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Numerical analysis of nonlinear behavior of steel 
concrete composite structures

Análise numérica do comportamento não linear 
de estruturas mistas de aço e concreto

Abstract  

Resumo

This paper presents the development of an effective numerical formulation for analysis of steel concrete composite structures considering geometric 
and materials nonlinear effects. Thus, a methodology based on Refined Plastic Hinge Method (RPHM) was developed and the stiffness parameters 
obtained by homogenization of cross section. The evaluation of structural elements strength is done through the Strain Compatibility Method (SCM). 
The Newton-Raphson method with path-following strategies is adopted to solve nonlinear global and local (in cross section level) equations. The 
results are compared with experimental and numerical database presents in literature and a good accuracy is observed in composite cross section, 
columns and portal frames.

Keywords: nonlinear analysis, RPHM, interaction curves, SCM, moment-curvature relationship.

O presente trabalho apresenta o desenvolvimento de uma formulação numérica adequada para análise de estruturas mistas de aço e concreto 
considerando os efeitos da não linearidade geométrica e da inelasticidade dos materiais. Para tal, foi desenvolvida uma metodologia baseada 
no Método da Rótula Plástica Refinado (MRPR), sendo os coeficientes de rigidez obtidos por meio da homogeneização da seção transversal. 
A avaliação da capacidade resistente dos elementos estruturais é feita no contexto do Método da Compatibilidade de Deformações (MCD). Os 
problemas oriundos da consideração das fontes de não linearidade (global e local) são resolvidos por meio do método iterativo de Newton-
-Raphson acoplado a estratégias de continuação. Os resultados obtidos são comparados com aqueles fornecidos em análises experimentais e/
ou numéricas presentes na literatura, sendo verificada boa precisão nas análises de seções transversais mistas, pilares isolados mistos e pórticos 
simples mistos.

Palavras-chave: análise não linear, MRPR, curvas de interação, MCD, relação momento-curvatura.
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1.	 Introduction

When considering the nonlinear behavior of structures, the ap-
proaches proposed by design codes become less realistic as the 
structural elements become slender. In the current context, the use 
of high-strength materials in construction gives rise to less rigid 
structures that are susceptible to large displacements. Accurate 
analysis of such structures requires the use of computational tools 
that take into account both the nonlinear behavior of the geometry 
of the structure and the bearing capacity of its structural elements. 
Structures made up of two or more materials are referred to as 
composite structures. The objective of this sort of combination is 
to find a balance between the materials, one that minimizes the 
unfavorable characteristics of each component. For example, con-
crete has been used only to protect steel against corrosion and fire 
agents, although it also happens to contribute to increasing the 
bearing capacity and stiffness of the structure. This idea spurred 
the first composite steel-concrete structural elements.
It is not at all simple to define the stiffness and bearing capacity 
of composite structural elements and the complexity is due to the 
concrete’s anisotropic characteristics. Design codes [1-2] propose 
simplified methodologies for defining these stiffness parameters 
and full yield curve that can either approximate or hold off the ac-
tual behavior of the structure [3].
One alternative for obtaining accurate results in a way that is 
more computationally feasible is the Refined Plastic Hinge Meth-
od (RPHM). Usually the RPHM is associated with the analysis of 
steel [4-5] and composite structures [6-7]. In these approaches, 
the cross-section flexural stiffness is possibly degraded by pseudo-
spring elements inserted in the ends of finite elements. The deg-
radation begins when the combination of the axial force and the 
bending moment exceeds the limit of the elastic stage imposed by 
the initial yield curve. In other words, the cross-section maintains 
linear elastic behavior only up to the beginning of this curve.
When it comes to assessing the bearing capacity of the composite 
steel-concrete elements using Strain Compatibility Method (SCM) 
[2, 7], two strategies stand out. For nonlinear problems, propo-
nents of quasi-Newton methods, such as Chen et al. [8] and Liu 
et al. [9], use this solution procedure, coupled with the Regula-
Falsi numerical scheme. The process consists of determining the 
neutral axis position and its orientation (3D problem), which are 
the parameters set in the iterative cycle. In such manner, one can 
obtain the cross section bearing capacity. The Newton-Raphson 
method [10-11] uses, however, as the axial strain adjustment vari-
ables the membrane effect at the plastic centroid of the section 
and the curvature effect in one of the main axes (2D problem). The 
axial strain of each discrete point in the section is then determined 
and the respective constitutive relationships are used for the sum 
of stresses. The procedure consists of constructing the moment-
curvature relationship (nonlinear problem), where, for a given axial 
force, the limit point that is found for the bending moment reflects 
the axial force-bending moment combination responsible for the 
plastification of the section. By analyzing moment-curvature the 
stiffness parameters can be determined. Chiorean [11] obtained 
the flexural rigidity of the section based on the tangent to the mo-
ment-curvature. Liu et al. [12] has already reduced the moment of 

inertia of reinforced concrete elements as cracking occurred. Fur-
thermore, Chan et al. [13] used the homogenized stiffness section 
to calculate the coefficients of the stiffness matrix.
This work aims to couple the SCM to RPHM to provide the Com-
putational System of Advanced Structural Analysis (CS-ASA) plat-
form [7] a formulation that is capable of assessing the load carrying 
capacity of composite structures while considering both the effects 
of geometric and physical nonlinearities. It is a new formulation 
within the context of evaluating plasticity in a concentrated form. 
Thus, the formulation retains the simplicity and small computation-
al effort of RPHM and takes into account the accuracy of the SCM 
in the evaluation of cross section bearing capacity. While some 
recent studies have similarly coupled RPHM and SCM, none of 
their analyses of the bearing capacity of the cross-section uses 
the construction of the moment-curvature relationship. Moreover, 
to expand the range of analysis possibilities, the study also imple-
ments prescriptive requirements [1-2] to obtain the load carrying 
capacity of the elements. This would make it possible to assess the 
structural behavior of composite elements based on design codes 
considerations and to compare results obtained using the general-
ized formulation proposed by coupling RPHM with SCM. 

2.	 Fundamentals for nonlinear  
	 structural analysis

The global nonlinear structural problem in the context of the Finite 
Element Method (FEM) and RPHM/SCM, is resolved by the follow-
ing equation:

(1) ( ), , λ@F U P Fi rS

with Fi the internal force vector, which is written on the basis of nodal 
displacement vector U,  internal forces in members, P, and the evalu-
ation parameter of the flexural section stiffness degradation , S. The 
external forces vector is defined by the product between the load pa-
rameter, l, and Fr, which is the external forces vector of reference.
Equation (1) is solved here by the Newton-Raphson method used 
in conjunction with path-following strategies, such as the general-
ized displacement technique [14] and the minimum residual dis-
placements method [15].
Computationally, the effects of geometric nonlinearity are intro-
duced in the conventional stiffness matrix by the matrix Ks, K1 and 
K2. Ks is the geometric stiffness matrix, K1 is a linear function of 
the incremental nodal displacements while the terms in the matrix 
K2 are quadratic functions [16]. Terms of higher order (K1 and K2) 
can be neglected, especially when the structures are rigid and the 
material nonlinearity is more relevant. 

3.	 Concentrated plasticity analysis

The computer program CS-ASA [5] has been under development 
since 2009 and has already been established for the nonlinear 
analysis of steel structures. This program uses the Refined Plastic 
Hinge Method (RPHM) [4] to simulate the concentrated plasticity 
in the nodal points.
To model the structures considered in this work, the study adopts 
the following assumptions:
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n	 there is full interaction between the materials present in the 
cross-section;

n	 the elements are initially straight, prismatic, and warpage may 
be ignored;

n	 the structure is perfectly locked on to the orthogonal axis (2D 
problem); 

n	 effects of localized instability are neglected;
n	 large displacements and rigid body rotations are allowed; 
n	 shear strain effects are neglected.
In the modeling, the beam-column finite element used is shown 
in Fig. 1. This element is defined by the nodes i and j. Also illus-
trated are the internal forces, Mi, Mj and P, as well as their respec-
tive degrees of freedom qi, qj and d, referenced to the corrotational 
system. Null length pseudo-springs are inserted, at the ends of 
the element, to simulate the degradation of flexural stiffness by 
parameter S.
The S parameter is set within three domains (Fig. 2). When in the 
elastic state, the value of S is assumed to be 1016. Such a state is 
limited by the beginning of initial yield curve. Upon reaching the 
plastic state (a situation where the internal forces reach the full 
yield curve), the flexural stiffness is completely degraded. In this 
case, S is taken to be numerically equal to 10-10. Between the initial 
and full yield curves, the loss of stiffness is considered to occur 
gradually, according to the following equation:

(2)
 ( ) -æ ö
= ç ÷

-è ø

comp pr
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S
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where L is the length of the finite element; Mpr is the full yield mo-
ment and Mer the initial yield moment, which will be defined in Sec-
tion 4; and (EI)comp is the flexural stiffness of the homogenized com-
posite section that, for doubly symmetrical and composite beams 
section, is given by [17]:

(3a) ( ) ( ) ( ) ( )é ù= + +ë ûcomp a b c
EI EI EI µEIh

(3b) ( ) ( )0, 4 0,6 '= +a comp compcomp
EI E I I

where the subscripts a, b, and c refer to steel section, the rein-
forcement bar, and concrete; m is the reduction factor for the flex-
ural stiffness of concrete due to cracking; h is a reducing of the 
global stiffness coefficient; and Icomp and I’comp are the moments of 
inertia of the composite section in the positive and negative mo-
ment regions, respectively.
For the element shown in Fig. 1, the force-displacement relation-
ship is expressed by [9]:

(4)
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with b = (Si + kii)(Sj + kjj) - kjikij. The subscripts i and j indicate the 
nodes of the element and co the subscript to the coordinate system 
used (corrotational); (EA)comp is the axial stiffness of the homog-
enized cross-section; DP and DM are, respectively, the incremental 
axial force and bending moment; Dd and Dq are the increments of 
axial strain and nodal rotation. 
The terms kii, kij, kji and kjj are obtained according to the Yang 
and Kuo’s formulation [14]. When the section plastify, any in-
crease in incremental load causes the internal forces to extrapo-
late the full yield curve, therefore, violating the cross-section 
bearing capacity. The formulation used here avoiding this viola-
tion is a strategy known as Return Mapping [5]. In this strategy, 
the element axial force remains constant and returns the inter-
nal bending moment to the full yield curve. In other words, Eq. 
(4) is modified so that in these situations the bearing capacity of 
the elements is not violated.

4.	 Strain compatibility method

The bending moments Mpr and Mer, used in Eq. (2), are obtained in 
the context of the Strain Compatibility Method (SCM). Compared 
to the simplified design codes procedures [1, 2], a more realistic 
approach is produced by the coupling of the deformed shape of 
section and the constitutive relationships of the materials com-
prising it. To satisfactorily obtain the strain field in the section, the 
cross-section discretization is necessary. In the discretization, the 
strength may be sufficiently evaluated with two-dimensional layers, 
but this procedure is sensitive to the degree of refinement imposed 
by the analyst. 

Figure 1
Hybrid finite element with section springs

Figure 2
Full and initial yield curves: pseudo-spring flexural 
stiffness definition
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4.1	 Steel behavior

Fong and Chan [6] proposed for both the reinforcing bars and for 
the steel section an elastic-perfectly-plastic constitutive relation-
ship (shown in Fig. 3), as described below:

(5)
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where fy is the yield strength of steel, Ea the Young’s modulus of steel, 
ey and eu the elastic limit and final limit of steel strains, respectively. 

4.2	 Concrete behavior

When compressed, the parabolic-rectangular stress-strains rela-
tionship is adopted (Fig. 4a), limited by the last of the concrete 

compressive strain, ecu. As proposed by Bazant and Oh [18], it is 
also possible to consider the tensile strength given by a bilinear 
model with a positive slope until reaching the beginning of cracking 
strain, etr, along with the ultimate tensile strength, fcr (Fig. 4b). The 
strain limit to the tensioned concrete is considered here as 0.0007, 
adopted by Bratina et al. [19]. We thus have:

(6)
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where fc is the maximum compression strength of concrete, Etr and 
Etr,2 are the concrete modulus of elasticity in tension, before and 
after cracking. eci is the strain limit of the parabolic curve of the 
compressed concrete.

4.3	 Moment-curvature relationship

Once the cross-section is discretized, in using the SCM coupled 
with the Newton-Raphson Method, there are two relevant vari-
ables: the area of the layers and their respective positions. This 
second is referred to as the plastic centroid (PC), so as to minimize 
convergence problems [8].
The position of the PC section is obtained by the following expres-
sion [20]:

(7)
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with Ac, Aa and Ab being the concrete, steel, and the reinforcing 
bars areas; g is the confinement coefficient of concrete; yc, ya 
and yb are the coordinates of the respective areas’ centroids 

Figure 3
Steel constitutive relationship

Figure 4
Concrete constitutive relationship (a) compression and (b) tensile
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on the ordinate axis in relation to a reference system; and fcd, 
fyd and fybd are the compressed concrete, steel and reinforcing 
bars strength, respectively.
Figure 5 illustrates the distribution of strains in the composite 
section from a combination of axial force and bending moment. 
Note that the total axial strain at the ith slice, ei, is given by a 
linear function. Therefore:

(8) 
0ε  ε= +i iyf

where yi is the distance between the of the analyzed layer and 
the cross-section plastic centroids (PCs), e0 is the membrane 
strain in the section CP, and f its curvature.
For the matrix notation, the study adopted the following: the vari-
ables e0 and f are the positions of the strain vector X = [e0  f]T. It is 
necessary to adjust the vector X until the deformed shape of 
the section is consistent with the active external forces. This 
adjustment is made through the iterative process described 
below. Chiorean [11] pointed out that adopting X = 0 in the first 
iteration enables a faster convergence. Numerically, it can be 
said that the balance of the section is obtained when the fol-
lowing equation is satisfied:

(9) ( ) 0= - @F X f fext int

where the external forces vector is depicted as fext = [N  M]T.
But the internal force vector is given by classical integral ex-
pressions for the axial force, Nint, and bending moment, Mint. 
Once areas, Ai, and positions, yi, of each layer are known, the 
integral becomes the sum described as:
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with nfat being the number of layers used in the discretization 
of the cross-section and nb the number of reinforcing bars lines 

present in the composite section. Layers stresses, s, are de-
pendent on the deformed shape of the cross-section, and are 
therefore functions of e0 and f.
While it is appropriate to initiate the process with X = 0, con-
vergence is achieved only in the first iteration if external forces 
are null. Thus, for the next iteration, k+1, the strain vector is 
given by:

(11) ( ) ( )
1

1 '
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where F’ is the tangent stiffness matrix of the cross-section or 
the Jacobian matrix of the nonlinear problem stated in Eq. (9), 
that is:

(12)
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The convergence criterion adopted in this work is based on the 
ratio of the Euclidean norms of the unbalanced force vector, F, 
and the external forces vector, fext. Thus, this ratio should be 
less than a tolerance, assumed here to be 10-5.
Figure 6 details the flow chart of the process for obtaining the 
moment-curvature relationship.
When, for a given axial force, the maximum bending moment 
of the moment-curvature is reached, there is a total plastifica-
tion of the section. It is defined such that a pair of forces is a 
point on the full yield curve.
The initial yield curve also is obtained from the moment-curva-
ture relation. When the first layer of the section presents axial 
strain, e, greater than the yield strain of the steel (section or 
longitudinal reinforcing bars) and/or the strain of the concrete’s 
initial plastification [6], the layer begins to degrade and conse-
quently the section loses stiffness. The moment responsible 
for this fact is considered the initial yield moment.

Figure 5
2D linear strain field
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5.	 Limitations of the analysis methodology

In addition to the simplifying assumptions mentioned in Section 
3, such as the full interaction between the materials, the disre-
gard of shear strain, and so forth, there are some limitations in 
the proposed analysis methodology. The use of pseudo-springs 
at the ends of the finite element model to simulate the plastic-
ity leads to a simplification consistent with the behavior of steel 
structures. In Figure 2, it can be seen that the rotational stiff-
ness of the springs, discussed in Section 3, is defined within 
three domains (elastic, elastoplastic and plastic). Once within 
the elastic state, the S parameter of the pseudo-spring is kept 
constant, i.e., regardless the materials used in the structure, 
there is linear elastic behavior. This characterizes the linear be-
havior of the steel in Hooke’s Law, shown in Fig. 3, for strains 
smaller than ey.  Thus for the numerical simulation of composite 
structures in this formulation, the axial and flexural stiffness are 
evaluated by homogenizing the cross-section.
A more careful evaluation is called for in the study and analysis 
of reinforced concrete structures. As illustrated in Fig. 4, the 

concrete exhibits nonlinea r behavior under compression from 
strains smaller than eci, which means a limitation to the use of 
pseudo-springs.  

6.	 Numerical examples

The numerical strategies presented in previous sections are used 
now to aim at a nonlinear analysis of steel-concrete compos-
ite structural systems. Evaluated examples are divided into four 
groups: interaction curves, isolated concrete-filled steel columns, 
rectangular concrete-filled tube made of high-strength materials 
and simple composite portal frame. The results are compared with 
those reported in the literature, obtained numerically and/or experi-
mentally. To simulate the following examples, we used a computer 
equipped with an Intel Core i7 2.20 GHz and 8 GB of RAM.

6.1	 Full yield curves

This section looks at the full yield curves of two steel-concrete 
composite cross-sections. At first, the encased I section, shown in 

Figure 6
Nonlinear local problem solver – moment-curvature relationship



59IBRACON Structures and Materials Journal • 2017 • vol. 10 • nº 1

 	 Í. J. M. LEMES  |  A. R. D. SILVA  |  R. A. M. SILVEIRA  |  P. A. S. ROCHA

Fig. 7, is evaluated around the major and minor axes. It is a steel I 
section (256 x 256 x 14.4 x 16 mm), where fy is taken to be equal 
to 250 MPa, completely encased by concrete with fck 25 MPa. Fur-
ther, the steel circular section is studied; its outside diameter is 
400 mm; it is 10 mm thick with fy = 275 MPa filled with concrete 
with fck of 35 MPa. In each case, two analyses will be made: a CST 
analysis of the concrete will not have tensile strength; and a CCT 
analysis in which the constitutive relationship shown in Fig. 4b will 
be considered.
Interaction curves were constructed of 101 coordinate points (M, 
N), each of the sections discretized into 12 layers. Such data are 
presented in order to standardize comparative measures of run-
time, which at that point were not provided in the literature.
Figure 7 shows the full yield curves of the encased I section to 
major and minor axes. The study also evaluated the increase 
of the cross-section bearing capacity while considering the ten-
sile behavior of concrete, as shown in Fig. 4b. Numerically, this 
increase is approximately 2.1% in the first quadrant of the axial 
force-moment bending diagram. To construct the four curves, CS-
ASA software took 0.57 seconds or 0.14 seconds, on average, to 
build each curve. 
Figure 8 shows the bearing capacity behavior of a circular steel 
section filled with concrete. Once the section exhibited the same 
behavior in both the x and y axes, only one of the curves was plot-
ted. In this case, that took 0.28 seconds, averaging 0.14 seconds 
for each curve. There was a 1.7% increase in bearing capacity in 
the first quadrant when considering the tensioned concrete contri-
bution in the obtaining curve. 
In the cases covered in this item, there was good agreement be-
tween the results obtained by the Newton-Raphson Method and 
those provided by Caldas [10], who constructed the curve using 

Figure 7
Full yield curves for encased I section

Figure 8
Full yield curve for circular composite section
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the D-strain parameter approach. In this method, one of the strain 
parameters is taken from the concrete strain domains, and the 
equations are thus adjusted to cycle through the deformed shapes 
for the ultimate limit state of the section. In both cases discussed in 
this item, the proposal to adopt the singularity condition of the Ja-
cobian matrix of the cross-section (Eq. 12) as a stopping criterion 
for the construction of the moment-curvature relationship is verified 
as being appropriate.  

6.2	 Concrete-filled steel columns

Seven concrete-filled steel circular columns were first experimen-
tally analyzed by Neogi et al. [21]. Liu et al. [12] and Fong and 
Chan [6] used these experimental results to test their formulations 
based on RPHM. The simulated model consists of a column simply 
supported with an initial geometric imperfection (d=L/1000). A load 
eccentricity is introduced to the system considering bending mo-
ments at both the top and base of the column, as shown in Fig. 9. 
To discretize the structural system, four finite elements are used. 
In local level, the circular cross-section was divided into 16 layers. 

Figure 9
Idealized model for circular composite column with eccentric load analysis

Table 1
Geometry and material data

Specimen L (mm) e (mm) D (mm) t (mm) fy (kN/mm²) fcu (kN/mm²)

M1 3048 47,6 169,4 5,11 0,309 0,05553

M2 3048 38,1 169,2 5,26 0,309 0,054

M3 3048 47,6 168,9 5,66 0,295 0,04247

M4 3048 47,6 168,4 6,55 0,298 0,038

M5 3048 47,6 169,4 7,19 0,312 0,032

M6 3048 38,1 169,4 7,29 0,312 0,03318

M7 3022,6 47,6 168,9 8,81 0,323 0,03306

Figure 10
Equilibrium path – Column M5
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For the load increase strategy [14], the first increase should be 
given and taken in this example as 2 kN.
The properties of the analyzed columns are shown in Table 1. The 
Young’s modulus of steel is taken to be equal to 207000 MPa for 
all specimens. According to Liu et al. [12], Neogi et al. [21] did not 
provide the modulus of elasticity for concrete, so it is defined ac-
cording to the ACI-318 recommendations [22].
Figure 10 offers a comparison of the equilibrium path for Column 
M5 obtained with the CS-ASA, provided by the Neogi et al. [21] 
and Liu et al. [12]. It can be observed in this same figure that there 
exists a slight difference at the beginning of the equilibrium paths 
— the simulated model CS-ASA appears slightly stiffer. Such di-
vergence may be caused by the following sources: the geometric 
nonlinear formulation, the global and local refinements, plus some 
variables such as strain limits of the constitutive relationships of 
materials. After the load limit point is reached, the equilibrium paths 
are nearly the same.
Table 2 presents the critical loads attained in each of the simula-
tions. The table also compares the values of the loads obtained 

here with those found in the literature. Compared to the experi-
mental results, the low average difference, PTest (0.4%), points to 
the reliability of numerical analyses presented for circular compos-
ite columns under axial force and bending moment. It is noteworthy 
that little difference is found when compared with the numerical 
results obtained by Liu et al. [12], PLiu. Note that in Table 2, the 
value of the load limit obtained with the CS-ASA is denoted as PCS. 
Another point to be highlighted in the formulation proposed in this 
paper, also shown in Table 2, is the low program runtime for the 
calculation of each of the prototypes. The time shown in the table 
reflects the time from the moment when the analysis began to the 
moment when the load limit point had been reached.

6.3	 Rectangular concrete-filled tube made  
	 of high-strength materials

Liu et al. [23] conducted experimental tests on 21 rectangular 
concrete-filled tubes specimens. The materials used were high-
strength — steel with an fy equal to 550 MPa. The cylindrical  

Table 2
Critical loads (kN), obtained using SCM and comparisons with the literature results

Specimen PTest PLiu PCS Analysis time (s) PCS/PTest PCS/PLiu

M1 622 607,3 628,5 2,22 1,010 1,035

M2 702 695,1 698,7 2,65 0,995 1,005

M3 600 590,1 586,5 2,30 0,978 0,994

M4 625 621,3 628,3 2,31 1,005 1,011

M5 653 642,8 655,3 2,57 1,003 1,019

M6 739 732,9 733,9 2,79 0,993 1,001

M7 758 756,1 750,7 3,13 0,990 0,993

Average 0,996 1,008

Standard variation 0,0107 0,0149

Figure 11
Idealized model for tubular rectangular composite column analysis
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compressive strength of the concrete varied between 70.8 and 
82.1 MPa. Basically, the tests were carried out using short col-
umns so as to enable the cross-sections to have maximum load 
carrying capacity. Moreover, to prevent the occurrence of bend-
ing moments, the axial load on the structural element was ap-
plied concentrically. As illustrated in Fig. 11, the columns were 
simply supported and discretized in the same way at the global 
level, using four elements and five nodes, as at the local level, 
with 8 layers.
Table 3 presents the data of the cross-section and the results ob-
tained with the formulation presented (PCS). The table also com-
pares the experimental results (Ptest) with those obtained by Liu et 
al. [23]. The table shows a good approximation between the nu-
merical and experimental results. On average, the data extracted 
from the CS-ASA program varies from the data obtained in the 
laboratory by only 1.9%. Also noteworthy, shown by the standard 
variation, is how low the dispersion of results are compared to the 
calculated average. Such a pattern demonstrates the numerical 

formulation’s reliability. The table also shows the program execu-
tion times for each of the simulated specimens.
Regardless of considering the geometric nonlinearity, the critical 
load of the column is defined solely by the full yield curve. This 
occurs because the column is classified as short, i.e., it has low 
slenderness. Another conditioning factor is the position of the load 
application in the section’s centroid, which makes the column be 
under the action of axial loading without bending moments. In 
other words, the limit load on the columns is equal to the point on 
the interaction curve where there is maximum compressive normal 
force and the bending moment is null.
Note that in some cases where two specimens were made of 
the same materials, the specimen with a smaller cross-section 
showed, in experimental terms, a load limit higher than that of 
the other element tested. This can be seen when comparing the 
C2-1 and C2-2 specimens. Theoretically, these values ​​should be 
inverted, since the reduction of the cross-section directly implies a 
reduction in the bearing capacity of the structural element. In the 

Table 3
Cross-section data and critical loads

Specimen B
(mm)

h
(mm)

t
(mm)

L
(mm)

PTest
(kN)

PCS
(kN)

Analysis 
time (s)

PCS 
PTest

C1-1 100,3 98,2 4,18 300 1490 1459 1,25 0,979

C1-2 101,5 100,6 4,18 300 1535 1500 1,31 0,977

C2-1 101,2 101,1 4,18 300 1740 1599 1,53 0,919

C2-2 100,7 100,4 4,18 300 1775 1585 1,36 0,893

C3 182,8 181,2 4,18 540 3590 3469 2,43 0,966

C4 181,8 180,4 4,18 540 4210 4078 2,94 0,969

C5-1 120,7 80,1 4,18 360 1450 1455 1,37 1,003

C5-2 119,3 80,6 4,18 360 1425 1449 1,39 1,017

C6-1 119,6 80,6 4,18 360 1560 1542 1,43 0,988

C6-2 120,5 80,6 4,18 360 1700 1552 1,33 0,913

C7-1 179,7 121,5 4,18 540 2530 2526 2,07 0,998

C8-1 180,4 119,8 4,18 540 2970 2917 2,30 0,982

C8-2 179,2 121,3 4,18 540 2590 2928 2,33 1,131

C9-1 160,2 81,4 4,18 480 1710 1747 1,60 1,022

C9-2 160,7 80,5 4,18 480 1820 1739 1,59 0,955

C10-1 160,1 81,0 4,18 480 1880 1865 1,62 0,992

C10-2 160,6 80,1 4,18 480 2100 1856 1,65 0,884

C11-1 199,8 101,2 4,18 600 2350 2426 1,97 1,032

C11-2 200,2 98,9 4,18 600 2380 2411 1,97 1,013

C12-1 199,2 102,1 4,18 600 2900 2816 2,23 0,971

C12-2 199,8 99,6 4,18 600 2800 2773 2,03 0,990

Average 0,981

Standard variation 0,053



63IBRACON Structures and Materials Journal • 2017 • vol. 10 • nº 1

 	 Í. J. M. LEMES  |  A. R. D. SILVA  |  R. A. M. SILVEIRA  |  P. A. S. ROCHA

C6-1 and C6-2 columns, it can be seen that, in testing the slightly 
larger section (C6-2), it had a 9% higher load capacity. Finally, we 
highlight the results of the C8-1 and C8-2 columns. These columns 
of very similar sections and of the same materials demonstrated 
a 15% difference in bearing capacities. In such cited cases, one 
sees the greatest discrepancy confronted the experimental results 
of these columns with analyses via CS-ASA.

6.4	 Simple frames

The simple frame shown in Fig. 12 was initially presented by Liew 

et al. [17] in a study of steel structural systems with composite 
beams. Comparing it with a steel system, the authors studied how 
including a concrete slab impacted the gain in stiffness and load 
carrying capacity provided. Iu et al. [24] had already proposed fully 
coating the columns with concrete. Later, Chiorean [11] validated 
his formulation when he compared his load-displacement curves 
with those found in the literature.
The structure in question is a simple frame with a height and width 
of 5 m, the columns having a W12 x 50 section and the beam a 
W12 x 27 section. As for the concrete slab, its height is 102 mm 
and its width 1219 mm. The columns are encased in the second 

Figure 12
Simple frame
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Figure 13
Simple frame: equilibrium paths
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analysis, making for a square composite section with a base equal 
to 400 mm (Fig. 12b). Vertical incremental loads were applied to 
the tops of the columns, and a horizontal load to the top of the left 
column. The frame was considered to have no initial geometric 
imperfections. Each frame member was divided into four finite ele-
ments, and the cross-sections discretized into 10 layers.
Two analyses described in the literature are made here: a struc-
ture with steel columns and a composite beam (Structure 1) and a 
fully composite structural system (Structure 2). The displacement 
at the top of the right column is evaluated together with the incre-
mental load to construct the equilibrium paths. Since in these two 
analyses composite beams were used without reinforcement in the 
negative moment region, it is proposed in this work to evaluate the 
gain of bearing capacity provided by including reinforcing bars in 
the slab. Structure 3 is then referred to as the frame with steel col-
umns and an reinforced composite beam in the negative moment 
region while Structure 4 is referred to as the composite frame with 
an reinforced composite beam in the negative moment region.
For the steel, a yield strength fy equal to 248.2 MPa is considered 
along with a Young’s modulus taken as 200000 MPa. The con-
crete compressive strength characteristic, fc, adopted is 16 MPa 
and the secant modulus is calculated relating fc with strain eci taken 

as -0.002. The actual strain was not allowed to exceed -0.0035, 
defined as ecu.
Figure 13 shows the load-displacement curves for the four cas-
es described above. The runtimes measured from the start of 
the analysis until the time when the load limit was reached for 
the structures 1, 2, 3, and 4 were the following: 0.64s, 0.66s, 
0.65s, and 0.73s. In the equilibrium paths obtained through the 
analysis via the CS-ASA, one can see in both analyses, a al-
most instant loss of stiffness of the structural system near the 
incremental load P equal to 60 kN. This fact is related to the 
first plastic hinge of the frame (Fig. 14) occurring in the beam 
near the junction with the right column. This portion concerns 
the effect of the negative moment. That is, the contribution of 
the concrete slab is practically null, since it has no longitudi-
nal reinforcements. In this same figure it can be seen that only 
the beam has points in plastic and elastoplastic stages. Thus, 
it is concluded that encased I section in the columns does not 
significantly alter the bearing capacity of the structural system 
as a whole. The major contribution of filling the columns with 
concrete is amplifying these elements stiffness. The speed 
with which the plastification occurs is due to the constitutive 
relation adopted for the steel. With elastic-perfectly-plastic  

Figure 14
Plastic hinge formation sequence
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behavior, the initial and full yield curves are very close, result-
ing in the reduction of the portion of the stiffness degradation 
(elastoplastic stage).
When one considers the reinforcing bars with diameter equal to 
8 mm (fyr = 400 MPa and Eb = 200 GPa) in the negative bending 
moment, it may be clearly noticed that there is a disappearance of 
the near instantaneous loss of stiffness under load P equal to 60 
kN. The reinforcing bars inserted in the slab amplify the resistant 
bending moment, increasing the elastoplastic stage of the cross-
section. Thus, the stiffness degradation is subtler if seen in the 
equilibrium path in Fig. 14. As a result, we see a gain of approxi-
mately 7% in the structure’s load capacity (load limit P) as a whole.
The percentage of plastification is shown in the unfilled circles. 
Figure 15 illustrates how, in relation to the bending moment, the 
stiffness degradations of the pseudo-springs occur in Node 9 of 
the structure. 
The plastification starts when the ratio of moment x S ceases to be 
parallel with the horizontal axis, that is, when the section reaches 
the initial yield moment. When the stiffness S is zero, the full yield 
moment is attained. That is, the combination of internal forces lies 
on the full yield curve.

7.	 Conclusions

In this paper was presented a numerical formulation based on Re-
fined Plastic Hinge Method Refined (RPHM) for advanced analysis 
of steel-concrete composite structures. In this context, was cou-
pled to the CS-ASA program a general methodology to obtain the 
bearing capacity, the Strain Compatibility Method (SCM). The axial 
and flexural stiffness were determined through homogenization of 
the cross-section.
In SCM, the Newton-Raphson Method is used to determine the 
moment-curvature relationship. Its generality allows that, through 
the presented constitutive relations, steel or reinforced concrete 
sections subjected to a combination of axial force and bending mo-
ment, be also modeled. It was found in Section 6.1 that the use of 
the singularity of the stiffness matrix as stopping criterion of the 

construction of the moment-curvature relationship, adopted in this 
study, is consistent with strain domains used by Caldas [10]. In 
Figures 7 and 8 was seen that the consideration of the concrete 
tensile strength contribution added approximately 2% in the bear-
ing capacity of composite sections under positive normal forces. In 
composite sections, there is a preponderant share of the steel sec-
tion tensioned regions, since their behavior is treated as isotropic.
Evaluation of composite elements considering the concentrated 
plasticity via RPHM also showed results consistent with the litera-
ture. In Sections 6.2 and 6.3 were evaluated standard compos-
ite elements under simple bending and compression, and in both 
cases the results were compared with data obtained in laboratory. 
In Tables 2 and 3 were highlighted, on average, good proximity 
between the numerical and experimental results. Furthermore, the 
low dispersion of the results from the average indicate the reliabil-
ity of the analysis.
Figures 13a and 13b illustrate two simple frames behavior with the 
same geometry but different cross-sections for the columns. At first 
only steel vertical elements (columns) were considered, then the 
columns were completely encased with concrete. It is noticed that 
there was no great increase in limit load, which is defined by the 
composite beam. An important fact to be noted is that in the litera-
ture analyzes, the composite beam is not reinforced in the negative 
bending moment region. Thus, only the steel section works as a 
structural element. This fact associated with elastoplastic behavior 
used in this work, induce a loss of sharp system stiffness (plastifi-
cation at the right end of the beam) when the load parameter is ap-
proximately 60 kN. It was then proposed in this paper the reinforc-
ing bars insertion in the composite beam in the negative bending 
moment region. Thus, the reinforcing bars introduces an increase 
of bearing capacity in the critical section of the structural system, 
as illustrated in Fig. 14. This fact resulted in a 7% increase in the 
load limit of the structure and 17% in full yield bending moment of 
the beam in negative region, as illustrated in Fig. 15.
In addition, it should be noted the low execution time of the simula-
tions carried out in Section 6 of this work. It was observed during 
the analysis that the formulation in question, in terms of runtime, 
showed a certain sensitivity for the initial load increment parameter. 
Very small values increase the runtime but improve the accuracy of 
the final response. This observation can also be made with regard 
to local and global mesh. Nevertheless, the examples presented 
here, it was found that a low refining rate of such meshes showed 
satisfactory results with respect to data in the literature. It is note-
worthy that in Example 6.2 a discretization slightly more refined 
was used than in the other problems mentioned in Section 6. This 
can be explained by the level of refining required for the modeling 
of circular sections, since the layers generated in the discretization 
of the cross-section are rectangular, as illustrated in Fig. 5.
What has not been addressed in this work are the reinforced con-
crete elements the overall structural context. In fact, the methodol-
ogy presented in terms of an analysis of the structure as a whole, 
does not allow a good evaluation of this type of structure. When 
considering that a section has flexural stiffness variation only when 
the internal forces reach the initial yield curve, it is assumed that 
every type of element initially presents a linear elastic behavior. As 
future stages of this research, we intend to eliminate this limitation 

Figure 15
Degradation of the pseudo-spring flexural stiffness 
in node 9
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with the generalization of obtaining the axial and flexural stiffness, 
which will be taken directly from moment-curvature relationships 
in the two nodal points of the finite element. Thus, the use of the 
tangent modulus to provide greater accuracy analyzes. The behav-
ior of composite elements with partial interaction and composite 
frames with semi-rigid connections will also be studied. In addition, 
it intends to extend the formulations and simulations to dynamic 
analysis of composite structures.
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