

Uso da argila expandida e sílica ativa no melhoramento dos desempenhos mecânicos, físicos e térmicos de concretos leves estruturais

Use of expanded clay and silica fume in improvement of mechanical, physical and thermal performances of structural lightweight concretes

Andressa Fernanda Angelin ¹, Rosa Cristina Cecche Lintz ¹, Luisa Andreia Gachet Barbosa ¹

¹ Faculdade de Tecnologia, Universidade Estadual de Campinas, Rua Paschoal Marmo, 1888 – CEP: 13484-332, Jardim Nova Itália, Limeira, SP

e-mail: andressaangelin@yahoo.com.br; rosacclintz@ft.unicamp.br; gachet@ft.unicamp.br

RESUMO

A busca por materiais sustentáveis na construção civil, que apresentem menor massa específica, melhores desempenhos térmicos e manutenção das resistências mecânicas, representa grande desafío na produção e avaliação de concretos leves estruturais (CLE), o qual desponta como um material alternativo ao concreto convencional. Neste estudo realizou-se uma investigação para a confecção de concretos com alta resistência, baixa densidade e excelente desempenho térmico, com a finalidade de executar construções energeticamente eficientes. CLE foram estudados utilizando duas granulometrias de argila expandida (C_{05} e C_{15}), onde houve a substituição do agregado graúdo pela C₁₅ em 0, 25, 50, 75 e 100%. Para promover a manutenção da consistência e resistência, utilizaram-se superplastificante (SPA) e sílica ativa (SA) nas misturas. Com base na metodologia utilizada, os concretos foram caracterizados física e mecanicamente, de acordo com as normas nacionais e internacionais vigentes. A densidade dos concretos, no estado endurecido, variou de 1.787 a 2.400 kg/m³ e, quanto a resistência à compressão, variou-se de 26 a 53 MPa, aos 7 dias de idade. O ensaio de condutividade térmica, por meio do método da placa quente protegida, foi realizado de acordo com a EN 12667, onde observou-se uma variação de 0,61 a 1,00 W/mK. Informações microestruturais da zona de transição interfacial (ZTI) entre agregado e matriz de cimento foram obtidas com a finalidade de analisar a relação com a resistência mecânica. A investigação revelou que, com a adição de argila expandida (C₀₅ e C₁₅) e SA nos concretos, houve a redução da densidade e da resistência mecânica, entretanto as características térmicas foram melhoras.

Palavras-chave: materiais alternativos, concreto leve estrutural, densidade, resistência mecânica, condutividade térmica.

ABSTRACT

The search for sustainable materials in civil construction, which presents a lower specific mass, better thermal performance and maintenance of mechanical resistance, represents a great challenge in the production and evaluation of structural lightweight concrete (SLC), which emerges as an alternative material to conventional concrete. In this study an investigation was carried out for the construction of concretes with high strength, low density and excellent thermal properties, in order to execute energy-efficient constructions. SLC were studied using two different granulometries of expanded clay (C₀₅ and C₁₅), where the coarse aggregate was replaced by C₁₅ at 0, 25, 50, 75 and 100%. To promote the maintenance of consistency and resistance, superplasticizer (SPA) and silica fume (SF) were used in the mixtures. Based on the methodology used, the concretes were physically and mechanically characterized, in accordance with current national and international standards. The density of the concretes, in the hardened state, ranged from 1,787 to 2,400 kg/m³ and, for compressive strength, ranged from 26 to 53 MPa at 7 days of age. The thermal conductivity test, using the protected hot plate method, was performed according to EN 12667, where was observed a variation of 0.61 to 1.00 W/mK. Microstructural information of the interfacial transition zone (ITZ) between aggregate and cement matrix were obtained with the purpose of analyzing the relationship with mechanical resistance. The investigation revealed that, with the addition of expanded clay (C₀₅ and C₁₅) and SF in the concretes, there was reduction of the density and the mechanical resistance, while the thermal characteristics were im-

Autor Responsável: Andressa Fernanda Angelin Data de envio: 01/06/2017 Data de aceite: 03/08/2017

proved.

Keywords: alternative materials, structural lightweight concrete, density, mechanical strength, thermal conductivity.

1. INTRODUÇÃO

Desde o seu surgimento até o início da década de 1980, o concreto convencional permaneceu sendo uma mistura de aglomerante, agregados e água, sem maiores inovações que alterassem de forma significativa seu desempenho frente a algumas propriedades, como massa específica, resistências mecânicas e conforto termo acústico, propriedades relacionadas à durabilidade do concreto (Pereira [1], Borja [2], Angelin *et al.* [3]).

Porém nos últimos anos a tecnologia do concreto passou por grandes transformações que, segundo diversos pesquisadores, como Rossignolo [4], Bektas *et al.* [5] e Ibrahim *et al.* [6], ocorreram devido à evolução de algumas técnicas, assim como o uso de materiais alternativos aos convencionais, como a argila expandida. Podemos ainda destacar o uso de aditivos químicos e adições minerais, como a sílica ativa, os quais propiciaram melhorias relevantes nas propriedades relacionadas à durabilidade dos concretos (Neville *et al.* [7]).

A partir do desenvolvimento destes novos materiais e técnicas surgiu o conceito de concretos especiais, como o concreto com agregados leves, caracterizado pelo seu excelente desempenho quanto à redução da massa específica e ao conforto térmico.

Por apresentar tais resultados e características, os concretos leves têm sido utilizados desde o começo deste século, tanto para fins estruturais como para estruturas de vedação. A partir do ano de 1980, devido ao exponencial crescimento de uso deste material, foram realizadas rigorosas pesquisas (Santos *et al.* [8], Zhang *et al.* [9], Vieira [10], Moravia [11], Malaiskiene *et al.* [12], Hubertová *et al.* [13]), as quais demonstraram um progresso quanto ao entendimento das suas propriedades no estado fresco e endurecido.

Por apresentar baixos valores quanto à massa específica, o uso do concreto leve reduz significativamente o peso próprio dos elementos, influenciando diretamente na estrutura de fundação. Ma *et al.* [14] reforçam, ainda, que o uso de concretos leves estruturais acarreta numa maior produtividade, além de facilitar o transporte das peças durante a etapa de execução, consequentemente, indicando redução no custo final da construção.

Bogas *et al.* [15], Liu *et al.* [16] e Wang *et al.* [17], comprovaram que a resistência mecânica dos concretos leves pode sofrer manutenção por meio da utilização de agregados com menores dimensões, aliandose, ainda, a verificação do teor ótimo entre o proporcionamento de diferentes granulometrias de argila expandida. Golewski *et al.* [18] averiguaram que concretos leves com adições minerais, como a sílica ativa, apresentam zona de transição menores, aumentando os valores das resistências mecânicas.

No tocante, ao conforto térmico, uma das grandes vantagens que o concreto com argila expandida possui sobre o concreto convencional, quando utilizado nas vedações e coberturas, é a redução da absorção e a transferência do calor proveniente da radiação solar (Eurolight [19]). Segundo Granja e Labaki [20], foi observado que fechamentos mais leves tendem a adiantar sensivelmente o pico de carga térmica para dentro do cômodo em relação a fechamentos de massa mais elevada, ou seja, vedações de concreto tradicional e de argila expandida apresentam comportamento distinto em relação à onda térmica, a partir da diferença de massa específica que cada um apresenta.

Com a intenção de contribuir para o desenvolvimento de concretos especiais, esta pesquisa apresenta uma análise térmica, por meio da obtenção dos valores de condutividade dos concretos, por intermédio do método da placa quente protegida ("Hot Plate"), de acordo com as prescrições da EN 12667 [21], para posterior avaliação quanto ao conforto térmico exercidos pelos concretos leves estruturais desenvolvidos nesta pesquisa. Além disso, uma análise das principais propriedades físicas, bem como, as resistências mecânicas e estudo da zona de transição dos concretos leves estruturais são apresentados.

2. MATERIAIS E MÉTODOS

Foram produzidos concretos leves, os quais foram submetidos a ensaios físicos e mecânicos. No processo de moldagem das misturas foram empregados os seguintes materiais: cimento Portland CPV ARI (alta resistência inicial), sílica ativa, agregado miúdo de origem quartzosa, agregado graúdo de origem basáltica, argilas expandidas de diferentes granulometrias (C_{05} e C_{15}) e aditivo superplastificante.

2.1 Ensaios para a caracterização física dos agregados

Para caracterizar os materiais foram realizados os ensaios de massa específica e massa unitária dos agregados miúdos e graúdos. As determinações das massas específicas da argila expandida C_{05} e agregado miúdo foram realizadas conforme a ABNT NBR 52:2009 [22], enquanto do cimento, da sílica ativa e do superplastificante foram determinadas conforme ABNT NBR 23:2001 [23] e, da argila expandida C_{15} , conforme ABNT NBR 53:2009 [24].

A determinação de massa unitária dos agregados miúdos e graúdos foi determinada conforme ABNT NBR 45:2006 [25]. A composição granulométrica dos agregados leves foi determinada de acordo com a ABNT NBR 248:2003 [26] e suas respectivas classificações conforme a ABNT NBR 7211:2009 [27]. Os resultados obtidos estão dispostos na Tabela 1.

MATERIAL	MASSA ESPECÍ- FICA (g/cm³)	MASSA UNITÁ- RIA (g/cm³)	DIMENSÃO MÁXIMA CA- RACTERÍSTICA (mm)	MÓDULO DE FINURA
Cimento	3,07	1,03	-	-
Sílica	2,21	-	-	-
Agregado miúdo	2,64	1,56	1,20	1,64
Agregado graúdo	2,90	1,51	9,50	5,31
C ₀₅	1,52	0,85	4,80	3,10
C	1 15	0.62	0.50	5.50

Tabela 1: Caracterização física dos materiais.

2.2 Dosagem dos concretos

Superplastificante

A dosagem utilizada foi baseada na norma ACI 213R-03 [28] e nos estudos de Rossignolo [4]. O teor de sílica ativa utilizado nas misturas foi de 10%, em relação à massa de cimento, a relação água/cimento foi de 0,40 e teor de argamassa de 65%. Fixaram-se, também, as porcentagens de agregado miúdo natural e C_{05} , para efeito de comparação entre os traços desenvolvidos; portanto, variaram-se as porcentagens de agregado graúdo natural e argila expandida C_{15} . A Tabela 2 apresenta os traços das misturas de concreto.

TRAÇO	PROPORCIONAMENTO (EM MASSA)						
	Cimento	Sílica	Agregado miúdo	C ₀₅	Agregado graúdo	C ₁₅	SPA
T1					1,60	0	0,04
T2					1,19	0,18	0,04
Т3	1	0,1	1,28	0,23	0,80	0,37	0,02
T4					0,40	0,55	0,02
T5					0	0,75	0,02

Tabela 2: Dosagem dos concretos.

2.3 Produção dos concretos

2.3.1 Mistura dos materiais

Para a mistura dos materiais, seguiram-se as prescrições da ABNT NBR 12821:2009 [29]. Devido à alta absorção de água pelos agregados leves, de forma a compensar esse efeito, fez-se um umedecimento dos mesmos por 24 horas, antes de serem utilizados na produção dos concretos.

2.3.1.1 Concreto de referência

Após a realização do processo de umedecimento da argila expandida, houve a separação e pesagem dos materiais utilizados na fabricação dos concretos. No momento da fabricação das peças, o índice de temperatura apresentou uma média de 25°C (+/- 2°C) e teor de umidade em torno de 60%, mostrando-se adequados.

O processo de mistura, em betoneira de eixo inclinado previamente umedecida, ocorreu da seguinte forma: primeiramente introduziu-se o agregado graúdo convencional, em seguida, a água proveniente da rede pública, logo após, o cimento Portland de alta resistência inicial foi introduzido na betoneira, seguido da areia

e da argila expandida nacional C_{05} e, por último, a sílica ativa foi incluída na mistura. Em seguida houve a mistura dos materiais na betoneira de eixo inclinado por aproximadamente 5 minutos. Logo após introduziuse o aditivo superplastificante, ocorrendo uma nova mistura por 3 minutos.

Após o término do processo de amassamento do concreto, em betoneira de eixo inclinado, foi observado que a mistura cimentícia apresentou-se coesa, sem serem observados os fenômenos de segregação e exsudação entre os materiais.

Foi realizado o ensaio de abatimento do tronco de cone, segundo as prescrições da ABNT NBR 67:1998 [30], por meio do qual pode-se verificar a consistência e plasticidade do concreto e, assim, efetuar a moldagem dos corpos-de-prova cilíndricos de 100 mm de diâmetro e 200 mm de altura, além das placas de concreto com 300,5 mm x 300,5 mm de largura e 45 mm de altura.

2.3.1.2 Concretos leves

O processo de mistura dos materiais, na fabricação dos concretos leves, ocorreu de forma análoga ao utilizado para a confecção do concreto de referência, sendo, a argila expandida C₁₅, introduzida após o agregado graúdo e antes da água.

2.3.2 Adensamento

Adotou-se como processo de adensamento a vibração por imersão, para os corpos-de-prova cilíndricos, com a finalidade de evitar a formação de vazios. Para as placas optou-se pelo adensamento em mesa vibratória para que houvesse total preenchimento das formas.

2.3.3 Procedimento de cura

Após 24 horas, os corpos-de-prova foram desmoldados, e, em seguida, submetidos ao processo de cura úmida, onde a temperatura foi de 23°C (+/- 2°C) e umidade relativa do ar acima de 95%. Os corpos-de-prova permaneceram em cura até a data da realização dos ensaios, 7 ou 28 dias após a moldagem, de acordo com as prescrições da ABNT NBR 5738:2008 [31].

2.3.4 Ensaios no estado endurecido

A Tabela 3 apresenta os procedimentos normatizados utilizados na avaliação das propriedades dos concretos.

Tabela 3: Ensaios normativos dos concretos no estado endurecido.

ITEM	NORMA
Massa específica, índice de vazios e absorção de água por imersão	ABNT NBR 9778:2009 [32]
Resistência à compressão	ABNT NBR 5739:2007 [33]
Condutividade térmica	EN 12667 [21]
Análise microestrutural	-

3. RESULTADOS E DISCUSSÕES

3.1 Resistência à compressão e massa específica

A resistência à compressão dos concretos foi determinada utilizando-se corpos-de-prova cilíndricos, com 100 mm de diâmetro e 200 mm de altura, nas idades de 7 e 28 dias. Para cada dosagem e idade, foram moldados 4 corpos-de-prova.

A massa específica no estado seco foi determinada aos 28 dias de idade, utilizando-se corpos-de-prova com 100 mm de diâmetro e 200 mm de altura. Foram moldados 3 corpos-de-prova para cada traço. Os valores obtidos nestes ensaios são apresentados na Tabela 4.

Tabela 4: Resistência à compressão e massa específica dos concretos.

TRAÇO	RESISTÊNCIA À COMPRESSÃO (MPa)		MASSA ESPECÍFICA
	7 dias	28 dias	(kg/m³)
T1	53	63	2400
T2	40	42	2205
Т3	35	40	2033
T4	29	37	1902
T5	26	32	1687

Os valores da resistência à compressão dos concretos apresentaram uma redução, média, de 17% aos 7 dias e de 15% aos 28 dias de idade, conforme o aumento da argila expandida C₁₅ nas misturas. Comparando o concreto com agregado convencional (T1) com o concreto com 100% de agregado leve (T5), houve uma redução de 30% da massa específica. A Figura 1 apresenta a relação entre a resistência à compressão aos 28 dias e a massa específica dos concretos.

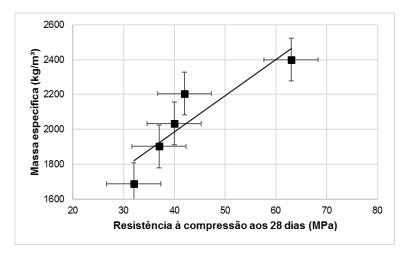


Figura 1: Relação entre resistência à compressão aos 28 dias e massa específica dos concretos leves.

Nos resultados apresentados na Tabela 4, observa-se que os valores da resistência à compressão dos concretos leves foram semelhantes entre as idades de 7 e 28 dias, indicando, assim, que aos 7 dias os concretos leves apresentam estabilização dos valores dessa propriedade. Segundo Rossignolo [4] e Bektas *et al.* [5], considera-se a estabilização dos valores de resistência à compressão aos 7 dias de idade uma característica dos concretos com agregados leves, pois, normalmente, aos 7 dias de idade, os valores da resistência à compressão da matriz de cimento ultrapassam os valores da resistência à compressão do agregado, principalmente com a utilização de cimento de alta resistência inicial, ou seja, a resistência final do concreto não se benefícia na mesma proporção com o aumento da resistência à compressão da matriz de cimento.

Durante a realização das análises experimentais, observou-se que as rupturas dos concretos leves submetidos à compressão foram mais frágeis com o aumento dos valores da resistência à compressão. Quando o concreto com massa específica normal é submetido à tensão de compressão, a propagação das fissuras normalmente ocorre na matriz de cimento ou na interface agregado-matriz, pois, geralmente, o agregado mostra-se mais resistente do que a matriz de cimento, absorvendo uma considerável quantidade de energia. Segundo Moravia [11] e Malaiskiene *et al.* [12], nos concretos com agregados leves, tipicamente menos resistentes que a matriz de cimento, a propagação das fissuras ocorre, normalmente, nos agregados, ocasionando um acúmulo de tensões na matriz de cimento, provocando, assim, uma ruptura brusca do concreto.

Entende-se, também, que a manutenção desta propriedade ocorre devido ao uso de adições minerais, como a sílica ativa, utilizada na fabricação das peças de concreto desta pesquisa. Segundo Borja [2], este fato, torna a mistura do concreto mais estável, aumentando, assim, a sua resistência mecânica, consequentemente a sua durabilidade.

3.2 Absorção de água e índice de vazios

A absorção de água e o índice de vazios foram determinados aos 28 dias de idade, utilizando-se corpos-de-prova com 100 mm de diâmetro e 200 mm de altura. Foram moldados 3 corpos-de-prova para cada traço. Os valores obtidos nestes ensaios são apresentados na Tabela 5.

Tabela 5: Absorção de água por imersão e índice de vazios dos concretos.

TRAÇO	ABSORÇÃO DE ÁGUA (%)	ÍNDICE DE VAZIOS (%)
T1	4,02	8,83
T2	6,4	11,32
Т3	7,06	11,68
T4	8,22	13,07
T5	9,15	13,37

Os valores médios de absorção de água e índice de vazios dos concretos foram de 7% e 11,65%, respectivamente, valores muito próximos aos observados nos concretos com agregados tradicionais, fato também observado por Angelin *et al.* [3], Bogas *et al.* [15] e Golewski *et al.* [18], demonstrando, assim, que não há aumento significativo do índice de permeabilidade dos concretos com a utilização dos agregados leves.

3.3 Condutividade térmica

A determinação da condutividade térmica foi realizada nas misturas com 28 dias de idade, utilizando-se corpos-de-prova com 300,5 mm x 300,5 mm de largura e 45 mm de altura. Foram moldadas 6 placas de concreto para cada traço.

A Tabela 6 apresenta os valores da condutividade e resistência térmica obtidos, enquanto a Figura 2 apresenta a relação entre a condutividade térmica e a massa específica dos concretos.

Tabela 6: Condutividade e resistência térmica dos concretos.

TRAÇO	CONDUTIVIDADE TÉRMICA (W/mK)	RESISTÊNCIA TÉRMICA (m²K/W)
T1	1,00	0,045
T2	0,77	0,058
Т3	0,73	0,062
T4	0,72	0,063
T5	0,61	0,074

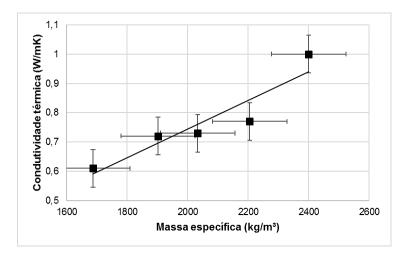


Figura 2: Relação entre a condutividade térmica e a massa específica dos concretos.

De acordo com a ABNT NBR 15220:2005 [34], os valores de condutividade e resistência térmica, para todas as misturas, estão de acordo com os valores máximos prescritos.

Observou-se um aumento da condutividade térmica com o aumento da massa específica, ou seja, o conforto térmico é diretamente influenciado pelo peso próprio do elemento, neste caso, tem relação direta com a presença da argila expandida nas misturas (Granja e Labaki [20], Lamberts [35], Sacht [36], Andiç-Çakir *et al.* [37]).

3.4 Microestrutura - Análise da ZTI

A técnica de Microscopia Eletrônica de Varredura (MEV) foi utilizada para análise da interface entre a matriz de cimento e o agregado dos concretos, com e sem argila expandida, para efeito de comparação da ZTI. As amostras foram provenientes de pequenos fragmentos dos corpos-de-prova dos concretos. As Figuras de 3 e 4 apresentam os perfis analisados.

Figura 3: MEV do perfil do concreto com argila expandida.

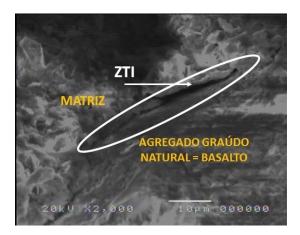


Figura 4: MEV do perfil do concreto com basalto.

Observou-se que a espessura da zona de transição dos concretos com agregados leves foi expressivamente inferior aos dos concretos com basalto. Esse efeito está relacionado, principalmente, com a maior absorção de água dos agregados leves, em comparação ao basalto, reduzindo, assim, a quantidade de água na superfície desse tipo de agregado, com consequente redução de espessura da ZTI.

Diversos pesquisadores, como Rossignolo [4], Borja [2] e Golewski *et al.* [18], afirmam que há uma forte relação entre a espessura e qualidade da ZTI e as propriedades relacionadas a durabilidade dos concretos. A zona de transição influencia diretamente as propriedades relacionadas à resistência mecânica e o módulo de elasticidade, consequentemente alterando o mecanismo de propagação de fissuras e a permeabilidade dos concretos.

A utilização de sílica ativa, devido a sua atividade pozolânica, na composição dos concretos leves estruturais desta pesquisa, além de evitar o fenômeno de segregação, também auxiliaram na redução da espessura da zona de transição, fato também observado por Heikal *et al.* [38], Mohammed *et al.* [39] e Duan *et al.* [40], que ressaltam, ainda, que as adições minerais proporcionam um arranjamento mais denso das partículas microcristalinas presentes nos concretos, aumentando, assim, a resistência mecânica e durabilidade.

4. CONCLUSÕES

Este trabalho apresenta um estudo sobre um tipo particular de concreto, com características e propriedades diferenciadas em função da utilização conjunta de cimento de alta resistência inicial, sílica ativa, superplastificante e agregados leves. Este concreto pode ter aplicação específica no setor da construção civil, na produção de elementos pré-fabricados, tais como painéis estruturais e de vedação.

Os concretos, para todas as dosagens estudadas, apresentaram coesão e consistência adequadas para o manuseio e moldagem, além da manutenção da trabalhabilidade.

Quanto aos valores obtidos no ensaio de massa específica, o concreto de referência (T1) apresentou 2.400 kg/m³, enquanto o concreto leve estrutural com 100% de C₁₅ (T5) apresentou valor de 1.687 kg/m³, ou seja, houve uma redução de 30%.

Observou-se que os valores da resistência à compressão dos concretos apresentaram, em média, 40 MPa, sendo que houve uma redução de 16%, conforme o aumento do agregado leve C_{15} nas misturas.

Verificou-se que os índices obtidos no ensaio de condutividade térmica, por meio do método da placa quente protegida, nos concretos com 100% de argila expandida foram menores em comparação ao concreto com agregado natural, apresentando valor máximo de condutividade térmica de 1,00 W/mK.

Nos estudos microestruturais, observou-se que com a utilização conjunta do agregado leve e a sílica ativa, houve uma diminuição significativa da espessura da ZTI, em comparação aos concretos convencionais.

A partir do conjunto de informações de dosagem obtidas no programa experimental, observou-se que os concretos leves produzidos podem ser utilizados em elementos pré-moldados, devido, principalmente, à diminuição no tempo de moldagem e do peso próprio. Sugere-se, então, sua aplicação em elementos estruturais ou de vedação, como painéis de concreto e lajes aveolares, devido essencialmente à redução da massa específica e ao excelente desempenho nas propriedades mecânicas, proporcionando a fabricação de peças leves, que proporcionam maior conforto térmico sem comprometer a função estrutural.

5. AGRADECIMENTOS

À Faculdade de Tecnologia (FT/UNICAMP) e ao Instituto de Física (IF/UNICAMP) pelo suporte técnico e, às empresas CINEXPAN, SILICON e BASF pela doação dos materiais utilizados nesta pesquisa.

6. BIBLIOGRAFIA

- [1] PEREIRA, M.R. *Estudo da adição de argila expandida na formulação de concretos leves*. Dissertação de M.Sc., Universidade Federal do Rio Grande do Norte, Natal, Brasil, 2008.
- [2] BORJA, E.V. Efeito da adição da argila expandida e adições minerais na formulação de concretos estruturais leves autoadensáveis. Tese de D.Sc., UFRN, Natal, Brasil, 2011.
- [3] ANGELIN, A.F., RIBEIRO, L.C.L.J., PIRES, M.S.G., et al., Effects of Consumption of Cement in Mechanical Properties of Lightweight Concrete Containing Brazilian Expanded Clay, Applied Mechanics and Materials, v. 368-370, pp. 925-928, 2013.
- [4] ROSSIGNOLO, J.A. Concreto leve estrutural: produção, propriedades, microestrutura e aplicações. São Paulo, PINI, 2009.
- [5] BEKTAS, F., WANG, K. "Performance of ground clay brick in ASR-affected concrete: Effects on expansion, mechanical properties and ASR gel chemistry", *Cement & Concrete Composites*, v.34, n.2, pp.273-278, 2012.
- [6] IBRAHIM, N.M., SALEHUDDIN, S., AMAT, R.C. "Performance of lightweight foamed concrete with waste Clay brick as coarse aggregate", *ICESD*, v.5, pp.497-501, 2013.
- [7] NEVILLE, A. M.; BROOKS, J.J. *Tecnologia do concreto*. 2ª edição, Editora Brookman, Porto Alegre, 2013.
- [8] SANTOS, M.E. et al. Argila expandida como agregado para concreto leve. Tema livre Apresentação à reunião anual do IBRACON, São Paulo, 1986.
- [9] ZHANG, M. H., GJØRV, O. E. "Penetration of cement paste into lightweight aggregate", *Cement and Concrete Research*, v.22, pp.47-55, 1992.
- [10] VIEIRA, M.G. *Betões de elevado desempenho com agregados leves Durabilidade e microestrutura.* Dissertação (mestrado), Instituto Superior Técnico da Universidade Técnica de Lisboa, Lisboa, 2000.
- [11] MORAVIA, W.G. Influência de parâmetros microestruturais na durabilidade do concreto leve produzido com argila expandida. Tese de D.Sc., UFMG, Belo Horizonte, MG, Brasil, 2007.
- [12] MALAISKIENE, J., VAICIENE, M., ZURAUSKIENE, R. Effectiveness of technogenic waste usage in products of building ceramics and expanded clay concrete, In: Construction and Building Materials, VGTU (Vilnius ediminas Technical University), Lithuania, 2011.
- [13] HUBERTOVÁ, M., HELA, R. "Durability of lightweight expanded clay aggregate concrete", *Concrete ande Concrete Structures Conference*, v.65, pp.2-6, 2013.
- [14] MA, H.L., CUI, C., LI, X., et al., "Study on mechanical properties of steel fiber reinforced autoclaved

- lightweight shell-aggregate concrete", Materials and Design, v.52, pp.565-571, 2013.
- [15] BOGAS, J.A., GOMES, A., PEREIRA, M.F.C. "Self-compacting lightweight concrete produced with expanded clay aggregate", *Construction and Building Materials*, v.35, pp. 1013-1022, 2012.
- [16] LIU, J., BA, M., HE, Z., et al., "Microstructure and performance of sludge-ceramisite concrete", Construction and Building Materials, v.39, pp.82-88, 2013.
- [17] WANG, H.Y., CHEN, B.T., WU, Y.W. "A study of the fresh properties of controlled low-strength rubber lightweight aggregate concrete (CLSRLC)", *Construction and Building Materials*, v.41, pp.226-231, 2013.
- [18] GOLEWSKI, G.J., SADOWSKI, T. "An analysis of shear fracture toughness KIIc and microstructure in concretes containing fly-ash", *Construction and Building Materials*, v.51, pp.207-214, 2014.
- [19] EUROLIGHTCON Economic Design and Construction with Lightweight Aggregate Concrete. LWAC Materials Properties, State-of-the-art. Project BE96-3942/R2, Noruega, 1998.
- [20] GRANJA, A.D., LABAKI, L.C. Paredes orientadas a leste e a oeste: uma abordagem crítica em relação ao conforto e à eficiência energética, In: Encontro nacional sobre conforto no ambiente construído, Porto Alegre, Rio Grande do Sul, v.4, n.4, pp.65-75, 2004.
- [21] BS EN 12667. Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Products of high and medium thermal resistance, 2001.
- [22] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 52: Agregado miúdo Determinação de massa específica e massa específica aparente. Rio de Janeiro, 2009.
- [23] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 23: Cimento Portland e outros materiais em pó Determinação da massa específica. Rio de Janeiro, 2001.
- [24] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 53: Agregado graúdo Determinação de massa específica, massa específica aparente e absorção de água. Rio de Janeiro, 2009.
- [25] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 45: Agregado em estado solto Determinação da massa unitária. Rio de Janeiro, 2006.
- [26] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 248: Agregados Determinação da composição granulométrica. Rio de Janeiro, 2003.
- [27] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7211: Agregado para concreto Especificação. Rio de Janeiro, 2009.
- [28] AMERICAN CONCRETE INSTITUTE ACI. Guide for structural lightweight aggregate concrete, ACI 213R-03. ACIA Manual of Concrete Practice, 2003.
- [29] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12821: Preparação de concreto em laboratório Procedimento. Rio de Janeiro, 2009.
- [30] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 67: Concreto Ensaio de abatimento do tronco de cone. Rio de Janeiro, 1998.
- [31] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Concreto. NBR 5738: Concreto Procedimento para moldagem e cura de corpos-de-prova. Rio de Janeiro, 2008.
- [32] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9778: Concreto Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro, 2009.
- [33] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5739: Concreto Ensaios de compressão de corpos-de-prova cilíndricos. Rio de Janeiro, 2007.
- [34] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220: Desempenho térmico de edificações Medição da resistência térmica e da condutividade térmica pelo princípio da placa quente protegida. Rio de Janeiro, 2005.
- [35] LAMBERTS, R. Desempenho térmico de edificações. UFSC, LABEEE, Florianópolis, Brasil, 2005.
- [36] SACHT, H. M. *Painéis de vedação de concreto moldados in loco: Avaliação de desempenho térmico e desenvolvimento de concretos*. Dissertação de M.Sc., Departamento de Arquitetura e Urbanismo da Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, Brasil, 2008.
- [37] ANDIÇ-ÇAKIR, O., HIZAL, S. "Influence of elevated temperatures on the mechanical properties and microstructure of self-consolidating lightweight aggregate concrete", *Construction and Building Materials*,

v.34, pp.575-583, 2012.

- [38] HEIKAL, M., ZOHDY, K.M., ABDELKREEM, M. "Mechanical, microstructure and rheological characteristics of high performance self-compacting cement pastes and concrete containing ground clay bricks", *Construction and Building Materials*, pp.101-109, 2013.
- [39] MOHAMMED, M.K., DAWSON, A.R., THOM, N.H. Production, microstructure and hydration of sustainable self-compacting concrete with different types of filler, Construction and Building Materials, pp.84-92, 2013.
- [40] DUAN, P., SHUI, Z., CHEN, W., et al., "Efficiency of mineral admixtures in concrete: Microstructure, compressive strength and stability of hydrate phases", *Applied Clay Science*, v.83-84, pp.115-121, 2013.