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Abstract  

Resumo

In this paper, the Laplace’s equation is solved analytically in the complex plane for the field of hydrodynamic pressures generated by the rigid 
body movement of a dam against a reservoir with infinite domain and incompressible fluid. The force the reservoir fluid exerts on the face of the 
dam is determined through the integration of the hydrodynamic pressure in the complex plane. The conservative effects (real part) and dissipative 
effects (imaginary part) of the force are analyzed as a function of the Froude number. The asymptotic solution of the aforementioned effects are 
also presented in this paper.
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Neste trabalho, a equação de Laplace é resolvida analiticamente no plano complexo para o campo de pressões hidrodinâmicas gerado pelo 
movimento de corpo rígido da barragem na presença de um meio fluido infinito e incompressível (um reservatório). A força exercida pelo fluido 
do reservatório na face da estrutura da barragem é então determinada através da integração da pressão hidrodinâmica no plano complexo, e os 
efeitos conservativos (parte real desta força) que traduzem os aspectos inerciais da interação barragem-reservatório, e os efeitos dissipativos 
(parte imaginária desta força) que traduzem os aspectos de amortecimento desta interação são analisados em função de um parâmetro escalar 
característico de fluxo de superfície livre (número de Froude). É feita, também, a apresentação das soluções assintóticas para os efeitos citados.

Palavras-chave: interação barragem-reservatório, pressão hidrodinâmica, equação de Laplace.



1. Introduction

Westergaard [18] not considering the effect of free surface waves, 
developed an exact analytical series solution for the Laplace 
equation that represents the problem illustrated in Figure 1. Even 
without considering the effects of free surface waves, the work 
performed by Sharan [14] and Kuçükarslan [7] using the Finite Ele-
ment Method. Silva & Pedroso [15] and Silva [16], using the Vari-
able Separation Technique, presented solutions for the Laplace 
equation using a truncation surface at a distance from structure in 
the infinite domain of an incompressible fluid.
Azevedo [2] used the Boundary Element Method to study the 
propagation of surface waves. Trindade [17] continued the work of 
Azevedo by adding an apparatus for the generation and propaga-
tion of waves in experimental channels using piston actuators and 
flap actuators.
The wave attenuation problem at the far-end of the reservoir has 
also been studied by Gogoi et al. [6]; Parrinello et al. [11]; Li [9]; 
Bouaanani et al. [3]; Aydin et al. [1]; and Mendes [10].
This paper presents an analytical study of the Laplace equation in 
the field of complex numbers. Through the linearization of the free 
surface boundary condition with gravity waves, the field of hydro-
dynamic pressures, in the complex form, generated by the rigid 
body movement of the dam, is determined. Also, the conservative 
and dissipative effects of the force acting on the face of the dam 
structure as a function of the free surface wave dissipation are also 
determined, considering its non-reflection condition at far end, as 
shown in the dam-reservoir interaction scheme shown in Figure 1.

2. Analytical formulation for the 
 hydrodynamic pressure in the  
 complex plane

Considering the incompressible and non-viscous fluid, the hydro-

dynamic pressure in the reservoir resulting from the movement of 
a submerged structure satisfies the Laplace equation (Lamb [8]):

(1)

Boundary conditions are based on the following additional assumptions:
a)  The domain of the fluid extends far boundary and its motion is 

two-dimensional.
b)  The fluid-structure interface is vertical.
c)  The submerged structure is rigid, its height is not less than the 

depth of the fluid, the structure vibrates in the normal direction 
of the fluid-structure interface.

d)  The bottom of the fluid domain is rigid and horizontal.
Considering also the effects of surface waves, and their non-re-
flection at infinity, the following boundary conditions are obtained:

i)  At the bottom of the reservoir (y = 0):  (hard bottom).

ii)  On the free surface (y = H):  (linearized and in the 
frequency domain).

iii)  On the fluid-structure interface (x = 0):  
(linear pressure).

iv) Infinite Domain Reservoir (x → ∞): p = 0 (non-reflection at far 
end of free surface waves).

The parameter Vg corresponds to the amplitude of the acceleration 
in the base of the dam that is excited with an harmonic movement 
of translation with amplitude X and frequency ω. The fluid move-
ment is assumed to occur in the dam-reservoir plane and g cor-
responds to the acceleration of gravity.
Let be the expression for the field of hydrodynamic pressures  
p(x,y) sought. Applying the separation of variables technique, see 
Chakrabarti and Chopra [4], we have:

(2)
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Figure 1
Scheme of the dam-reservoir interaction
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For the equation: 

a – In the y direction, if K is real, we find: 

(3)

Using the boundary condition , we have:

Like this:

(4)

b – In the y direction, if K is imaginary, we find for the solution ik0 
(with k0 real):

(5)

Using the boundary condition: , we have:

Thus:
(6)

 

For the equation :

a – In the x direction, if K is real, we find:

Using the boundary condition , we obtain:  
.

Using the boundary condition ,  
 
in , results: .
 
Therefore: 

(7)

b- In the x-direction, if K is imaginary, we find for the solution ik0 
(with k0real):

. Using the boundary conditions: 
, we have: , and 

, in 

.

Like this:

(8)

With Equation 3 and Equation 7, we obtain:

(9)

Table 1
Determination of parameters involved in hydrodynamic force

Froude number 
squared Argument of 

the real part
(kn H)

Argument of the 
imaginary part

(k0 H)

Conservative
part
δ

Dissipative
part
β

10-1 ≡ 0.1 3.1094 0.3216 0.0001 3.1087
0.2 3.0767 0.4627 0.0003 2.1591
0.3 3.0433 0.5767 0.0007 1.7300
0.4 3.0095 0.6778 0.0013 1.4690
0.5 2.9751 0.7717 0.0022 1.2868
0.6 2.9403 0.8611 0.0034 1.1490
0.7 2.9051 0.9476 0.0049 1.0395
0.8 2.8697 1.0324 0.0067 0.9488
0.9 2.8341 1.1163 0.0090 0.8717

100 ≡ 1.0 2.7984 1.1997 0.0117 0.8048
2 2.4587 2.0653 0.0669 0.4008
3 2.2045 3.0145 0.1547 0.2129
4 2.0430 4.0027 0.2320 0.1241
5 1.9411 5.0005 0.2876 0.0799
6 1.8734 6.0001 0.3268 0.0555
7 1.8260 7.0000 0.3551 0.0408
8 1.7910 8.0000 0.3763 0.0312
9 1.7644 9.0000 0.3927 0.0247

101 ≡ 10 1.7434 10.0000 0.4057 0.0200
*3.3 2.1478 3.3088 0.1800 0.1800

* Point of intersection of the curve of the real part with the curve of the imaginary part, see Figure 2.
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With Equation 5 and Equation 8, we get:

(10)

In a general representation in the complex plane:

(11)

The Equation 11 corresponds to the analytical expression for the 
hydrodynamic pressure calculation in the complex plane. Once 
the expression for the hydrodynamic pressure field in the complex 
plane, Equation 11, is established, the force exerted by the fluid on 
the face of the structure is:

With: 

 

Therefore: 

(12)

The Equation 12 corresponds to the analytical expression of the 
dimensionless hydrodynamic force along the face of the dam in 
the complex plane.

3. Analysis and graphical representation 
 of results

The real part of the coefficient F0(Z) presented in Equation 12 will 
be represented by δ, and the imaginary part of this coefficient will 
be represented by β, which correspond respectively to the con-
servative part and the dissipative part of the effect of the fluid on 
the structure (Gibert [5]). The terms δ and β are functions of the  
 
parameter , according to the transcendental Equation 4 and  
Equation 6, respectively.

The parameter  involved in the transcendental equations is  
 
known as the “Froude number”, and expresses the importance of the 
forces of gravity in relation to the forces of inertia of the fluid (Sancho [13]):

(13)

Where U is a characteristic velocity of the global flow field, g is the 
acceleration of gravity, and L is a characteristic length of the struc-
ture exposed to the flow.
The Froude number can also be considered as the relation between flu-
id velocity and surface wave velocity, with small disturbance propaga-
tion speed ( ) , where H is the depth of the reservoir. The term 
“Froude number” honors the English engineer William Froude (1810-
1879), who presented this parameter conducting tests in the investiga-
tion of the resistance of ship hulls with the use of models (Pedroso [12]).
According to Sancho [13], the Froude number can classify the flow 
regime in:
Fr < 1 slow regime: disturbances propagate upstream and down-
stream.
Fr > 1 fast regime: disturbances propagate downstream.
In the case under study, for the harmonic motion of the wave we  
 
have , with T and ω corresponding to the  
 
period and frequency of the wave, respectively. The Froude num-
ber can then be presented as follows (Gibert [5]):

(14)

Therefore, by using Equation 4, Equation 6, Equation 12 and 
Equation 14, the Table 1 and Table 2 are formed. The data in Table 
1 and the graphical representation of Figure 2 show the evolution 
of the real part (δ) and the imaginary part (β) as a function of the 
square of the Froude number.
The intersection point of the curves in the graph of Figure 2 is shown 
in Table 1. This point cannot be determined analytically by the con-
ventional process of a system of two simultaneous equations.

3.1 Asymptotical solutions

For the analysis of extreme situations (limits) of the Froude number  
 
( ) in the transcendental equations, a new parameter (ℑ)  
 
is defined as: . It is observed that:
 

Table 2
Numeric values for δ and β

δ β

Exact Asymptotic Relative error
(%) Exact Asymptotic Relative error

(%)
1 1 0.0117 0.5428 4539 0.8048 2.0000 147
5 0.2 0.2876 0.5428 89 0.0799 0.0800 0.13

10 0.1 0.4057 0.5428 33 0.0200 0.0200 0.00
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a) For ℑ « 1:
a.1) The Equation 4 can be written as:

(15)

The Figure 3 represents the graph of the transcendental equation 
corresponding to Equation 15.
From the graph in Figure 3: 

.

Replacing this argument in the real part of Equation 12, we have: 
 

. 

The conservative part (δ) corresponds to an additional mass effect 
(Gibert [5]) which can be calculated by imposing zero pressure on 
the free surface as a boundary condition.
a.2) The Equation 6 can be written as:

(16)

The Figure 4 represents the graph of the transcendental equation 
corresponding to Equation 16. The Equation 16 can be written as  
 
follows: ; ℑ is inversely proportional to ,  
 
so for a ℑ minimal  ,  it will have its maximum value, which  
 
is equal to ( ), see Figure 4, resulting in .  
Replacing these asymptotic results in β, we find:

. 

 
In this case, the dissipative part (β) is small.

Figure 2
Real (conservative) and imaginary (dissipative) 
part of the fluid force on the structure

Figure 3
Graph of the transcendental equation 
corresponding to equation 15

Figure 4
Graph of the transcendental equation 
corresponding to equation 16
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In summary, for ℑ «1 (fast scheme):

In order to verify these results, numerical values for δ and β , cal-
culated by both the exact expressions and the asymptotic expres-
sions, are presented in Table 2.
It is observed that with the increase of the Froude number the per-
centage relative error decreases, that is: asymptotic solutions are 
close to the exact solutions. The graphs of Figure 5, corresponding 
to Table 2, illustrate these convergences.
b) For ℑ » 1:
b.1) From the graph of Figure 3: 

.

Substituting this argument into the real part of Equation 12 and us-
ing the trigonometry arcs addition properties:  

.

b.2) In Equation 16, ℑ is inversely proportional to tgh(k0H), so for a 
maximum ℑ, tgh(k0H), it will have a small value and approximately 
equal to its own argument tgh(k0H) ≅ (k0H), see Figure 4. It results 
then: . The imaginary part of Equation 12 can be  
 
presented as follows:

In this case, the behavior is singular because the free sur-
face condition for ℑ » 1 is close of a flow node, the fluid is 
then confined between two nearly fixed horizontal surfaces 
(Gibert [5]).
In summary, for ℑ » 1 (slow regime):

In order to verify these results, numerical values for δ and β are 
presented in Table 3 calculated by the exact expressions and the 
asymptotic expressions.
It is observed that with the decrease of the Froude number, the 
percentage relative error decreases, that is, the asymptotic solu-
tions approximate the exact solutions. The graphs in Figure 6 il-
lustrate these convergences.

Figure 5
Exact and asymptotic curves (ℑ « 1) for real and 
imaginary part of Table 2

Table 3
Numeric values for δ and β

δ β

Exact Asymptotic Relative error
(%) Exact Asymptotic Relative error

(%)
1 1 0.0117 0.0068 42 0.8048 1.0000 24

0.2 5 0.0003 0.0003 0 2.1591 2.2361 3.57
0.1 10 0.0001 0.0001 0 3.1087 3.1623 1.72

Figure 6
Exact and asymptotic curves (ℑ » 1) for real and 
imaginary part of Table 3
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Next, graphs of the magnitude and phase angle of the dimen-
sionless hydrodynamic force on the face of the dam are pre-
sented as a function of the Froude number (Figure 7 and Fig-
ure 8). The magnitude and phase angle of a complex function, 
defined below, depend on the real part and the imaginary part 
of it. As previously seen, the following results are obtained for 
these parameters:
1) Exact solution:

2) Asymptotic solutions:
a) to small Froude numbers: 

b) to large Froude numbers: 

The magnitude and phase angle of a complex function are  
 
respectively defined as:  and . 

Working with the exact solution and the asymptotic solutions, the 
graphs are generated in Figure 7 and Figure 8.

4. Conclusions

From the results obtained in this study, some comments and con-
clusions can be evidenced:
1)  The separation of variables technique, for the analytical 

solution of the proposed Laplace equation, for hydrody-
namic pressure analysis in the plane of complex numbers 

and generated due to the dam vibration at the interface of 
a semi-infinite fluid domain reservoir, results in an exact 
expression for the field of hydrodynamic pressures.

2)  Through the hydrodynamic pressure in the complex form, 
the force that the fluid exerted on the face of the dam 
was obtained, finding the conservative effects that trans-
late the inertial aspects of the interaction dam-reservoir, 
and the dissipative effects that translate the aspects 
of damping (free surface waves) in the dam-reservoir  
interaction.

3)  The conservative and dissipative effects of the reservoir on the 
dam, respectively, increase and decrease, with the growth of 
the Froude number.

4)  The intersection point of the curves in the graph of Figure 2, cor-
responds to the Froude number that makes the real part (conser-
vative effects) equal to the imaginary part (dissipative effects).

5)  For extreme values   of the Froude number, asymptotic solu-
tions can easily be used to determine characteristic param-
eters which evidence the inertial and damping aspects of the 
dam-reservoir system.

6)  The non-reflection of free surface waves at infinity, in a semi-
infinite, incompressible and non-viscous fluid medium, is re-
sponsible for the dissipation of the system energy if the vibrat-
ing structure is “in the vicinity” of the free surface.
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Figure 7
Magnitude of the dimensionless hydrodynamic 
force on the face of the dam

Figure 8
Phase angle of the dimensionless hydrodynamic 
force on the face of the dam
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