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Abstract  

Resumo

The composite slabs behavior is governed by longitudinal shear at the interface between the steel deck and concrete, which is developed in slabs 
under simple bending. The m-k method and the partial connection method, that are used in the evaluation of shear strength at the steel-concrete 
interface of composite slabs, are based on expensive and long-term experimental tests. The main objective of this work is to implement a finite 
element model for nonlinear numerical analysis of concrete slabs with steel decking. For this, flat shell elements are implemented, considering 
Reissner-Mindlin and Kirchoff plate theories, bar elements, considering the beam theory of Tymoshenko, and interface elements. In the numerical 
analyzes presented in the present work, the steel deck and the concrete slab, of thickness given by the total height of the slab less the height of the 
steel deck, are modeled with flat shell elements. The concrete rib is modeled with bar elements. The contact between steel deck and concrete is 
modeled through interface elements. The geometric and material nonlinearities are considered in the numerical analysis. The analyzed examples 
validate the numerical model suggested in this work, presenting the advantage of using a two-dimensional discretization of the problem while in 
comparative numerical models are uses a three-dimensional discretization of the concrete slab.

Keywords: composite slabs, flat shell elements, partial connection, longitudinal shear.

O comportamento das lajes mistas é governado pelo cisalhamento longitudinal na interface entre o aço e o concreto, que é desenvolvido em 
lajes sob flexão simples. O método m-k e o método da interação parcial, utilizados no cálculo da resistência ao cisalhamento na interface aço-
-concreto de lajes mistas, são baseados em ensaios experimentais caros e de longa duração. O objetivo principal desse trabalho é implementar 
um modelo de elementos finitos para análise numérica não linear de lajes de concreto com fôrma de aço incorporada, para isso são implemen-
tados elementos planos de casca, considerando as teorias de placa de Reissner-Mindlin e Kirchoff, elementos de barra, considerando a teoria 
de viga de Timoshenko, e elementos de interface.  Nas análises numéricas apresentadas nesse trabalho a fôrma de aço e a laje de concreto, de 
espessura dada pela altura total da laje menos a altura da forma de aço, são modeladas com elementos planos de casca. A nervura de concreto 
é modelada com elementos de barra. O contato entre a fôrma de aço e o concreto é modelado através de elementos de interface.  As não linea-
ridades geométrica e física são consideradas na análise numérica. Os exemplos analisados validam o modelo numérico sugerido neste trabalho 
apresentando a vantagem de usar uma discretização bidimensional do problema enquanto os modelos numéricos comparativos utilizam uma 
discretização tridimensional da laje de concreto.

Palavras-chave: lajes mistas, elementos planos de casca, conexão parcial, cisalhamento longitudinal.



1. Introduction

The composite slabs consist of a cold-formed steel profiled sheet-
ing, known as steel deck, and a concrete slab. The steel profiled 
sheeting should be designed to support the construction loads 
and, after the concrete has hardened, act as part or all the tensile 
reinforcement. The concrete must be designed to support com-
pression and vertical shear stresses. This structural system arised 
in the late 1930s and became popular during the late 1980s [1]. 
The composite slabs began to be used in Brazil in the 1990s and 
have been popularized ever since [2].
The most common failure mechanism in composite slabs is lon-
gitudinal shear failure at the interface between the steel and con-
crete. There are several factors that influence the longitudinal shear 
strength of the interface, such as the steel sheeting and the concrete 
slab thicknesses, the geometry of the steel sheeting, the depth and 
slope of the embossments and the distance between them, the load 
configuration, the type of anchorage at the ends and the shear span. 
The main characteristic of failure mechanism due to longitudinal 
shear is the sliding of the concrete over the steel decking that occurs 
for a load much smaller than the corresponding load to the flexural 
strength [1]. The NBR 8800 [3] and EUROCODE 4 [4] recommend 
the m-k method and the partial connection method to verify this fail-
ure mechanism. These methods rely on real-scale experimental tri-
als, which are expensive and time-consuming. The values   of m and 
k are different for each type of steel sheeting requiring experimental 
tests for each variation of the profiled steel sheet [5].
The numerical analysis of composite slabs using the finite element 
method is proposed as an economical alternative to the real-scale 
bending tests, enabling a reduction in these tests’ frequency [6]. The 
authors point out that the correct modeling of the shear stress ver-
sus shear stress curve at the steel-concrete interface is the factor 
that most affects the accuracy of numerical results. A method depen-
dent of few parameters for the modeling of the shear stress versus 
slip curve is also proposed [7].
In most numerical analysis papers of composite slabs [7, 8, 9, 10, 11 
and 12] the authors simulate the concrete slab by three-dimensional 
elements, the steel decking by flat shell elements, and the connec-

tion by using interface elements. In this paper only flat shell ele-
ments, beam elements and interface elements are used, providing 
an analysis of lower computational cost than to the that uses three-
dimensional discretization of the concrete part of the composite slab.
In a new type of composite slabs, proposed by Ferrer et al. [13], it 
is suggested altering the trapezoidal steel sheeting, replacing the 
embossments by holes in the inclined parts of the steel decking. 
According to the obtained results, this type of bonding is equivalent 
to the total connection between the materials, because the rupture 
of the slabs occurred with the total plastification of the sections.
This paper considers the physical nonlinearity the flat shell ele-
ment and it is subdivided into layers which are considered in a 
plane state plane of stress and may have different mechanical 
characteristics. For the case of the flat shell element in reinforced 
concrete, the steel reinforcements are considered as equivalent 
steel layers with stiffness only in the direction of the reinforcement. 
This nonlinear physical model for the flat shell element of concrete 
has been used previously [14,15, 16 and 17].
In the flat shell element formulation, the plate theories of Reissner-
Mindlin and Kirchhoff are considered. The Reissner-Mindlin theory 
can generate numerical errors in the analysis of thin plates with 
low discretization due to non-compatibility of the form functions 
in evaluating the shear deformation, which in these cases tends 
to be very small. This shear locking is not verified in Kirchhoff’s 
plate theory, although the formulation for this theory is somewhat 
more complex, as the rotations are associated with the derived of 
the perpendicular displacement to the plane of the plate. Details 
of some formulations of flat shell element considering Kirchhoff’s 
plate theory can be found elsewhere [18, 19, 20 and 21].

2. Composite slabs contact  
 mechanism behavior

The behavior of the contact interface between the steel decking 
and the concrete of composite slabs has been extensively studied. 
From the experimental tests, pull-out test, push-off test and bend-
ing test, the data require to generate curves that relate the longitu-
dinal slip with the shear stress were obtained [22].
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Figure 1
Set up of the bending test (adapted from [9])
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The main problem of both pull-out and push-off tests is that, they 
do not capture the curvature effects due to bending of the slab 
and of the ratio between the length of shear span and the effective 
concrete thickness [6]. Therefore, it is suggested the bending test 
shown in Figure 1 which consists in the application of two sym-
metrical loads according to the supports of the composite slab sub-
jecting it to pure and simple bending. As a result of this test, the pa-
rameters m and k used to determine the design longitudinal shear 
force (Eq. 1) of composite slabs using the studied steel sheeting 
are determined. In Eq. 1, dp is the distance from the upper face of 
the concrete slab to the geometric center of the effective section of 
the steel sheeting, b is the slab unit width, Ls is the shear span and 
As is the area of the effective section of the steel sheeting.

(1)

In the m-k method, the Eq. 1 is rewritten as a linear equation, m 
being the angular coefficient and k the linear coefficient [23]. With 
this consideration, two groups of three tests are analyzed for each 
steel decking model, as indicated in Figure 2, by regions A and B. 

Both groups are defined in such a way that one group is formed 
by compact composite slabs and the other of slender composite 
slabs. With the values obtained from the tests, a linear regression 
is done using the least squares method, and the parameters m and 
k are generated, as shown in Figure 2.
The bending test for the study of mechanisms that influence the 
transfer of longitudinal shear in composite slabs were used [1 and 
8]. A methodology for the three-dimensional nonlinear modeling of 
the pull-out test to simulate the slip behavior on the contact con-
sidering it with friction was also used [24]. It was concluded that 
the parameters that most influenced the slip resistance are the 
embossments transversal slope, the steel sheeting thickness and 
the friction surface conditions. Other authors [25, 26 and 27] have 
shown that the ends anchoring the composite slabs improve their 
structural behavior.

3. Computational implementation

In Figure 3 it is shown the discretization of a composite slab in 
flat shell elements, beam elements and interface elements. In this 
figure the composite slab has simple supports at the ends, perpen-
dicular to the direction of the ribs and is free in the remainder of its 
contour. Therefore, the composite slab tends to flex only in the yz 
plane of the figure. Due to this, together with the symmetry of the 
conditions of support and loading, only one rib of the composite 
slab and half of its span is simulated.
Figure 4 includes the elements used in the discretization of the 
composite slab. Two interface elements are used to model the 
steel-concrete interface, one that connects two flat shell elements 

Figure 2
Determination of the parameters m and k [3]

Figure 3
Composite slab model

Figure 4
Representation of the used elements: (a) perspective view, (b) plane xz view

a b
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and the other that connects beam element to the shell element. In 
the case of the interface element connecting the concrete rib to the 
concrete slab the rib there is no sliding plane in that interface and a 
high value is attributed to the stiffness of the connection.
In the following items the formulations of the used elements in 
slabs numerical simulation are shown. Further formulations details 
can be formed elsewhere [28 and 29].

3.1	 Thick	flat	shell	element

The thick flat shell element implemented for the nonlinear analy-
sis of composite slabs includes nine nodes, five degrees of free-
dom per node at the local level, as shown in Figure 5. Physical 
nonlinearity is considered by dividing the section into several 
layers, as given by Huang et al. [17]: (i) The elements are com-
posed of layers of steel or concrete, and sliding between the 
layers is prevented; (ii) Each layer may have different mechani-
cal properties and independent stress-strain relationships; (iii) 
The reinforcements are considered as an equivalent layer of 
steel with stiffness only in the bar direction; (iv) The concrete 
layers are in a plane stress state and the concrete is considered 
orthotropic after cracking.
According to the kinematic assumptions of Reissner-Mindlin 
plate theory, a point in the domain of the plate element can 
move according to Equations 2 to 4. In these equations u0, v0 
and w0 are the translations of the reference plane of the flat 
shell element in the directions x, y and z. θx and θy are the rota-
tions of the sections with respect to the x and y axes. z is the 
position of the fiber in relation to the average surface along the 
thickness of the flat shell element where it is desired to evaluate 
the displacements. To facilitate notation, the zero superscript is 
omitted in the following equations.

(2)

(3)

(4)

Applying Equations 2 to 4 to the Green-Lagrange strain-displacement  
 
relationship  and neglecting the variation  
 
of w with z, Von Karman’s hypotheses, it is obtained the strain equa-
tions reacted nonlinearly with displacements (geometric nonlinearity).
The stress-strain relationships for the concrete used in this paper 
are the models defined by the European Concrete Committee [30]. 
For the behavior of the concrete after the cracking, a bi-linear mod-
el was adopted for the degradation of the elasticity modulus similar 
to that suggested by Rots et al. [31] and used by Huang et al. [17]. 
In the case of reinforced concrete, the steel of the reinforcing bars 
is considered perfectly plastic elastic.
For nonlinear analysis of the problem, an incremental method with 
displacement control is used in this paper. In the used method, a 
small step size is adopted, and a correction is made at each step 
in the stiffness matrix by calculating the mean tangent [28]. In the 
displacements increments of this method is considered linear ma-
terial with modulus of elasticity given by the tangent to the stress-
strain curve and valid the Hooke’s law constitutive relation for the 
analyzed problem.
The concrete has orthotropic behavior after cracking or crushing. 
Considering the layers in stress plane state, the principal directions 
indicated in this paper by subscripts 1 and 2 are defined. If the 
principal deformations (ε1 and ε2) are within the failure region, the 
concrete is considered orthotropic with the decoupled stress-strain 
relationship for the principal directions as given by the constitutive 
matrix given by Eq. 5.

(5)

In the previous equation, E1 and E2 are given by the tangents of the 
concrete stress-strain curve at points ε = ε1 and ε = ε2, respectively. 
Already G1 = 0.5 E1 ⁄ (1 + ν) and G2 = 0.5 E2 ⁄ (1 + ν). ϕ is the angle 
of rotation of the principal axes in relation to the x and y axes, the 
stiffness matrix in the direction of the orthogonal axes x and y can 
be obtained from Dxy.

(6)

In Eq. 6, 
,

, 

,

,

,

,

Figure 5
Flat shell element with nine nodes and divided 
in layers
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For the particular case of isotropic material, observed when the 
principal deformations are outside the concrete failure region,  
E1 = E2 = E, G1 = G2 = G and the Dxy matrix of Eq. 6 reduces the 
traditional shape of the constitutive matrix of Hooke’s general law 
for the problem in question.
From a virtual deformation field compatible with the flat shell ele-
ment and applying the virtual works principle arrives at the internal 
forces vector given by the following equation.

(7)

In Eq. 7, Nx, Ny, Nxy, Qxz, Qyz, My, Mx and Mxy are scalars given by 
the forces per unit length obtained from the integral along the thick-
ness of the normal and shear stresses in the orthogonal section.
Considering that the Reissner-Mindlin’s plate theory is used in this 
formulation, translational and rotational displacements can be in-
dependently interpolated, so the interpolation functions for the ele-
ment are given by biquadratic polynomials (Ni, i = 1, ..., 9) in rela-
tion to parametric coordinates. The term Φ in Eq. 7 is a nine-term 
vector formed by these polynomials.
To solve the nonlinear equilibrium problem  fint - fext = 0, the Newton-
Raphson method is used. Thus, the tangent stiffness matrix must be 
obtained. Being fext constant with respect to nodal displacements,  
 
the tangent stiffness matrix is given by  .

(8)

In Eq. 8, q is a column vector with 45 terms representing the nodal 
displacements of the shell element, Ψ1 and Ψ2 are column vectors 
with 45 terms as shown in the following expressions.

 

3.2	 Thin	flat	shell	element

The finite element implemented for the thin flat shell analysis is 
the four-node rectangular element with five degrees of freedom 

per node, three translations and two rotations. It is based on the 
element presented by Razaqpur et al. [21], named IDKQ and de-
veloped from the discrete hypotheses of Kirchhoff. Different from 
the Razaqpur element, the element implemented in this paper con-
tains the translation degrees of freedom in x and y directions, as 
the nonlinear analysis and joint action of the concrete slab and the 
steel sheeting do not allow to know the position of the neutral plane 
for which the displacements are zero.
The four-node element for analysis of thin flat shells is developed 
from the thick flat shell element of the previous item by eliminat-
ing of the vertical translation degree of freedom. The formulation 
is developed for the nine-node element and the displacements 
found are transformed to the four-node element through a trans-
formation matrix.
As for the flat-shell element (item 3.1), the displacements for the 
thin shell element are given by Eqs. 2 to 4. Assuming now that  
θx = w,y and θy = w,x, it is assumed that εxz = εyz = 0, and the other 
strains are given by equations 9 to 11. It is observed from these 
equations that the transverse displacement is no longer an explicit 
unknown of the problem, this being the only difference in the for-
mulations in that first part.

(9)

(10)

(11)

Following the same line of reasoning in item 3.1 to obtain the weak 
formulation of the internal virtual work and equating to the external 
virtual work arrives at the vector of internal forces for the thin shell 
element given by the following equation.

(12)

Different from item 3.1, the vector Φ representing the form func-
tions evaluated at a given point has 36 terms, as the degrees of 
freedom relative to the vertical displacement are not being consid-
ered in this formulation. However, for the other degrees of freedom 
the form functions are the same as in item 3.1. Analogous to item 
3.1, the tangent stiffness matrix is given by the vector of internal 
forces in relation to the nodal displacements.

(13)

The thin flat shell element formulation developed in this item thus 
far is based on the formulation of the thick flat shell element of item 
3.1. The Kirchhoff hypotheses are forced by making the degrees 
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of freedom of rotation equal to those derived from the vertical dis-
placement, and thus canceling the shear stresses. However, the 
obtained formulation cannot be used because its form functions 
consider independence of the rotations in x and y, which in Kirch-
hoff’s theory does not happen. Razaqpur et al. [21] defined a trans-
formation matrix that alters the formulation obtained so far in a 
consistent formulation for a four-node thin flat shell element. This 
transformation matrix is shown below and, unlike Razaqpur, in this 
paper it is considered the membrane effect.
To write the displacements of the four-node element, it is re-
quired to do a conversion through a transformation matrix (Tnxm), 
so that: q = Tnxm p, n is the number of degrees of freedom of the 
9-node element, m is the number of degrees of freedom of the  
4-node element,

, and
.

A side of the nine-node quadrilateral element is shown in Figure 
6. Using an interpolation function that associates the vertical dis-
placement along the axis i-j and its derivative with respect to the 
variable along this axis, it can be relate the vertical displacement 
and its derivatives in the nodes i-j with the rotations of the element 
of nine nodes.
For directions u and v, the displacements of the vertices of the nine-
node element are equal to the displacements of the vertices of the 
four-node element. For the central nodes on each side of the nine-
node element, the displacements u and v, are calculated by the 
mean of the displacements of the nodes of the vertices of the four-
node element. That is, uk=(ui

*+uj
*)/2. For node 9, inner node of the 

quadrilateral element, the displacements u and v are calculated by 
using of the displacements of the central nodes of the element con-
tour, which were calculated using the mean of the vertex nodes of 
the element, thus: u9=(u1

*+u2
*+u3

*+u4
*)/4 and v9=(v1

*+v2
*+v3

*+v4
*)/4. 

The subscript * indicates displacements in the four-node element, 
that is, terms of the vector p.
Given Tnxm, the tangent stiffness matrix for the four-node element 
is given by K*

mxm=TT
mxnKnxnTnxm; Knxn is the stiffness matrix of the 

9-node element given by Eq. 13. The transformation matrix Tnxm 
required to transform the stiffness matrix of the 9-node element to 
the 4-node element is formed by 36 rows and 20 columns.

3.3 Beam element

In the composite slab numerical simulation, the concrete ribs are 
simulated by beam elements. The Figure 7 shows the degrees of 
freedom considered in implementing the beam element and the 
stress that arise in an infinitesimal element of the beam. It is ob-
served that the degrees of freedom of the beam element are the 
same as those adopted for the flat shell element.
Considering the kinematic hypotheses of Tymoshenko’s beam the-
ory and the approximation that a torsional stress does not cause 
displacements outside the torsion plane, the following equations of 
displacement are defined.

(14)

(15)

(16)

By defining the internal forces in the cross-section of the beam 
element Nx = ∫AσxdA, Nxy = ∫AτxdA, Nxz = ∫AτxzdA, Mx = ∫Aσx zdA and 
Tx = ∫A(τxzy - Txyz)dA, and approaching the equations of displace-
ments by functions of forms associated with nodal displacements, 
are generated Eq. 17 and 18, for the weak formulation of the virtual 
work and tangent stiffness matrix, respectively. In both equations, 
Φ it is a vector that represents the form functions given by qua-
dratic polynomials for the axial, transverse and rotational displace-
ments, q = [ui vi wi θxi θyi]T with i varying from 1 to 3 (number of 
nodes of the bar element) represents the degrees of freedom of 
the bar element.

(17)

(18)

3.4 Interface element

For the simulation of the deformable connection between concrete 
slab and steel sheeting, the interface element shown in Figure 8 
is used. This element connects the beam element that represent 
the concrete rib to the flat shell elements of concrete and steel. 
The interface element used to connect concrete flat shell elements 

Figure 6
Element-side coordinates (adapted of [21])

Figure 7
Beam element’s degrees of freedom 
and stress in an infinitesimal element
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to steel flat shell elements is similar thereto. For further details of 
these elements refer to Silva and Dias [29].
As  and , the 
displacements equations in x and y directions for the above  
(α = 1) and below (α = 2)  elements of the contact interface, and 
considering wα (x,y,z) = wα

0 (x) + yθ
xα(x) as the displacement equa-

tion in the z direction, Equations 19-21 for relative longitudinal 
displacements (x-direction), transverse (y-direction), and vertical  
(z-direction) of the interface element of Figure 8, is generated.

(19)

(20)

(21)

The relative displacement in the x-direction and the variables ap-
pearing in Equations 19 to 21, d, y1 and y2, are shown in Figure 9. 
The superscript 0 indicates displacement on a plane or an adopted 
reference axis. This index will be omitted from the equations below 
to facilitate the notation.
Defining Sb, Vb and Nb forces per unit length in the direction of 
u, v and w, respectively, b the width of the contact represented 
by the interface element, then Sb /b provides the shear stress in 
the longitudinal direction of the contact. Since  Nb

1 = ∫bNbdy  and  
Nb

2 = ∫bNbdy, Φ is a vector where its terms are functions of quadratic 
polynomials, q is the vector of nodal displacements, Eq. 22 and 23 

for the internal forces vector and the tangent stiffness matrix of the 
interface element are generated.

(22)

(23)

4. Numerical analysis 

For the validation of the analysis model and the finite ele-
ments suggested in this paper, numerical and experimental  

Figure 8
Interface element's degrees of freedom [29]

Figure 9
Longitudinal slip
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published results that are used. Three examples are  
presented below.

4.1 Example 1: bending test

A typical bending test of composite slabs, as shown in Figure 1, is 
modeled. The slab was studied experimentally by Chen [25] and 
numerically analyzed by Chen and Shi [9]. Two analysis are per-
formed. In the first, two thin flat elements are used, one for modeling 
the steel sheeting and the other for the concrete slab above the rib, 
as shown in Figure 4. In the second analysis, the thick flat shell ele-
ment is used to model the concrete slab above the rib and the thin 
flat shell element to model the steel sheeting. In both analysis, the 
rib is simulated by the beam element and the connection between 
the different elements and the simulation of the deformable connec-
tion is made by the interface elements shell/shell and beam/shell.
The slab is 0.914 m wide, 2.6 m long and two loads are applied fol-
lowing the indicated for the bending test (shown in Figure 1), with 
a shear span of 0.65 m. The total concrete thickness is 165 mm. A 
detail of the steel sheeting having a thickness of 0.9 mm is shown 
in Figure 10.
Figure 11 shows the discretization of the composite slab, to the 
interface elements are in gray. The stress-strain curves described 
in the formulations of the elements were used to characterize the 
materials, and the elastic modulus Ec = 27133 MPa, compressive 
strength fc = 20.1 MPa and Poisson’s coefficient ν = 0.2 was used 
for the concrete. The elastic modulus Es = 210000 MPa, yield 
stress fy = 275 MPa, and the Poisson coefficient ν = 0.3 are used 
for the steel sheeting. As shown in Figure 11, due to the symmetry 
with respect to the yz plane and given that the slab is formed by 
joining several cross sections as indicated in the figure, only one 
rib and one half of the span of the composite slab are discretized.
In Figure 11, the conditions of support and the position of applica-

tion of the load are also shown. The three nodes marked on the 
left-hand end present translational displacements along the x-axis 
and rotation on y released. Those of the right end have only the 
free z-translation.
The connection between the steel and the concrete was modeled 
by the interface elements that have three stiffnesses, longitudinal, 
transverse and vertical. As the failure in composite slabs occurs 
due to longitudinal shear, the possibilities of vertical separation and 
transversal sliding are disregarded. Thus, a linear curve represent-
ing total connection, that is, high stiffness E = 106 MPa is used to 
represent the contact in the transverse and vertical direction. For 
longitudinal stiffness the results provided by Chen [9] about the 
load versus end slip curve of the composite slab were used to de-
fine the shear stress versus longitudinal slip at the steel-concrete 
contact of the composite slab. For the curve shown in Figure 12, it 
is assumed a function defined by sentences, where each sentence 
is given by the equation of a line. The limits of each sentence inter-
val as well as the linear and angular coefficients of the line equa-
tion are defined so that the numerical and experimental load-slip 
response to the composite slab are quite close.
The results of Chen and Shi [9] were generated with the software 
ANSYS, in which the steel sheeting was discretized with shell ele-
ments, the concrete slab with solid elements, and the deformable 
connection was modeled by a pair of contact elements, consider-
ing adhesion and friction. Figures 13 and 14 shown the results 

Figure 10
Steel deck dimensions [9] (dimensions in mm)

Figure 11
Composite slab model

Figure 12
Shear stress x end slip curve

Figure 13
Load x mid-span deflection curve
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obtained in this paper, as well as those gotten by Chen and Shi 
[9] and Chen [25]. The label (shell4) refers to the analysis using 
only the thin flat shell element and the label (shell9 + shell4) to the 
analysis using the two elements.
Figure 13 shows the behavior of the deflection in the mid-span 
of the composite slab in relation to the applied load. In the two 
analysis, the behavior obtained for the linear phase, in which there 
is total interaction between the steel and the concrete, was similar 
to the experimental behavior. With the beginning of the nonlinear 
behavior, there is difference between the experimental behavior 
and the behavior found with the numerical models. This difference 
is due to the complexity of the numerical simulation of the concrete 
after cracking and the large number of factors that influence the 
behavior of the contact in composite slabs, such as localized ef-
fects in the embossments. However, in terms of ultimate load, the 
values gotten in only the thin flat shell elements (Shell4), and the 
numerical response of Chen, are similar to the experimental result. 
The analysis (Shell9 + Shell4) has a slightly lower value, which can 
be explained by the difference in the formulations of the elements, 
considering that Shell9 element can have the shear locking effect.
Figure 14 shows the slip behavior at the end of the slab with re-
spect to the applied load. It is worthwhile that all numerical analysis 
of have behavior close to the real at the beginning of the linear 
behavior phase. In terms of ultimate load, both the Chen and Shi 
analysis [25] and the analysis using only the thin flat shell element 
(Shell4) generated results close to the experimental results. How-
ever, it is observed that in the analysis with the thin shell element 
(Shell4) the nonlinear phase behavior is very close to the actual 

behavior, which does not occur in the numerical analysis of Chen 
and Shi. For the analysis (Shell9+Shell4) the same considerations 
are given for the load-displacement curve of the Figure 13.
Figure 15 shows the deformed slab and the point of maximum de-
flection. This deflection was obtained for the nonlinear phase of 
the load-displacement curve and there is a greater curvature of the 
composite slab at the application point of the load. This justifies 
the fact that some authors add elements (cracking inducers) in this 
point that may represent concrete behavior after cracking [7].

4.2 Example 2: continuous slab

A composite slab with two symmetrical continuous spans in terms 
of loading and support conditions is analyzed. The steel sheeting 
is shown in Figure 16. This same composite slab was numerically 
and experimentally evaluated by Gholamhoseini et al. [10].
Transverse and longitudinal reinforcement were used in the nega-
tive moment region. The loading is as indicated for the bending 
test. Figures 17 and 18 show a detail of the negative reinforce-
ments and a scheme of a continuous slab span, respectively.

Figure 14
Load x end slip curve

Figure 15
Deflected shape of the composite slab

Figure 16
Steel decking profile [10] (dimensions in mm)

Figure 18
Continuous slab scheme [10] (dimensions in mm)

Figure 17
Reinforcement details at interior support [10] 
(dimensions in mm)



981IBRACON Structures and Materials Journal • 2019 • vol. 12 • nº 5

  A. R. SILVA  |  P. B. SILVA

Table 1 shows the dimensions and shear span of the slab evalu-
ated. Two analysis (shell4) and (shell9+shell4) are performed, both 
analysis have already been described in the previous example.
As previously, the vertical separation and the transversal sliding 
are disregarded, as the longitudinal connection is represented by 
a shear versus slip curve at the steel-concrete contact of the com-
posite slab as shown in Figure 19. This curve was determined from 
experimental response of the load-slip end curve of the continuous 
slab provided by Gholamhoseini et al. [10].
The concrete and steel decking materials are characterized by 
their stress-strain curves, and the values given in Table 2 are used. 
The reinforcements yield stress is fy = 495 MPa and the elasticity 
modulus Es = 205 GPa.
The numerical results of Gholamhoseini et al. [10] were obtained 
with the ATENA 3D software. The steel sheeting and the concrete 
slab were modeled with solid tetrahedral elements; the reinforce-
ments were modeled as discrete bars within the concrete slab, and 
the connection between the steel and the concrete was simulated 
through an interface material that is based on the Mohr-Coulomb 
failure criterion. The numerical results obtained in this paper and 
the Gholamhoseini numerical and experimental results are indi-
cated in Figures 20 and 21.
The load-displacement and load-end slip curves of the composite 
slab are shown in Figures 20 and 21 respectively. The numeri-
cal analysis provided a good approximation with the experimental 
analysis. The numerical analysis of Gholamhoseini is not present-
ed in Figure 21, because it was not provided by the author.

4.3 Example 3: slab with dovetail rib 
	 profiled	sheeting	

Like trapezoidal steel decking, reentrant steel decking is widely 
used in composite slabs. In this case, no embossments are used, 
because steel decking geometry generates a confinement effect of 
the concrete, which contributes to the shear strength at the steel-
concrete interface. In this example, the two composite slabs with 
the reentrant steel decking shown in Figure 22 are modeled. The 
slabs in question were experimentally studied by Marciukaitis et al. 
[32] and evaluated numerically by Chen and Shi [9].

Table 1
KF-70 slab characteristics 

Slab Width 
(m)

Total length 
(m)

Total thickness 
(mm)

Span 
(mm)

Shear span             
(mm)

KF-70 1.2 6.9 150 3350 L/4 = 837.5

Table 2
Materials properties

Slab f’c 
(MPa)

Ec

(MPa)
fy 

(MPa)
Es 

(GPa)
Sheeting thickness 

(mm)
KF-70 47.9 33050 532 203 0.75

Figure 19
Shear stress x end slip curve

Figure 20
Load x mid-span deflection curve

Figure 21
Load x end slip continuous slab curve
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Table 3 shows the dimensions and shear span of the slabs eval-
uated. The slabs have two loads applied symmetrically accord-
ing to the bending test. Two analysis (shell4) and (shell9+shell4) 
are performed, both analysis have already been made in the 
previous examples.
Figure 23 presents the slab P1-2 discretization. As can be seen 

in this discretization and in the other examples, the beam element 
representing the concrete in the rib is not located in the geometric 
center of its cross section. That is because the interface element 
that connects the beam element and the flat shell element must 
have 90 ° as the slip plane, which in these examples is parallel to 
the flat shell element. This figure also shows the conditions of sup-
port and the position of application of the load. The three leftmost 
nodes, that are marked, have the translation displacements along 
the x-axis and y-rotation, and the right-hand nodes have only the 
free z-translation.
As in the previous examples, the possibilities of vertical separation 
and transverse slip were disregarded. For the connection in the 
longitudinal direction the shear stress versus longitudinal slip curve 
given in Figure 24 is used. This curve was generated in a similar 
way as suggested by Marciukaitis et al. [32]. The materials proper-
ties are shown in Table 4.
The numerical results of Chen and Shi [9] were obtained with the 
commercial software ANSYS. The steel sheeting was discretized 
with flat shell elements, the concrete slab with solid elements and 
the connection was modeled by a pair of contact elements, allow-
ing only longitudinal sliding. Figures 25 and 26 shows the numeri-
cal results obtained in this paper, the numerical results of Chen 
and Shi [9], and the results of the experimental model presented 
by Marciukaitis et al. [32].

Figure 22
Steel deck dimensions [9] (dimensions in mm)

Table 4
Materials properties

Slab fy 
(MPa)

Es 
(GPa) νs

fc 
(MPa)

Ec 
(GPa) νc

P1-2 317 205 0.3 21.6 40.5 0.2
P2-2 317 205 0.3 28.6 41.5 0.2

Table 3
Slabs dimensions

Slab Span 
(m)

Width 
(m)

Sheeting thickness 
(mm)

Concrete’s total thickness 
(mm)

Shear span 
(m)

P1-2 1.8 0.77 0.9 75 0.6

P2-2 1.8 0.77 0.9 98 0.6

Figure 23
P1-2 slab model

Figure 24
Shear stress x end slip curve

Figure 25
P1-2 slab – Load x mid-span deflection curve
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From Figures 25 and 26, in the two analysis the behavior obtained 
for the numerical models implemented in this paper was close to 
the behavior of the experimental model. In general, the numerical 
models developed in this paper have gotten results that better rep-
resent the load-deflection behavior for the slab P1-2 and P2-2 than 
the reference numerical model. 

5. Conclusions

In this paper it is proposed a finite element analysis model for non-
linear numerical analysis of composite slabs submitted to their ul-
timate capacity. In this model, the concrete slab above the ribs is 
simulated by shell elements considering the orthotropic behavior 
of the concrete after cracking and steel after the yielding. The de-
formable connection between the steel sheeting and the concrete 
is modeled with interface elements and the ribs of the composite 
slab are modeled with beam elements.
The efficiency of the used model as well as the finite elements 
included for numerical simulation of composite slabs was accord-
ing proven with results obtained in numerical and experimental 
examples found in the published papers. The suggested numeri-
cal model allows obtaining the maximum loads supported by the 
composite slabs, with the advantage of having a lower computa-
tional cost compared to the three-dimensional discretization of the 
composite slab concrete part. As observed in the examples, the 
thick shell element can generate numerical errors in some analysis 
and, therefore, the simulation of the concrete slab above the rib is 
suggested by thin shell elements.
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