fluid and 
solid bodies and zero pressure at the outlet. For the generation 
of the vortices, the flow was blocked by a rigid square shaped 
body with 100 cm sides, as was the case of the beam being 
excited by the fluid flow (item 3.1 of this article). Considering 
that the lift coefficient generated by the rigid obstacle oscillates 

Figure 5
Steel structure used for the experiment

Figure 6
(a) Position of the accelerometer and (b) Vibration 
analyzer and impact hammer

(a) (b)

Table 3
Natural frequencies for the first mode of vibration 
of the various frames tested by the FEM

H x L 
(mm)

a x b 
(mm)

Natural frequency 
of 1st vibration 

mode
1200 x 600 6.15 x 13.1 7.8
1200 x 600 12.3 x 26.2 15.9
1800 x 900 18.4 x 39.3 10.6
2400 x 1200 24.6 x 52.4 7.9
2700 x 1350 27.7 x 58.9 7.1
3000 x 1500 30.8 x 65.5 6.4

Table 2
Natural frequencies for the first three modes 
of vibration

Method RFP FEM

Frequency 
[Hz]

Damping 
coefficient 

[%]

Frequency
[Hz]

1st 26,302 1,2746 29,319
2nd 92,508 0,2440 98,771
3rd 177,203 0,1863 191,27
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between positive and negative, the portico was positioned “ly-
ing down” and set at its right end to cause the lift coefficient to 
act in a way to oscillate the structure according to its modes of 
vibration analyzed.
Here, the velocity of entry was controlled and some velocities 
were tested, monitoring the drag and lift coefficients for each 
of these velocities. For a velocity u∞ = 80 m/s  it was found that 
the oscillation frequency of the lift coefficient on the portico is 
close to 8 Hz, as well as the natural frequency of the portico. 
For the fluid, a mesh of 21,162 elements and 21,450 nodes 
was assembled, whereas for the structure, a mesh of 1,082 
elements and 10,192 nodes was constructed. In Figures 9 and 
10, the meshes for the fluid domain and structure are respec-
tively shown.

4.	 Results and discussions 

This section will present the results of each of the models pre-
sented in the previous section, as well as the relevant discussions.

4.1	 Vibration of a beam induced by a fluid 

The displacement along the vertical direction of the vertex on the 
right side the beam was monitored. The results obtained by Dett-
mer and Peric [13] and Wall and Ramm [12] are shown in figures 
11 and 12, respectively.
In both cases, the amplitude of the vertical displacement is close 
to 1.2 cm, while a cycle takes around 0.3 s. It is noticed that the 
behavior for the two cases are not identical, mainly at the begin-
ning of the flow, which is in transient state. This because each au-
thor has developed their own numerical model for the resolution.  
However, what is noticeable is that after establishing the steady 
state, the dynamic behavior of the structure is the same.
During the resolution of the coupled problem simulated by the au-
thors of this article, the drag (Cd) and lift (Cl) coefficients on the 
structure were monitored in addition to the beam displacement. 
The drag and lift oscillations are shown in Figures 13 and 14. It is 

Figure 7
Structural model with its main measurements 
of the porch used for modal analysis study

Figure 8
Geometry for the coupled problem

Figure 9
Finite volume mesh for the coupled problem

Figure 10
Structure mesh for the coupled problem



1398 IBRACON Structures and Materials Journal • 2018 • vol. 11 • nº 6

Study of modal analysis based on fluid-structure interaction

noted that a variation cycle of the Cl takes approximately the same 
0.3 s as the oscillation cycle of the beam.
The displacement obtained in the simulation of this problem is also 
in agreement with the works found in the literature, which is shown 
in Figures 15 and 16. The oscillation of the beam during the steady 
flow state of the fluid is shown in Figure 17.

4.2	 Modal analysis of a small-scale steel structure 

The natural frequencies and damping factor for the first three 
modes of vibration are shown in Table 2, where only the modes 
in the x-y plane were measured, the other planes being disre-

garded. Regarding the FEM, the results of the natural frequencies 
of the first, second and third modes of vibration using the RFP 
method present an error of 10.3%, 6.3% and 7.4%, respectively.  

Figure 11
Vertical displacement of the vertex of the structure. 
Results obtained by Dettmer and Peric [13]

Figure 12
Vertical displacement of the vertex and 
the center of the structure. Results obtained by 
Wall and Ramm [12]

Figure 13
Drag coeficient between 13 and 14 seconds 
of simulation

Figure 14
Lift coeficient between 8 and 9 seconds

Figure 15
Displacement of the right vertex of the beam 
over time

Figure 16
Displacement of the right vertex of the beam 
between 16 and 17 seconds of simulation
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Figure 17
Vibration of a beam induced by a fluid flow
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Figure 18 shows the experimental Frequency Response Function 
(FRF) of point 3.
Figure 19 shows the vibration modes obtained by the RFP method 
with the experimental data and by the FEM using the ANSYS® 
software.
As shown, the results obtained by the RFP method are compat-
ible with the FEM, although the natural frequencies have a small 
dispersion in the values when the two methods are compared. This 
can be attributed to the following factors: geometric divergences 
between the actual portico and the modeling in the analytical meth-
od; the result obtained by the FEM does not consider the damp-
ing factor; the RFP method suffers external influences that are not 
controllable at the moment of data collection, interfering with the 
final results.
The validation of the numerical modeling used by the ANSYS® 
software was effective when comparing its results with the experi-

Figure 18
Expetimental FRF (point 3)

Figure 19
Vibration mode: (a), (b), (c) by RFP; (d), (e), (f) by 
FEM (ANSYS)

1º modo: 26,302 Hz
(a)

2º modo: 92,508 Hz
(b)

3º modo: 177,203 Hz
(c)

1º modo: 29,319 Hz
(d)

2º modo: 98,771 Hz
(e)

2º modo: 191,270 Hz
(f)

Figure 20
Lift coefficient on the Portico x Time

Figure 21
Lift coefficient on the Portico between 3 
and 6 seconds
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mental results. In this way, numerical modeling was used to per-
form the modal analysis of the structure presented in the sequence 
of this work.

4.3	 Coupled fluid-structure problem

In this study, it was sought to balance the frequency of oscillations 
of the lift coefficient with the natural frequency relative to the 1st 
mode of vibration of a portico. The portico chosen and the problem 
were those previously modeled.
The drag coefficient in this case is not important, since the verti-
cal displacement of the upper left vertex of the portico was mon-
itored. The interesting thing is the behavior of the lift coefficient 
on the portico, which is responsible for the vertical displace-
ments on the structure. Figures 20 and 21 show the behavior 
of the lift coefficient, which varies with average null value and 
with amplitude of up to 0.075. Its oscillation frequency is close 

to 8.8 Hz, according to its Fast Fourier Transform (FFT) shown 
in figure 22.
The graph of the FFT for the lift coefficient shows that the oscilla-
tion frequency of this is 8.8 Hz. This frequency is very close to the 
natural frequency of the analyzed portico, which is 7.9 Hz. One 
can imagine that the portico is vibrating according to its first mode 
of vibration.
To verify this, it is necessary to analyze the behavior of the portico 
displacement. The vertical displacement of the upper left vertex is 
shown in Figures 23 and 24. Finally, in Figure 25, it can be seen 
that the frequency taken from the FFT of the actual displacement 
of the structure registers a frequency of 8.8 Hz, as well as that of 
the lift coefficient.
In this case, it was observed that the displacement increases in  

Figure 22
FFT for the Lift coefficient

Figure 23
Displacement of the Upper left vertex x Time

Figure 24
Displacement of the Upper left vertex between 
3 and 6 seconds

Figure 25
FFT for the Upper left vertex displacement
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amplitude in each cycle until a certain moment, reaching a maximum 
displacement around 17 centimeters. After reaching this maximum 
amplitude, it begins to decay again, and this amplitude variation per-
sists until the steady state is established. Figure 26 illustrates this 
behavior. Furthermore, in this figure, it is observed that the structure 
vibrates according to its first mode of vibration, and also that the am-
plitude of the displacement increases in each cycle up to 4.32 sec-
onds, then gradually decreases  up to 4.45 seconds. After 4.50 sec-
onds, the amplitude starts increasing again and so on until the steady 
state is reached.

5.	 Conclusions

In this work, a coupled fluid-structure problem was approached, com-
paring the result with the modal analysis of a structure. For this, an 
experimental and numerical approach was performed, that is, the ex-
perimental results were used for validation of numerical modeling. The 
conclusions of each case addressed in the paper are presented below.

5.1	 Vibration of a beam induced by a fluid 

After performing a comparative analysis of a problem found in 

the literature, it is concluded that the model adopted for solving a 
coupled fluid-structure problem, where the structure is flexible and 
the Newtonian fluid, presents results compatible with the numerical 
models developed in the references. This model is adopted by AN-
SYS® multi-physical analysis software, used in case simulations.

5.2	 Modal analysis of a small scale steel structure 

As presented, the results obtained by the RFP method are compatible 
with the FEM, although the natural frequencies have a small dispersion 
in the values when the two methods are compared. This can be attrib-
uted to the following factors: geometric divergences between the actual 
portico and the model in the analytical method; the result obtained by 
the FEM does not consider the damping factor; the RFP method under-
goes external influences that are not controllable at the moment of data 
collection, interfering with the final results. These results validate the nu-
merical modeling used in the ANSYS® software. Therefore, it is valid to 
use this for modal analysis of the structure approached in the next case.

5.3	 Coupled fluid-structure problem

The coupled problem consists in analyzing the dynamic behavior 

Figure 26
Oscillatory motion of the structure, where: t is the simulation time and y is the vertical displacement of the 
upper left vertex of the structure
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of the structure when it is subjected to an oscillatory lift coefficient, 
generated by the incidence of an airflow in obstacles. It was veri-
fied that a structure submitted to this type of flow tends to move 
according to its modes of vibration.
Finally, it is added that the advancement of computational mechan-
ics is allowing the resolution of complex problems in a timely man-
ner and this can be incorporated into structural projects. There is 
still a long and arduous path of research to be done to make this 
habitual. However, it is believed that the consideration of the dy-
namic effects in light structures can bring more accurate results of 
the phenomena that involve these structures, and make them safer 
and more economical at the same time.
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