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Abstract: Current practices in structural engineering demand ever-increasing knowledge and expertise 
concerning stability of structures from professionals in this field. This paper implements standardized 
procedures for geometrically nonlinear analysis of steel and reinforced concrete structures, with the objective 
of comparing methodologies with one another and with a geometrically exact finite element analysis 
performed with Ansys 14.0. The following methods are presented in this research: Load Amplification 
Method, from NBR 8800:2008; the zγ  coefficient method, from NBR 6118:2014; the P-Delta iterative 

method and the crα  coefficient method, prescribed in EN 1993-1-1:2005. A bibliographic review focused on 
standardized approximate methods and models for consideration of material and geometric nonlinearities is 
presented. Numerical examples are included, from which information is gathered to ensure a valid comparison 
between methodologies. In summary, the presented methods show a good correlation of results when applied 
within their respective recommended applicability limits, of which, Eurocode 3 seems to present the major 
applicability range. The treated approximate methods show to be more suitable for regular framed structures 
subjected to regular load distributions. 

Keywords: global stability analysis, approximate nonlinear analysis, P-Delta iterative method, crα  
coefficient, ANSYS. 

Resumo: As práticas atuais em engenharia estrutural exigem cada vez mais conhecimento e expertise, em 
relação à estabilidade de estruturas, por parte dos profissionais da área. Este artigo implementa procedimentos 
normativos de análise de segunda ordem aproximada de estruturas de aço e concreto armado, com o objetivo 
de comparar as metodologias aproximadas entre si e com uma análise de elementos finitos geometricamente 
exata realizada no Ansys 14.0. Os seguintes métodos são tratados nesse trabalho: Método da Amplificação 
dos Esforços Solicitantes, da NBR 8800:2008; o método do Coeficiente zγ , da NBR 6118:2014; o método 

P-Delta iterativo e o método do Coeficiente crα , da EN 1993-1-1:2005. É apresentada uma revisão 
bibliográfica a respeito dos métodos normativos e como são tratadas as não linearidades de materiais e 
geométricas. Exemplos numéricos estão incluídos, de onde são extraídas as informações para a comparação 
entre as metodologias. Em resumo, os métodos apresentados mostram boa correlação de resultados quando 
aplicados dentro dos respectivos limites de aplicabilidade recomendados, dos quais, o Eurocódigo 3 aparenta 
ter a maior faixa de aplicabilidade. Os métodos aproximados tratados mostram ser mais adequados para 
estruturas aporticadas regulares e sujeitas à carregamentos regulares. 
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1 INTRODUCTION 

1.1 Initial considerations 
In recent decades, structural engineering and civil construction underwent significant technological advancements, 

which resulted in the reduction of weight and overall improvement of structural systems, in turn allowing the 
construction of buildings with heights previously deemed impossible. As such, the development of methods and 
analysis software to ensure the safety of these buildings became a necessity. 

Engineering design standards include procedures for first and second order structural analyses. A first order analysis 
is characterized by determining the equilibrium equations of structures in their undeformed condition. In this type of 
analysis, structures are assumed to undergo small displacements that bear no effect on the developed internal forces. 
Alternatively, in a second order geometric analysis (or nonlinear), the equilibrium equations refer to the structure in the 
deformed configuration, resulting in a system of nonlinear equations. This approach is required when the applied loads 
interact with the resulting displacements inducing significant additional internal forces [1]. It is worth noting that 
nonlinear analyses may be performed considering either small or large strains theories – the former case is considered 
in this paper. To evaluate second order effects, it is necessary to consider the different types of nonlinearity, namely, 
geometric and material nonlinearities. The nonlinear behavior of a structure significantly affects displacements and 
internal forces. 

Publications by Horne [2], Wood et al. [3] and LeMessurier [4], [5] were fundamental for the development of 
practical design methods for multi-story buildings, namely by introducing an approximate method for considering the 
P − ∆  effect. In Brazil, studies conducted by Franco [6], Franco and Vasconcelos [7] and Vasconcelos [8], focused on 
the assessment of second order effects in reinforced concrete buildings, culminated in the zγ  coefficient method, 
currently detailed in NBR 6118:2014 [9] for the structural design of reinforced concrete structures. 

This paper presents four approximate methods: the Load Amplification Method (MAES, in Portuguese), originally 
presented in ANSI/AISC 360-16 [10], and subsequently adopted by NBR 8800:2008 [11] for the structural design of 
steel buildings; the zγ  coefficient prescribed in NBR 6118:2014 [9] and used for the classification of the structure and 
also as a design factor for the horizontal loads; the equivalent lateral force method (iterative P-Delta), adopted by 
NBR 8800:1986 [12], which adds fictitious lateral loads to the horizontal loads; and the method prescribed in the 
European standard EN 1993-1-1:2005 [13] for the design of steel structures, that uses the crα  coefficient to classify a 
structure according to its sensitivity to second order effects. 

1.2 Material nonlinearity 
Material nonlinearity is defined as a nonlinear relationship between stress and strain on a given material. This issue 

can come from: partial yielding of steel sections, also accentuated by the presence of residual stresses; the influence of 
semirigid connections; creep and cracking on reinforced concrete elements, for example. 

The standards NBR 8800:2008 [11], NBR 6118:2014 [9] and ANSI/AISC 360-16 [10], allow the approximate 
treatment of material nonlinearities, characterized by a reduction of the axial and flexural stiffnesses of structural 
elements. 

1.3 Geometric nonlinearities 
An effect of geometric nonlinearity is the lack of proportionality between applied loads and resulting displacements  [14]. 

This type of nonlinear behavior results from the interaction between the load and the displacements. In frames, two different 
types of displacement are relevant: the inter-story drift, which causes the P − ∆  effect, and the curvature of the elements, which 
causes the P δ−  effect. However, the global imperfections (initial drift) and the local imperfections (initial curvature) are not 
nonlinear effects. 

https://doi.org/


L. B. Lecchi, W. G. Ferreira, P. M. M. P. Providência e Costa, and A. M. C. Sarmanho 

Rev. IBRACON Estrut. Mater., vol. 15, no. 1, e15101, 2022 3/17 

Design standards commonly include simplified methods for modelling geometric nonlinearities. The Brazilian 
standard NBR 8800:2008 [11], for instance, determines that, in structures subjected to load combinations composed 
exclusively of vertical forces, initial geometric imperfections are considered by introducing notional forces equivalent 
to 0.3% of the value of dead loads. Alternatively, ANSI/AISC 360-16 [10] also allow the use of notional forces, but 
with a magnitude of 0.42% for first order analyses and 0.2% for the direct analysis method, a method for assessment of 
overall system structural stability (it also includes initial material imperfections, by adjustments in stiffness). 

The method prescribed in NBR 6118:2014 [9] accounts for the misalignment of structural elements, and, for cases 
with a load amplification factor 1.1zγ > , such a factor is taken as 0.95 zγ . For the design of frames, Eurocode 3 [13] 
allows the amplification of horizontal loads if 3crα ≥ , along with the inclusion of theoretical lateral loads even in cases 
with horizontal load combinations. However, the inclusion of notional forces when horizontal external loads are present 
is only applicable if these forces are inferior to 15% of the loads attributed to the weight of structural elements. 

1.4 Approximate methods for second order analysis 

The inelastic second order analysis can properly describe the actual behavior of a structure, since it includes the plastic 
behavior of materials [15]. However, the relatively complex formulation of this refined approach is a complicating factor. 
As such, simplified procedures may be used to perform second order analyses. Computational alternatives for P − ∆  
analyses were being developed since the 1980s, such as the procedure introduced by Rutenberg [16]. Wilson and 
Habibullah [17] also presented an approximate computational method for determining second order effects in frames 
subjected to horizontal loads. 

LeMessurier [5] presented an interesting formulation for approximate nonlinear analysis that relies on the 
amplification of first order effects, which eventually served as a base for the development of other methods such as 
MAES ( 1 2B B− ). 

As stated by Ziemian [15], approximate methods must be used with caution since they may be inadequate for 
amplifying bending moments in regions connecting beams and columns. It is worth noting that these methodologies 
are only recommended for framed structures with uniform loads [18]. 

Dória et al. [19] assert that the ratio of first to second order displacements 2 1( / )∆ ∆  may not be the best approach for 
quantifying second order effects in structures. Additionally, the 2B  coefficient, used to approximate 2 1/∆ ∆ , might lead 
to incorrect results when analyzing second order effects. As an alternative, the above authors recommend the use of the 

crα  coefficient adopted by Eurocode 3 [13], as a more adequate indicator of the importance of second order effects in 
structures. 

2 APPROXIMATE METHODS FOR GEOMETRICALLY NONLINEAR ANALYSIS 

2.1 Method prescribed in NBR 8800:2008 

2.1.1 Introduction 

The Load Amplification Method implements the amplification factors 1B  and 2B . This approach was first 
introduced by SSRC (Structural Stability Research Council) and subsequently adopted by AISC in 1986 [20]. 

1B  amplifies the loads to account for the P δ−  effect (local), while 2B  treats the P − ∆  effect (global). These 
coefficients may be used for the analysis of reticulated structures consisting of structural elements with uniform 
geometry and stiffness, provided 2 1.4B ≤  [21]. The 2B  coefficient must be determined for each pavement, and it is not 
adequate for analyzing structures with split story levels [15]. 

The 1 2B B−  method consists in decomposing the structural model in two parts, as shown in Figure 1. The first 
submodel, traditionally referred to as nt, meaning “no translation” – maintains the original load configuration, but is 
now subjected to fictitious horizontal restraints in each pavement to prevent horizontal translation. The second 
submodel – named lt, for “lateral translation” – is exclusively subjected to the aforementioned horizontal restraints 
reactions, but with opposite direction. After the subdivision, both models are subjected to an elastic first-order analysis. 
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Figure 1 – Original structure divided into two models. Source: Badke-Neto and Ferreira [22]. 

2.1.2 Adjustments to stiffness 

According to NBR 8800:2008 [11] the flexural and axial stiffnesses of structures with high sensitivity to second 
order effects must be reduced to 0.8EI  and 0.8EA , respectively. ANSI/AISC-360-16 [10] includes an additional 
reduction factor bτ , and stipulates that the reduced stiffnesses must be used to determine strength and stability limits 
only. In other words, the reduced properties are not used to obtain displacements, deflections or periods of vibration. 

2.1.3 Initial Geometric imperfections 

NBR 8800:2008 [11] determines that the initial global geometric imperfections may be accounted for by either 
considering an inter-story drift equal to / 333h , where h  is the story height, or by imposing notional forces equivalent 
to 0.3% of the gravitational loads acting on a given story subjected to combinations without lateral loads, in other words, 
it provides a minimum destabilizing effect [23]. 

2.1.4 Classification of the structure 

The Brazilian standard [11] classifies a structure according to its susceptibility to displacements. If the ratio between 
the second-order displacement 2∆  and first-order displacement 1∆  is less than or equal to 1.1, the structure is defined 
as having small susceptibility. Alternatively, if the condition 2 11.1 / 1.4< ∆ ∆ ≤  is satisfied, the structure is of medium 
susceptibility. If neither of these conditions are met, a high susceptibility to displacements is attributed to the structure. 
The 2B  coefficient is considered an acceptable approximation of the ratio 2 1/∆ ∆ , if 2 1/ 1.4∆ ∆ ≤  [11], or 2 1/ 1.5∆ ∆ ≤ , in 
ANSI/AISC-360-16 [10] case. It is worth noting that ANSI/AISC-360-16 [10] does not include this classification 
(small, medium, or high susceptibility). 

2.1.5 Methodology from annex D of NBR 8800:2008 

Given an adequately defined load combination, the axial load sdN  and the bending moment sdM  acting on each 
floor are given by Equations 1 and 2, respectively. 

1 2sd nt ltM B M B M= +  (1) 

2sd nt ltN N B N= +  (2) 

where ntM  and ntN  are the design bending moment and axial force, respectively, obtained via elastic first-order analysis 
of submodel nt. Similarly, ltM  and ltN  are the design bending moment and axial force obtained from an elastic first-
order analysis of submodel lt. The shear force is determined with an elastic first-order analysis of the original model 
(which is equivalent to the sum of submodels nt and lt). 
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2.1.6 The 1B  coefficient 

For an unbraced member in the plane of bending under consideration, NBR 8800:2008 [11] defines 1B  as: 

1
1

1.0
1

m

Sd

e

C
B

N
N

= ≥

−
 (3) 

mC  is an equivalent moment factor given by ( )1 20.60 0.40 /mC M M= − , where 1M  and 2M , calculated from a first-order 
analysis, are the smaller and larger moments, respectively, at the ends of that member. 1 2/M M  is positive when the 
member is bent in reverse curvature and negative when bent in single curvature. 1SdN  is the design axial force on the 
member, obtained from a first-order analysis, 1Sd nt ltN N N= + . eN  is the critical elastic buckling load of the member in 
the direction of bending, given by Euler’s critical load 2 2/eN EI Lπ= , where E  is the modulus of elasticity, I  is the 
moment of inertia of the cross-section and L  is the length of the member. 

2.1.7 The 2B  coefficient 

A detailed deduction of 2B  is given e.g. in Souza et al. [24]. NBR 8800:2008 [11] defines 2B  as: 

2
h

1
Δ11 Sd

S Sd

B N
R h H

=
∑

−
∑  (4) 

where SdN∑  is the total dead load acting on the analyzed story. SdH∑  is the total shear force on this story, obtained 
from the original structure or from submodel lt (Figure 1). hΔ  is the relative displacement between the top and bottom 
pavements of the story, obtained from the original structure or submodel lt. h  is the ceiling height of the story. SR  is 
an adjustment coefficient, associated to the type of present bracing and it values 0,85 , for frame bracing systems and 
1,0 , for all others. 

2.2 Method prescribed in NBR 6118:2014: The Zγ  coefficient 

2.2.1 Introduction 

NBR 6118:2014 [9] classifies framed structures as either fixed nodes or movable nodes. When ratio of second-order 
to first-order internal forces is larger than 10%, i.e. 1.1zγ > , the structure is sensitive to second order effects. Otherwise, 
fixed nodes are considered. The zγ  coefficient serves two purposes: Classification of the structure and second order 
amplification of horizontal loads, determining the total horizontal load acting on the system. 

2.2.2 Material nonlinearity according to NBR 6118:2014 

Material nonlinearities, commonly present in reinforced concrete structures and having a significant influence on 
second order effects, must always be accounted for [25], by means of reducing the stiffness of each structural element. 

2.2.3 Initial geometric imperfections according to NBR 6118:2014 

Initial global geometric imperfections are included in the form of an initial out of plumbness of the columns, or the 
corresponding angle aθ , as shown in Figure 2 (Eurocode 3 [13] provides similar expressions): 
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Figure 2 – Initial out of plumbness. Source: Adapted from NBR 6118-2014 [9]. 

where: 

1
1

100 H
θ =

 (5) 

1
1 1/

2a
nθ θ +

=
 (6) 

in which: 

1, 1 / 300minθ = ; 1, 1 / 200maxθ = ; 

H  is the total height; n  is the total number of columns lines of the frame. 
The drift in angular form ( aθ ) can be converted into an equivalent force i a viH Fθ= , in which viF  is the load acting 

on a given floor [26]. 
According to NBR 6118-2014 [9], if 30% of the tipping moment caused by the incidence of wind is larger than the 

tipping moment caused by horizontal out of plumbness, the latter is neglected. Alternatively, if the moment caused by 
wind is less than 30% of the horizontal out of plumbness moment, the former is neglected. In any other scenario, the 
two types of tipping moment are considered in the load combination, not necessarily respecting the condition imposed 
by 1,minθ . 

Initial local geometric imperfections in reinforced concrete structures are included during structural design 
procedures for each column, using either the method of approximate curvature or the method of approximate stiffness. 

2.2.4 The Zγ  coefficient 

In 1991, Franco and Vasconcelos presented the zγ  coefficient for the first time, in the paper “Practical Assessment 
of Second Order Effects in Tall Buildings” [7]. The complete deduction of zγ  is detailed in Souza et al. [24], and it is 
ultimately determined by: 

,

1, ,

1
Δ

1
z

tot d

tot d

M
M

γ =
−

 (7) 

where 1, ,tot dM  is the tipping moment and ,Δ tot dM  is the sum of the products between vertical forces acting on the 
structure and the respective horizontal displacements. 
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In essence, the only difference between zγ  and 2B  is the factor 1 / sR , present in the formula for 2B , and attributed 
to the type of bracing on the structure. According to section 15.7.2 of NBR 6118:2014 [9], if   1  .1zγ > , the horizontal 
loads must be multiplied by the factor 0.95 zγ . This procedure is valid only for   1  .3zγ ≤ . 

The fact that zγ  is defined only once for the entire structure is an interesting practical advantage, especially if 
compared to other methods such as MAES. However, as stated by Avakian [27], the zγ  coefficient does not yield 
acceptable results when implemented in frames with non-rigid connections. Additionally, Silva [14] concluded that the 

zγ  method gives poor results for frames with lateral bracing. 

2.3 The lateral equivalent force method or iterative P-Delta method 
NBR 8800:1986 [12] prescribes in, Annex L, an approximate method for performing elastic second-order analyses, 

designated as iterative P-Delta method. This method, also adopted by AISC and by the Canadian standard CSA-S16.1 [28], 
consists of adding the actual horizontal loads of the structure to fictitious lateral loads obtained iteratively (see Figure 3). At 
the end of this process, the total load on the structure is obtained, since the fictitious lateral loads induce a behavior similar to 
second-order effects. 

 
Figure 3 – Displacements and fictitious loads in multi-story buildings. Source: Adapted from NBR 8800:1986 [12]. 

Every analysis in this method is first-order. Initially, horizontal displacements are calculated for each floor. This 
step is followed by determining the fictitious shear force in each story i using Equation 8: 

( )1' Δ Δi
i i i

i

P
V

h +
∑

= −
 (8) 

where 'iV  is the fictitious shear force in floor i; iP∑  represents the summation of axial forces acting on the columns of 
floor i; ih  is the height of the floor under analysis and 1Δ , Δi i+  indicate the horizontal displacement of floors i+1 and i, 
respectively. Since displacements differ in each floor, the shear forces ’iV  are not in equilibrium. This unbalanced 
equation induces the fictitious lateral force ’iH , as shown in Figure 3, calculated with Equation 9. 

1' ' 'i i iH V V−= −  (9) 
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On the next iteration, initial loads must be once again applied to the structure, including the obtained forces 'iH , 
resulting in new displacements. Consequently, a new lateral force 'iH  must be added to the initial loading in the 
following iteration. This procedure is repeated until the difference between displacements in two consecutive iterations 
is smaller than a convergence criterion established beforehand. 

Bernuzzi and Cordova [29] affirm that, if convergence is slow, demanding six or seven iterations, it indicates that 
the loading configuration is considerably close to the elastic limit or that the structure is excessively flexible. Moreover, 
the process may be interrupted when the convergence factor is equal to 5%. The NBR 8800:1986 [12] does not mention 
reductions of axial and flexural stiffnesses to account for material nonlinearity. 

2.4 Methodology from the European standard for steel structures EN 1993-1-1: 2005 

2.4.1 Initial considerations 
The standard EN 1993-1-1:2005 [13], Eurocode 3 in this paper, indicates that first-order analyses may be used if 

the effect of the displacements is not relevant, i.e. provided Equations 10 and 11 are met. 

F
10,    

F
cr

cr
ed

for elastic analysisα = ≥  (10) 

F
15,    

F
cr

cr
ed

for plastic analysisα = ≥  (11) 

where crα  is a factor by which design loads would have to be increased to result in elastic instability; Fed  is the vertical 
design load acting on the structure and Fcr  is the critical elastic buckling load. If 10crα ≥ , the structure is considered to 
have low sensitivity to second order effects, which is equivalent to the fixed node classification of NBR 6118:2014 [9]. 

It is important to note that this method is only applicable if the framed structure under analysis is subjected to equally 
spaced gravitational and destabilizing loads and is composed of uniform structural elements. Since the method is based 
on a linear elastic analysis, second-order effects are induced by amplifying horizontal loads. This procedure is executed 
by applying a β  coefficient (Equation 12), which is a function of crα . 

1
11
cr

β

α

=
−

 (12) 

An alternative for determining crα  via elastic buckling analysis is given in Equation 13, which is based on a method 
for standard framed systems proposed by Horne [2]. It is worth noting that this proportionality relation is valid for small 
displacement theory. For multi-story structures, the factor must be calculated for each story, but only the smallest value 
is ultimately used. This method is applicable if 3crα ≥ . 

, 

H
V δ

ed
cr

ed H ed

h
α = ⋅

 (13) 

In which Hed : is the total horizontal force; Ved : is the total vertical load applied on the horizontal surface of a given 
story under analysis; h : is the height of the building and , δH ed : is the displacement of the level above, calculated for a 
structure subjected only to the horizontal loads Hed . 

It is possible to note similarity between β , zγ  and 2B . β , as well as zγ , does not depend on the factor 1 / sR . In 
essence, the difference among the procedures for determining each of these coefficients lays in how each method 
accounts for initial material and geometric imperfections. 
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2.4.2 Initial geometric imperfections 

2.4.2.1 Initial global geometric imperfections 

Initial global geometric imperfections are included in the analysis by applying a global initial sway imperfection 
angle φ  to the structure, which may be neglected if H 0.15Ved ed≥  (clause 5.3.2(4) of Eurocode 3 [13]). In Eurocode 3, 
the angle φ is given by: 0φ φ α αh m= , where 0φ  is the basic value ( 0φ 1/ 200= ); αh  is a reduction coefficient related to the 
height h of the structure in meters ( α 2 /h h= , with 2 / 3 α 1h≤ ≤ ) and αm  is a reduction coefficient related to the number 
of columns, ( )α 0.5 1 1/m m= +  and m  is the number of columns on a given row. It is easy to notice that these expressions 

are identical to those prescribed by in NBR 6118-2014 [9]. 

Alternatively, the horizontal drift may be replaced by the equivalent lateral force shown in Figure 4 [30], given by: 

φVedF ′ =  (14) 

 

Figure 4 – Consideration of initial global imperfection by (a) initial sway; (b) equivalent lateral force (notional force).  
Source: Adapted from [30]. 

2.4.2.2 Initial local geometric imperfections 

Clause 5.3.2(6) of Eurocode 3 stipulates that the global analysis of structures sensitive to second-order effects must 
include initial local imperfections in members subjected to compression in which a) at least one end is not free to rotate 
and b) ( )N F / 4ed cr> . Initial local imperfections may also be replaced by equivalent forces. 

2.4.3 Adjustments to stiffness associated to material nonlinearity 

Eurocode 3 does not require a reduction of the modulus of elasticity E , as other standards do. 

3 NUMERICAL EXAMPLES 

3.1 Example 1: Single span single story frame 

Figure 5a shows a single span single story plane frame (adapted from [30]), along with its dimensions and the 
numbering of nodes and bars (underlined). The structure is subjected to the loads shown in Figure 5b. The load 
magnitudes displayed already represent the least favorable load combination. All columns are composed of the profile 
HEA280, while beams feature section IPE500. The modulus of elasticity of steel is taken as 200 E GPa= . 
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Figure 5 - Single-span single-story frame: (a) dimensions and numbering (b) design loads. Source: Authors (2020). 

A first-order elastic analysis was performed to determine the displacements and internal forces, on Ftool 4.0 
program. The structure was also modeled in a finite-element based analysis software (Ansys 14.0), in order to perform 
an exact geometrically nonlinear analysis. Each bar was modelled with a mesh of 10 elements BEAM188 (a two-node 
linear finite strain beam based on Timoshenko beam theory). Initial geometric imperfections (notional forces) were not 
included on this model with the least favorable load combination, according to the rules and recommendations of each 
standard. Material nonlinearity was considered by adjusting the members stiffness by means of a reduction of the 
modulus of elasticity ( 0.8 )E , for the case of MAES, the zγ  coefficient and on Ansys. The Newton-Raphson method 
was used to perform the nonlinear analysis. 

Summary of results 

Table 1 summarizes the results obtained with each method: 

Table 1 – Summary of results. Source: Authors (2020). 

 Elastic 
analysis 

1 2−B B  
Method Zγ  coefficient P-Delta 

method 
Eurocode 
method Ansys 

Amplification coefficients - 1 1.00B =  
1.20Zγ =  2

1
1.13∆

=
∆

 1.13β =  2 1/ 1.21∆ ∆ =  
2 1.20B =  

4∆ . node 4 [cm] 15.22  18.96  22.11  17.18  20.40  24.3  
Bending moment 
Column  2  [kNm] 96.8  63.9   75.7   75.4  75.6  64.2  

Axial force 148.5−  144.8−  145.9−  146.1−  146.0−  146.3−  
Column 2 [kN] 

Shear force 36.1  36.1  38.0  33.3  36.3  31.4  
Column 2 [kN] 

3.2 Example 2: Eleven story two span frame 

Figure 6 shows a steel frame with eleven stories and two spans (adapted from [14]), along with its dimensions and 
numbering of nodes and bars (underlined). The columns feature welded profiles and the beams rolled profiles, as shown 
in Table 2. The modulus of elasticity of steel is taken as 200 E GPa= . 
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Figure 6 – Frame with eleven stories and two spans: Dimensions and numbering. Source: Authors (2020) 

Table 2 – Profiles used for columns and beams (dimensions in mm). Source: Authors (2020) 

Bar number Profile 
1 - 4; 23 - 26 PS 500 x 300 x 16 x 8 

12 - 15 PS 500 x 300 x 19 x 9,5 
5 - 7; 16 - 18; 27 - 29 PS 500 x 300 x 12,5 x 8 
8 - 11; 19 - 22; 30 - 33 PS 500 x 300 x 9,5 x 6,5 

34 - 55 W 530 x 66 

Figure 7a and 7b illustrates the design horizontal and vertical loads, respectively. The values displayed correspond 
to the least favorable load combination of the structure. The group of loads shown in Figure 7 is designated as RQ  (set 
of reference loads). 

An exact geometrically nonlinear analysis of the structure was performed using a finite element analysis program 
(Ansys 14.0). Each bar was modelled with a mesh of 20 elements BEAM188 (a two-node linear finite strain beam based 
on Timoshenko beam theory). Initial geometric imperfections (notional forces) were included on this model (with the 
least favorable load combination) only for the Eurocode 3 method, according to the rules and recommendations of each 
standard. 

Material nonlinearity was again considered by adjusting the members stiffness by means of their reduction ( 0.8 ;0.8EI EA ), 
for the case of MAES, the zγ  coefficient and on Ansys, when the related amplification factors were greater than 1.1 . Five 
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simulations were performed, progressively increasing the reference load RQ  by a factor . n . Tables 3, 4, 5 and 6 present the 
obtained results. 

 
Figure 7 – Design loads applied to the structure: a) horizontal loads and b) vertical loads. Source: Authors (2020) 

Table 3 – Final multiplier 2B . (bold font values exceed the applicability limit of the method). Source: Authors (2020). 

n  Coefficient 2B  
1º floor 2º floor 3º floor 4º floor 5º floor 6º floor 7º floor 8º floor 9º floor 10º floor 11º floor 

1 1.06 1.10 1.10 1.09 1.10 1.09 1.07 1.05 1.03 1.02 1.01 
2 1.16 1.30 1.30 1.26 1.30 1.25 1.20 1.15 1.10 1.05 1.03 
3 1.27 1.52 1.52 1.44 1.52 1.43 1.33 1.25 1.15 1.08 1.04 
4 1.40 1.83 1.84 1.70 1.84 1.67 1.49 1.36 1.21 1.10 1.06 
5 1.55 2.31 2.34 2.04 2.33 2.00 1.70 1.50 1.28 1.13 1.07 

Table 4 – Multiplier coefficients Zγ , crα  and β . (bold font values exceed the applicability limit of the methods) Source: Authors (2020). 

n  1B . Zγ  crα . β  
1 1.0 1.08 12.68 1.09 
2 1.0 1.18 6.19 1.19 
3 1.0 1.29 4.23 1.31 
4 1.0 1.43 3.17 1.46 
5 1.0 1.61 2.54 1.65 

Table 5 – Ratio of initial to final displacements ( )2 1/∆ ∆ . obtained with the P-Delta method. Source: Authors (2020). 

n  ( )2 1/∆ ∆  - P-Delta method. 

1º floor 2º floor 3º floor 4º floor 5º floor 6º floor 7º floor 8º floor 9º floor 10º floor 11º floor 
1 1.10 1.12 1.13 1.13 1.14 1.15 1.16 1.17 1.18 1.20 1.22 
2 1.20 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.17 1.17 1.17 
3 1.27 1.29 1.29 1.29 1.28 1.27 1.27 1.25 1.24 1.23 1.23 
4 1.41 1.43 1.42 1.42 1.41 1.40 1.38 1.36 1.35 1.34 1.33 
5 1.56 1.59 1.59 1.59 1.57 1.55 1.53 1.51 1.49 1.47 1.46 
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Table 6 - Ratio of initial to final displacements ( )2 1/∆ ∆  obtained with Ansys. Source: Authors (2020). 

n  ( )2 1/∆ ∆  - Ansys. 

1º floor 2º floor 3º floor 4º floor 5º floor 6º floor 7º floor 8º floor 9º floor 10º floor 11º floor 
1 1.07 1.08 1.08 1.08 1.08 1.08 1.08 1.07 1.07 1.07 1.07 
2 1.15 1.17 1.18 1.18 1.18 1.17 1.17 1.16 1.15 1.15 1.14 
3 1.27 1.28 1.29 1.29 1.29 1.28 1.27 1.26 1.25 1.24 1.23 
4 1.39 1.42 1.43 1.43 1.43 1.42 1.40 1.38 1.36 1.35 1.39 
5 1.54 1.58 1.60 1.60 1.60 1.59 1.56 1.53 1.51 1.49 1.48 

The horizontal top floor displacement (node 36) is shown in Figure 8. The geometrically exact analysis performed 
with Ansys gives the larger displacement values, followed by Zγ , Eurocode method, P-Delta and MAES. 

 
Figure 8 – Top floor displacement at node 36. Source: Authors (2020) 

For each method, internal forces were analyzed on column 27 (5th floor), where the highest values of load multipliers are 
observed, and column 33 (11th floor), which presents the smallest values. Figures 9 through 14 show the obtained results. 

 
Figure 9 – Load - bending moment relationship for column 27. Source: Authors (2020). 
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Figure 10 - Load - bending moment relationship for column 33. Source: Authors (2020). 

 
Figure 11 - Load - axial force relationship for column 27. Source: Authors (2020). 

 
Figure 12 - Load - axial force relationship for column 33. Source: Authors (2020). 
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Figure 13 - Load - shear force relationship for column 27. Source: Authors (2020). 

 
Figure 14 - Load - shear force relationship for column 33. Source: Authors (2020). 

4 RESULTS AND DISCUSSIONS 

4.1 Example 1: Single span single story frame 
Concerning the analysis of displacements, the exact analysis performed with Ansys presents the most conservative 

results, followed by Zγ  coefficient and the Eurocode method, known for overestimating horizontal loads. However, 
according to ANSI/AISC-360-16 [10], the amplified displacements should not be taken as an accurate depiction of 
reality, and here they only serve as a parameter for qualitative analysis. 

Results for bending moments obtained via the 1 2B B−  method are the closest to Ansys. Remaining methods yielded 
similar results between them and differ from the exact analysis by approximately 17.5%. 

All methods present similar results for axial forces, with a maximum observed difference of 1%. This is not the case 
for the values of shear force, which show significant difference between the exact analysis and the other methods, the 

Zγ  method presenting the largest value of maximum shear force acting on the structure. 

4.2 Example 2: Frame with eleven stories and two spans 
Figure 9 (Load - bending moment relationship), for column 27, indicates that the approximate methods show good 

correlation among them up to 2n = , with a mean percentage deviation of 3.0% , being the 1 2B B−  method and the zγ  
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coefficient the ones performing the major percentual difference (about 7.0% ) among them. For larger values of factor 
n , methods P-delta and zγ  coefficient show similar behavior (less than 2%  of percentage difference) and become less 
conservative than the other implemented methods. 

It is worth noting that for 3n = , the zγ  coefficient method practically reaches the applicability limit ( 1.3zγ ≤ ) 
recommended by NBR 6118-2014 [9], as well as, the 1 2B B−  method, that also reaches the applicability limit ( 2 1.4B ≤ ) 
recommended by NBR 8800:2008 [11], for columns 2 to 6. The Eurocode method only reaches its applicability limit 
( 3 10crα≤ < ) for 5n = , with 2.54crα = . 

Figure 10 (Load - bending moment relationship) shows overall similarity of results between methods up to 4n = . 
For 5n = , the zγ  method and the Eurocode method yield the largest results, this is so because the value of the 
coefficients used in these methods (determined only once for the entire structural system) is also larger than that used 
in the other approaches. 

Figure 11 (column 27) reveals that the axial force values determined by the methods diverge for 4n ≥ . On the other 
hand, Figure 12 (column 33) presents similar results for all methods. This result shows that second order effects have 
a lower influence on axial forces than on the bending moment behavior, for example. 

The shear force analysis of column 27 shows that MAES diverges from the other methods for 2n ≥ . This can be 
explained by the fact that MAES does not amplify the shear forces. For column 33, however, the degree of agreement 
of the results of all methods is acceptable. 

5 CONCLUSIONS 
The subject studied herein has been extensively researched since the 1970s and, considering its relevance, especially 

for the design of tall and slender structures, it is still challenging for structural engineers and researchers. As such, this 
paper presented, in a complete and yet simple manner, a comparison between numerous approximate methods with the 
objective of enriching discussions about this important field of study. 

In summary, the presented approximate methods for elastic second-order analysis of structures show a good degree of 
agreement of results when applied within their recommended applicability limits, in the case of the 1 2B B−  method ( 2 1.4B ≤ ), 
the zγ  coefficient ( 1.3zγ ≤ ) and the Eurocode 3 method - crα  factor ( 3 10crα≤ < ). This study also showed that methods that 
amplify horizontal loads or include fictitious lateral forces tend to accentuate shear force values, being closer to the to those 
obtained by the geometrically exact analysis. 

This closing paragraph is taken as an opportunity to reinforce the limitations of approximate methods. Chen and 
Toma [18] report that approximate methodologies are recommended only for regular framed structures subjected to 
regular load distributions. EN 1993-1-1:2005 [13] stresses that the approximate method is acceptable for regular framed 
structures subject to a regular loading. Dória et al. [19] state that methods based on the ratio 2 1/∆ ∆  are not adequate to 
assess second-order effects in structures. Instead of the 2B  factor, these authors suggest the crα  factor, from Eurocode 
3, as a more adequate indicator of the importance of second-order effects in structures. 
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