

ISSN 1517-7076, artigos e12977, 2021

V.26 N.02

Produção de álcoois de cadeia curta por hidrogenação de CO utilizando catalisadores Cu/Nb₂O₅/Al₂O₃

Production of short-chain alcohols by CO hydrogenation using Cu/Nb₂O₅/Al₂O₃ catalysts

Rodolfo de Andrade Schaffner¹, Alan Marchesi Fortes¹,

Sergio Vitor Cavalcanti Trevisan¹

Roberta Carolina Pelissari Rizzo Domingues²,

Leandro da Conceição³, Helton José Alves¹,

¹ Laboratório de Catálise e Produção de Biocombustíveis, UFPR – Setor Palotina, R. Pioneiro, 2153, bloco 4, Palotina, Paraná, Brasil

² UTFPR - Campus Curitiba, Av. Sete de Setembro, 3165, Rebouças, Curitiba, Paraná, Brasil

³ SENAI - Departamento Regional do Paraná, Instituto Senai de Inovação, Av. Com. Franco, 1341 - Jardim Botânico Curitiba, Paraná, Brasil

e-mail: rodolfoschaffner@gmail.com, alanmfsc98@gmail.com, sergiovitor.ct@gmail.com, robertac@utfpr.edu.br, landoufrj@gmail.com, helquimica@gmail.com

RESUMO

A produção de álcoois pela hidrogenação do CO na presença de um catalisador, normalmente Cu/ZnO/Al $_2O_3$, em pressões de 50-100 bar e temperaturas na faixa de 220 a 300 °C, é uma importante rota de produção do metanol. Neste cenário, um novo catalisador foi sintetizado substituindo o ZnO por Nb₂O₅, que por sua vez, trata-se de uma matéria prima nacional com propriedades semicondutoras semelhantes ao óxido de zinco, sendo pouco investigada até o momento. Deste modo, esta pesquisa tem como objetivo avaliar o desempenho do catalisador Cu/Nb₂O₅/Al₂O₃ na reação hidrogenação do CO para produção de álcoois de cadeia curta, em especial o metanol. A síntese do catalisador foi feita via impregnação úmida, e seguiu a mesma proporção (% mássica) do catalisador comercial Hifuel R120 Cu/ZnO/Al2O3, sendo sua composição baseada na seguinte relação 18,7/50,5/30,8, respectivamente. O catalisador foi peletizado e caracterizado pelas técnicas de Fissisorção de N₂, Difração de Raios X, Microscopia Eletrônica de Varredura, Microscopia Eletrônica de Transmissão, Dessorção a Temperatura Programada de NH₃ e Distribuição de tamanhos de partículas por DLS. Os ensaios reacionais foram conduzidos a 250 °C e 40 bar, usando uma mistura sintética de H2:CO (White Martins, 99%) de 2:1 em uma unidade experimental, sendo o produto líquido obtido, analisado por cromatografia gasosa e espectroscopia de infravermelho por transformada de Fourier (FTIR). O catalisador apresentou bons resultados na reação de hidrogenação do CO, produzindo principalmente álcoois de cadeia curta, o desempenho do catalisador foi comparado ao do Cu-ZnO-Al, sintetizado neste trabalho para comparação. Além disso, os resultados indicam que é possível atuar no preparo do catalisador ou nas condições reacionais para tornálo mais seletivo ao metanol e obter uma maior conversão do gás de síntese.

Palavras-chave: Hidrogênio. Gás de síntese. Metanol. Nióbio.

ABSTRACT

The production of alcohols by hydrogenation of CO in the presence of a catalyst, normally Cu/ZnO/Al₂O₃, at pressures of 50-100 bar and temperatures in the range of 220 to 300 ° C, is an important route for methanol production. In this scenario, a new catalyst was synthesized replacing ZnO by Nb₂O₅. This catalyst is a national raw material with semiconductor properties similar to zinc oxide, which has been little investigated so far. This research aims to evaluate the performance of the Cu/Nb₂O₅/Al₂O₃ catalyst in the hydrogenation reaction of CO for the production of short-chain alcohols, in particular or in methanol. The catalyst synthesis

Autor Correspondente: Rodolfo de A. Schaffner

was made via wet impregnation, and followed the same proportion (% metric) of the commercial catalyst Hifuel R120 Cu/ZnO/Al₂O₃, with its specific composition in the following ratio 18,7/50,5/30,8, respectively. The catalyst was pelletized and characterized by the N₂ physisorption, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Programmed Temperature Desorption and Size Distribution by DLS techniques. Clinical trials were conducted at 250 °C and 40 bar, using a 2:1 mixture of H₂:CO (White Martins, 99%) in an experimental unit the liquid product were analyzed by gas chromatography and infrared spectroscopy Fourier transform (FTIR). The catalyst shows good results in the hydrogenation reaction of CO, producing mainly short chain alcohols, the catalyst performance was compared to Cu-ZnO-Al, synthesized in this work. In addition, the results that can be performed in the preparation of the catalyst or in the reaction conditions to select the most selected filter for methanol and obtain a greater change in the recording gas.

Keywords: Hydrogen. Synthesis gas. Methanol. Niobium.

1. INTRODUÇÃO

O metanol é um importante solvente industrial, utilizado em larga escala na indústria de plásticos, preparo de vitaminas e hormônios, solvente em reações farmacológica, combustível, dentre outros. Além disso, grande parte do metanol produzido mundialmente é voltada para a síntese de formaldeído, MTBE (éter metil-terc-butílico) e DME (éter metílico) e também é um importante insumo na obtenção do biodiesel. Em geral, o metanol é produzido pela hidrogenação do CO na presença de um catalisador, normalmente Cu/ZnO/Al₂O₃, sob pressões de 50-100 bar (49 – 99 atm) e temperaturas na faixa de 220-300 °C.

Diversas pesquisas buscam avaliar o desempenho de óxidos mistos variados como suportes em catalisadores de Cu, substituindo o ZnO e/ou o Al_2O_3 [1-3]. Por sua vez, o pentóxido de nióbio, Nb_2O_5 , vem sendo cada vez mais estudado na área de catálise heterogênea, testando sua aplicabilidade em células combustível, reações de reforma de álcoois e hidrocarbonetos, reações de transesterificação, dentre outras [4]. O desempenho do Nb_2O_5 é promissor, pois além de se tratar de um material que pode ser amplamente aplicado em diversas áreas, o Brasil possui uma abundância natural de nióbio [5].

Deste modo, o presente trabalho teve por objetivo sintetizar, caracterizar e avaliar o desempenho de um catalisador a base de Cu/Nb₂O₅/Al₂O₃ na conversão do gás de síntese à metanol por hidrogenação de CO (Equação 1), substituindo o ZnO por Nb₂O₅, uma vez que estes possuem propriedades semicondutoras seme-lhantes em termos de *band gap* [6].

$$\text{CO} + 2\text{H}_2 \rightleftharpoons \text{CH}_3\text{OH}$$
 -90,50 kJ mol-1 (1)

2. MATERIAIS E MÉTODOS

2.1 Preparo dos precursores e do catalisador Cu/Nb₂O₅/Al₂O₃ e Cu/ZnO/Al₂O₃

Os materiais precursores para a síntese do catalisador Cu/Nb₂O₅/Al₂O₃ foram o nitrato de cobre trihidratado (Alfa aesar), alumina (Vetec) e o ácido nióbico (Sigma-Aldrich). Devido às impurezas que o ácido nióbico poderia apresentar, foi realizada a lavagem do mesmo por três vezes com água deionizada, e secagem em estufa a 80 °C por 24 h, purificando assim o Nb₂O₅.nH₂O. Após este procedimento se aferiu a massa do material, transferindo-a posteriormente para uma cápsula de porcelana, na sequência o material foi calcinado a 500 °C por 4 h em forno elétrico do tipo mufla, com rampa de aquecimento de 5 °C min⁻¹, com patamar a 400 °C por 2 h e a 500 °C por 4 h. Este procedimento foi realizado pelo fato do Nb₂O₅ ser muito higroscópico, garantindo assim a remoção total de água intermolecular.

A síntese do catalisador seguiu a mesma proporção (% mássica) do catalisador comercial Hifuel R120 Cu/ZnO/Al₂O₃ (18,7/50,5/30,8), sendo realizada pelo método de impregnação úmida, em que uma solução de Cu(NO₃)₂.3H₂O P.A. (98%) foi inicialmente diluída em água de osmose reversa a um volume suficiente para a total cobertura do suporte, e logo após a dissolução do sal de cobre, dentro do balão do rotoevaporador, foi adicionado o suporte Nb₂O₅ e Al₂O₃ (Vetec), na forma de pó. A mistura foi mantida sob agitação em rotaevaporador a 80 rpm e 60 °C por 4 h, e na sequência, o vácuo foi ativado e a temperatura elevada para 80 °C, até a total evaporação do solvente.

Ao final da etapa de impregnação, o pó residual foi seco em estufa elétrica a 110 °C por 24 h, e posteriormente, calcinado a 750 °C por 5 h em forno elétrico do tipo mufla. Antes do uso, os catalisadores foram peneirados em malha de 140 mesh (0,105mm).

Foi realizada também a síntese do catalisador Cu/ZnO/Al₂O₃ pela mesma técnica, para permitir a comparação com os resultados obtidos por Cu/Nb₂O₅/Al₂O₃.

2.2 Peletização do catalisador Cu/Nb₂O₅/Al₂O₃ e Cu/ZnO/Al₂O₃

Foi realizada a peletização do catalisador Cu/Nb₂O₅/Al₂O₃ calcinado afim de garantir a produção de grânulos com resistência mecânica para suportar elevadas pressões no interior do reator e evitar arraste e entupimentos. Para a peletização foi utilizado uma prensa hidráulica modelo MARCON. O catalisador em pó juntamente com 1% em massa de estearato de magnésio (Mg(C₁₈H₃₅O₂)₂) (ligante), foi adicionado ao molde da prensa, o molde é feito de aço inox, cilíndrico com 9 mm de diâmetro interno, e na sequência, foi aplicado pressão de 159 MPa, obtendo assim pellets com dimensões de 9 mm de diâmetro por 2mm de altura. Na sequência os pellets foram calcinados a 750 °C por 5 h em forno elétrico do tipo mufla. Antes do uso, os catalisadores foram desagregados em almofariz e peneirados afim de se obter grânulos acima de 0,707 mm (25 mesh).

Para facilitar a discussão os catalisadores obtidos neste trabalho foram codificados conforme a Tabela 1.

Tabela 1: Nomenclatura dos catalisadores

Catalisador	Denominação
Cu/Nb ₂ O ₅ /Al ₂ O ₃	Cu-Nb-Al
Cu/Nb ₂ O ₅ /Al ₂ O ₃ Peletizado 159	CuNbAl P159
Cu/ZnO/Al ₂ O ₃	Cu-ZnO-Al

2.3 Caracterizações físicas e químicas dos catalisadores

A caracterização textural foi realizada a partir de isotermas de N₂ a 77 K, utilizando o equipamento Nova 2000e da Quantachrome Instruments. As amostras foram submetidas a pré-tratamento a 200 °C por 4 h, sob vácuo a fim de retirar toda umidade e impurezas eventualmente adsorvidas na superfície do material. A área específica foi determinada pelo método de Brunauer-Emmet-Teller (BET) ($p/p_0 = 0,05-0,30$), o volume de poros calculado à pressão relativa de 0,99. O diâmetro médio dos poros foi determinado a partir do método BJH (Barret-Joyer-Halenda).

A análise qualitativa das fases cristalinas foi realizada por difratometria de raios X (DRX) em difratômetro Shimadzu, modelo XRD-6000, 20 entre 5° e 70°, com radiação Cu K α (λ = 1,5406 Å), operando-se a 40 kV, 30 mA e varredura contínua a 1,5° min⁻¹.

Para determinar a distribuição de diâmetros das partículas foi utilizada a técnica de espalhamento dinâmico de luz (DLS, Dynamic Light Scattering), as amostras foram previamente preparadas em banho ultrassônico, a análise foi realizada em solução de H_2O com intensidade de 25 fótons em um equipamento NANOPTIC 90 da Bettersize.

A dessorção à temperatura programada de amônia (DTP-NH₃) foi realizada em uma unidade multiuso Quantachrome Instruments ChemBET 3000 equipada com um detector de condutividade térmica, sendo possível verificar a força ácida dos sítios ativos das amostras. Cerca de 100 mg de amostra foi colocada no equipamento e pré-tratada durante 60 min a uma temperatura de 300 °C sob atmosfera de nitrogênio (30 mL min⁻¹). Em seguida, as amostras foram reduzidas sob fluxo de 30 mL min⁻¹ de mistura com 5% de H₂ em N₂, seguida de adsorção com NH₃ a 100 °C. Após a adsorção, a porção fisissorvida foi purgada com N₂, seguido por dessorção da NH₃ a uma taxa de 10 °C min⁻¹ a 700 °C.

As micrografias dos suportes e catalisadores foram obtidas por microscopia eletrônica de varredura (MEV), utilizando um microscópio TESCAN VEGA3. A amostra foi dispersa em uma fita de carbono dupla face presa a um "stub" de alumínio, seguida de secagem e revestimento por "sputtering" com uma fina cama-

da de ouro para torná-la condutora de eletricidade. A análise química semiquantitativa dos materiais foi realizada por espectroscopia de energia dispersiva de raios X (EDS), usando um equipamento PentaFET Precision da Oxford Intruments acoplado ao MEV. Para esta análise, a amostragem foi realizada em vários pontos do catalisador, sendo considerada uma composição média, de modo que os resultados fossem os mais precisos possíveis [6, 7].

Foi realizado a microscopia eletrônica de transmissão (MET) objetivando verificar principalmente a morfologia e o tamanho das partículas. As imagens de HRTEM foram obtidas por meio de um microscópio eletrônico de transmissão FEI TECNAI G2 F20 HRTEM.

A espectroscopia de infravermelho por transformada de Fourier (FTIR) foi realizada utilizado um espectrômetro de infravermelho marca Perkin Elmer, modelo spectrum 65, com o acessório UATR, a leitura foi realizada de 4000 a 400 cm⁻¹, com 20 scans, afim de identificar os grupos químicos presentes na amostra líquida coletada após os testes catalíticos.

2.4 Testes catalíticos

Os testes catalíticos foram realizados em uma unidade experimental composta por um reator tubular de aço inox em formato de "U", de leito fixo e fluxo contínuo (Figura 1b), o esquema de todo o sistema por ser observado na Figura 1a. Nos testes catalíticos, 0,6 g de catalisador foram ativados em fluxo de H₂ (> 99,999%) de 40 mL min⁻¹ por aproximadamente 10 h, a uma temperatura de 700 ° C. No final do tempo de ativação, um fluxo de N₂ (> 99,999%) foi passado pelo sistema por 30 min. Os ensaios reacionais foram conduzidos a 250 °C e 40 bar, usando uma mistura sintética de H₂:CO (White Martins, 99%) de 2:1 molar.

Figura 1: Esquema do sistema de hidrogenação de CO (A) e do reator tubular com formato de "U" (B).

Os produtos líquidos condensados e os gasosos, obtidos na reação da hidrogenação do CO, foram analisados por cromatografia gasosa em um equipamento Agilent Technology modelo 7890B, com detector de condutividade térmica (TCD) (colunas HP-PLOT/U e HP Mol. *sieve* 30 m x 0,530 mm x 20,00 μ m, *split* a 100 mL min⁻¹, 3,9 mL min⁻¹ de Argônio na fase móvel, volume de injeção na coluna de 0,01 μ L, para a análise dos gases e um detector de ionização de chama (FID) com coluna capilar (Perkin Elmer - Elite Wax, 30 m × 0,25 mm × 0,5 mm) com 300 mL min⁻¹ de Argônio na fase móvel e rampa de aquecimento de 40 a 140 °C, 10 °C min⁻¹, injeção manual de 0,01 mL de amostra, no caso das amostras líquidas. Ambas análises foram feitas com auxílio de padrões externos.

3. RESULTADOS E DISCUSSÃO

3.1 Fisissorção de N₂

Na Tabela 2 estão apresentados os resultados de fisissorção de N₂ obtidos para os catalisadores e suportes.

Ao analisar a Tabela 2, observa-se que uma diminuição da área específica e de volume de poros em relação a alumina e aumento em relação a nióbia, e consequente aumento no diâmetro dos poros do catalisador sintetizado, quando comparado com os suportes. Este resultado é um indicativo da incorporação de cobre, nos poros internos e na superfície do suporte.

AMOSTRA	S BET (m ² g ⁻¹)	VOLUME DE POROS (cm ³ g ⁻¹) (BJH)	DIÂMETRO DE POROS (Å) (BJH)
Al ₂ O ₃ Alcalina	123,6	0,205	52,54
Nb_2O_5	20,87	0,033	45,22
Cu-Nb-Al	30,54	0,057	89,24

Tabela 2: Propriedades texturais dos suportes e catalisadores.

A Figura 2 apresenta as isotermas de adsorção-dessorção de N2 do catalisador e dos suportes.

Figura 2: Isotermas de adsorção/dessorção da Al₂O₃ Alcalina e Nb₂O₅ e do catalisador Cu-Nb-Al

Segundo a classificação da IUPAC, a isotermas obtida para a alumina pode ser classificada como sendo do tipo IVa, apresentando poros com diâmetro médio entre 3 nm $< \emptyset \le 10$ nm. As isotermas do tipo IVa apresentam histerese, como pode ser observado em todas as amostras da Figura 3. O Nb₂O₅ e o catalisador Cu-Nb-Al apresentaram isoterma mais próxima ao tipo II, presente em materiais pouco porosos, o que corrobora com o menor volume de poros (Tabela 2) encontrado para esses materiais em relação a Al₂O₃ Alcalina.

A histerese presente na isoterma de adsorção/dessorção da Al₂O₃ Alcalina são do tipo H1, por apresentar um ramo vertical e paralelo ao longo de uma extensa faixa de valores da ordenada, encontrada em materiais cujos poros são regulares, de formato cilíndrico e/ou poliédrico com as extremidades abertas [8].

Figura 3: Distribuição do volume de poros $(dV(logD)cm^3 g^{-1})$ da Al_2O_3 Alcalina e Nb₂O₅ e do catalisador Cu-Nb-Al

Como pode ser notado na Figura 3 as distribuições do volume de poros são monomodais, com valores de dimensões de poros concentrados em uma faixa entre 20 e 200 Å de diâmetro, com predominância de mesoporos (de 20 a 500 Å, segundo a IUPAC).

Vale destacar que o volume de poros por grama de material reduziu após a impregnação do metal ativo, que pode ser um indicador de incorporação do mesmo no suporte, que por sua vez também contribui para a redução da área específica.

3.2 Difração de Raios X

Na Figura 4 estão apresentados os difratogramas dos suportes e do catalisador estudado. Observando o difratograma do suporte Nb₂O₅ é possível verificar a fase cristalina composta por picos principais em aproximadamente 23 e 28° (JCPDS, n° 27-1003, no difratograma do suporte Al₂O₃ Alcalina são apresentados picos de difração em 38°, 46° e 67°, característicos da γ -alumina (JCPDS 82-1468) [9]. Alguns picos dos suportes não foram observados no catalisador, isso pode ocorrer pela formação de novas fases cristalinas na superfície do material, formadas após a impregnação com cobre, que podem deslocar ou sobrepor picos anteriormente observados nos difratogramas dos materias isolados [13].

Figura 4: Difração de Raio X dos suportes e catalisador.

No DRX do catalisador a amostra apresenta pico de maior intensidade a $[Nb_2O_5] - Niobium Oxide$ identificada pelo PDF 00-030-0873 indicando fase majoritária (22, 27, 37, 46, 50, 51 e 55°). Também identificado picos de baixa intensidade como a $[Cu(Nb_2O_6)] - Cupper diniobate (24, 29, 30°), [CuO] - Tenorite (36, 39,$ $48 e 63°) e [AlNbO_4] - Aluminium Niobium Oxide (25, 29, 34 e 47°) identificada respectivamente pelos PDF$ 01-083-0369, PDF 01-073-6023 e PDF 00-041-0347.

3.3 Microscopia Eletrônica de Varredura (MEV) e espectroscopia de energia dispersiva de raios X (EDS)

As micrografias obtidas por microscopia eletrônica de varredura dos suportes e catalisador estão contidas na Figura 5, em ampliação de 10.000 vezes. As micrografias revelaram um pó composto por distintos aglomerados de formato irregular de distintos tamanhos.

Figura 5: MEV dos suportes Al₂O₃ alcalina (a), Nb₂O₅ (b) e do catalisador Cu-Nb-Al (c).

A Figura 5a mostra que as partículas do suporte Al_2O_3 alcalina possui aglomerados de particulas de grande tamanho é possivel observar pela Figura 5b e 5c que o suporte Nb_2O_5 e o catalisador apresentam superfícies irregulares, porém com características semelhantes.

Para observar a proporção mássica dos elementos químicos no catalisador estudado, foi realizada a análise por EDS, apresentados na Tabela 3. Sabendo que o pentóxido de nióbio possui uma proporção mássica de 69,9 % de Nb e 30,1 % de O, observa-se que a proporção de oxigênio é mais elevada que o esperado, sugerindo que outros óxidos de nióbio podem ter sido produzidos nas sínteses, bem como, o elemento cobre também deve estar na forma de óxido, porém, não poder ser confirmado pela característica semiquantitativa da técnica.

idela 3: Analise semiquantitativa elementar dos catalisadores por EDS-MEV					
	AMOSTRA	Cu (%)	O (%)	AI (%)	Nb (%)
	Cu-Nb-Al	14,02	34,52	1,04	50,42

EDG MEV Tal

As técnicas de Microscopia Eletrônica de Transmissão (MET) e Dessorção a Temperatura Programada (TPD de NH₃) foram empregadas somente para o Nb₂O₅, porque se trata de um óxido ainda pouco explorado na literatura, e para o catalisador Cu-Nb-Al que é o principal produto de interesse deste trabalho.

3.4 Microscopia Eletrônica de Transmissão (MET)

As micrografias obtidas por microscopia eletrônica de transmissão do suporte nióbia estão representadas na Figura 6, onde percebe-se a presença de partículas em vários tamanhos, maiores que 200 nm (Figura 6c e 6d) e vários aglomerados de pequenas partículas (Figura 6a e 6b), além de diferentes contrastes, que sugerem diferenças na espessura e/ou densidade das partículas, em geral o material apresenta formatos esféricos [14].

Figura 6: Micrografias do suporte Nb₂O₅ em diversos aumentos

As micrografias do catalisador Cu-Nb-Al, estão disponíveis na Figuras 7, nota-se diversos tamanhos de partículas que concorda com dados obtidos na técnica de DLS (Figura 9). Foi possível observar a formação de grandes aglomerados com aspectos mais denso. Em geral, ambas imagens do catalisador indicam que o processo de síntese do mesmo reduziu a porosidade em relação aos suportes, como indicado nos resultados de fissisorção de N2 (Tabela 2).

(CC) BY

Figura 7: Micrografias do catalisador Cu-Nb-Al em diversos aumentos

3.5 Dessorção a Temperatura Programada (TPD de NH₃)

A Figura 8 mostra os perfis de dessorção de amônia para o suporte e catalisador. O número total de sítios ácidos está relacionado à área total das curvas de DTP geradas pelas medidas. Quanto mais forte o sítio ácido, maior a interação com o adsorvato e maior a temperatura necessária para removê-lo [10].

Figura 8: Perfis de dessorção de amônia para o suporte Nb₂O₅ e para o catalisador Cu-Nb-Al.

Pelo gráfico da Figura 8 é possível observar que o Nb₂O₅ apresentou sítios ácidos, com máximo de temperatura em 580 °C, podendo estes serem ácidos de Brönsted ou ácidos de Lewis [11]. Já o catalisador Cu-Nb₂Al apresentou três temperaturas máximas (385, 480 e 585 °C), sugerindo três intensidades de sítios ácidos, com forças ácidas diferentes, sendo que provavelmente um dos sítios mais ácidos do catalisador é

referente a presença do Nb₂O₅, indicando que este é o componente que mais contribui para a acidez do catalisador, sendo que os demais componentes presentes no catalisador (Cu e Al₂O₃) também influenciaram na mudança da característica ácida do material, modificando o perfil de dessorção de amônia [11, 15].

Em análises prévias do grupo de pesquisa ainda não publicados, empregando o TPD de CO_2 para avaliar a presença de sítios básicos, o catalisador não apresentou picos de dessorção, indicando basicidade nula.

3.6 Distribuição de tamanhos de partículas por DLS (Dynamic Light Scattering)

Os gráficos de distribuição do tamanho de partículas obtidos por DLS (Figura 9) evidenciam partículas, em sua maioria, abaixo de 1000 nm e com distribuição bimodal.

Figura 9: Análise granulométrica do suporte Al₂O₃, Nb₂O₅ e do catalisador Cu-Nb-Al.

A distribuição de tamanho de particula da Al_2O_3 Alcalina (Figura 9a) sendo que a primeira vai de 0 a 400 nm e a segunda de 400 a 5000nm. O tamanho mínimo de partícula é 50 nm e o maximo 5000 nm, sendo que 50% (D50) está abaixo de 500 nm como mostra a Tabela 4.

Na Figura 9b é possível observar o suporte Nb_2O_5 , apresentando um D50 abaixo de 790 nm. Estes valores corroboram com os tamanhos de partícula observados por MET (Figura 5), e em geral pode ser atribuído como tamanho médio na escala nanometrica.

Para o catalisador Cu-Nb-Al, mostrado na Figura 9c o D50 obtido foi de 700 nm (Tabela 4). Uma vez que o cobre e o nióbia foram incorporados na alumina, o que causa uma aglomeração das partículas e aumento dos valores de tamanho médio destas. Essa distribuição do tamanho médio de partícula é interessante, uma vez que a atividade catalítica de partículas metálicas suportadas é fortemente dependente do seu tamanho e forma e, portanto, os catalisadores nanoestruturados são altamente ativos, uma vez que a maioria da superfície da partícula pode estar disponível para a reação [16].

% (cumulativo)	Tamanho Médio de Partícula (nm)			
/o (ounition o)	Al ₂ O ₃	Nb ₂ O ₅	Cu-Nb-Al	
10	144	288	133	
25	232	406	401	
50	500	790	700	
75	792	1487	1208	
99	2997	5412	3630	
100	5000	7284	6294	

Tabela 4: Distribuição do tamanho de partícula para Al₂O₃, Nb₂O₅ e para o catalisador Cu-Nb-Al

3.7 Análise dos produtos obtidos na hidrogenação do CO

3.7.1 FTIR das amostras liquidas

O FTIR das amostras liquidas coletadas durante os testes catalíticos de hidrogenação de CO podem ser visualizados na Figura 10.

Foram realizados analises de 6 compostos puros para comparação, sendo eles, metanol, etanol, isopropanol, n-propanol, acetona e ácido acético (Figura 11).

Os catalisadores apresentaram a mesma distribuição de comprimento de onda, e a mesma transmitância, indicando que os catalisadores apresentam atividade semelhante, diferindo apenas na quantidade de cada produto, como poderá ser observado na Tabela 6 de resultados obtidos pelas análises de cromatografia dos líquidos.

Os gráficos de FTIR das amostras apresentaram 3 bandas, nos comprimentos de onda de 1500 a 1750, de 1800 a 2500 cm^{-1} , com menor intensidade, e de 2750 a 3750 cm⁻¹ com maior intensidade.

Figura 10: FTIR das amostras coletadas durante os testes de hidrogenação de CO.

Figura 11: FTIR dos compostos puros: A Metanol; B Etanol; C n-Propanol; D Iso-Propanol; E Acetona; F Ácido Acético.

A primeira banda (1500 a 1750 cm⁻¹) pode estar relacionada a formação de ligações C-C, C=C, C=O, e podem ser observadas no gráfico da acetona (Figura 11E) e do ácido acético (Figura 11F), porém com diferente intensidade. A última banda (2750 a 3750 cm⁻¹), de maior intensidade, está relacionada as ligações C-H e O-H, todos os padrões de álcoois analisados (Figura 11A,B,C e D) apresentam banda no mesmo comprimento de onda, além de estar presente no ácido acético (Figura 11F) e acetona (Figura 11E), neste último caso com baixa intensidade. A segunda banda (1800 a 2500 cm⁻¹) presente nos gráficos das amostras não estava presente em nenhum dos padrões testados, indicando que outro composto, ainda não identificado, está sendo produzido, sendo necessário alguma técnica complementar para identificar o composto [12].

3.7.2 Cromatografia

As Tabelas 5 e 6 apresentam os resultados de cromatografia dos produtos coletados durante os testes de hidrogenação de CO, na saída do reator.

Seguindo a estequiometria da reação de hidrogenação de CO (Equação 1), a mistura gasosa utilizada para os testes tinha como composição uma mistura 2:1 H_2/CO , porém foi observado na Tabela 5 que o H_2 está sendo consumido em quantidade superior a estequiométrica, o que corrobora com os resultados encontrados na análise do líquidos (Tabela 6) e FTIR das amostras liquidas (Figura 10), indicando a presença reações paralelas levando a formação de álcoois de cadeia maior, como etanol e propanol, além do metanol, essa ocorrência é ainda mais expressiva com o catalisador CuNbAl Pele159, que teve a menor razão H_2/CO . Quando comparado com os resultados obtidos pelo catalisador Cu-ZnO-Al, percebe-se que os resultados são muitos semelhantes, lembrando que este catalisador foi sintetizado com base no utilizado industrialmente.

Catalisador	Composiçã	Razão H₂/CO	
outunoutor	H ₂	СО	
Cu-Nb-Al	24,38	75,62	0,32
Cu-ZnO-Al	23,72	76,28	0,31
CuNbAl Pele159	18,20	81,80	0,22

Tabela 5: Resultados obtidos pelas análises de cromatografia dos gases

Tabela 6: Resultados obtidos pelas análises de cromatografia dos líquidos

Catalisador	*Valores em % mássica			
Catangador	Metanol	Etanol	2-Propanol	N-Propanol
Cu-Nb-Al	26,15	35,95	-	37,90
Cu-ZnO-Al	21,37	17,64	14,07	19,63
CuNbAl P159	49,34	50,66	-	-

*DESCONSIDERANDO H₂O

Segundo a Tabela 6, é possível perceber que os catalisadores testados conseguiram alcançar a produção de metanol a partir da hidrogenação de CO. O catalisador Cu-Nb-Al obteve resultados melhores que o Cu-ZnO-Al, uma vez que apresentou menor produção de compostos secundários e maior seletividade ao metanol. Foi possível observar que após a peletização (CuNbAl P159) aumentou a fração de metanol produzida e eliminou a formação do composto secundário N-Propanol, indicando que a compactação do material interfere de forma significativa na produção final, corroborando com os resultados obtidos na análise dos gases (Tabela 5).

4. CONCLUSÕES

Houve conversão do gás de síntese em álcoois de cadeia curta e água, majoritariamente, e outros compostos em menor quantidade, utilizando o catalisador Cu/Nb₂O₅/Al₂O₃. Os resultados indicam que é possível atuar no preparo do catalisador ou nas condições reacionais para torná-lo mais seletivo ao metanol e consequentemente obter uma maior produção. Pode-se afirmar que o desempenho do catalisador na hidrogenação do CO é comparável ao apresentado pelo catalisador comercial Cu-ZnO-Al.

5. AGRADECIMENTOS

À rede Sibratec/MCTIC/FINEP – Edital SibratecNano Ciclo 1 pela viabilização do projeto.

Ao Laboratório de Caracterização Estrutura do Departamento de Engenharia de Materiais LCE-DEMa-UFSCar pelas análises de TEM.

- À Universidade Federal do Rio de Janeiro pelas análises de TPD.
- À CBMM pela doação do ácido nióbico usado no projeto.

6. BIBLIOGRAFIA

[1] HOU, X., XU, C., LIU, Y., *et al.*, "Improved methanol synthesis from CO₂ hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde", *Journal Of Catalysis*, v. 379, pp.147-153, nov. 2019.

[2] MUREDDU, M., FERRARA, F., PETTINAU, A., "Highly efficient CuO/ZnO/ZrO2@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO₂", *Applied Catalysis B: Environmental*, v. 258, pp.117941-117949, dez. 2019.

[3] WANG, G., MAO, D., GUO, X., YU, J., "Methanol synthesis from CO₂ hydrogenation over CuO-ZnO-ZrO₂-MxOy catalysts (M=Cr, Mo and W)", *International Journal Of Hydrogen Energy*, v. 44, n. 8, pp.4197-4207, fev. 2019.

[4] SILVA, J.B., "Síntese, caracterização e avaliação de compostos de nióbio como catalisador ácido em reação modelo", Tese D.Sc – Instituto Nacional de Pesquisar Espaciais/LAS/SJC, Cachoeira Paulista, SP, Brasil, 2010.

[5] ALABA, A., ABBAS, A., DAUD, W.M.W., "Insight into catalytic reduction of CO₂: Catalysis and reactor design", *Journal of Cleaner Production*, v.140, pp. 1298-1312, 2017.

[6] SANTANA, V.S., MITUSHASI, E.O., FERNANDES-MACHADO, N.R.C., "Avaliação da atividade fotocatalítica de Nb₂O₅", *Acta Scientiarum Technology*. Maringá, v. 32, n. 1, pp.55-61, 2010

[7] HU, E. L., DAVIS, S. M., DAVIS, R., SCHER, E., "Applications: Catalysis By Nanostructured Materials", *Nanostructured Materials*, p. 341–360, 2003.

[8] THOMMES, M., KANEKO, K., NEIMARK, A.V., *et al.*, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)", *Pure And Applied Chemistry*, v. 87, n. 9-10, p.1051-1069, 2015.

[9] ALIPOUR, Z., REZAEI, M., MESHKANI, F., "Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al₂O₃ nanocatalyst in dry reforming of methane", *Journal of Energy Chemistry*, v. 23, pp. 633–638, 2014.

[10] GREENHALGH, B., F.E.E, M., DOBRI, A., MOIR, J., BURICH, R., CHARLAND, J.-P., STANCI-ULESCU, M., "DeNOx activity–TPD correlations of NH₃-SCR catalysts", *Journal of Molecular Catalysis A: Chemical*, v. 333, pp. 121-127, 2010.

[11] LOPES, O.F., MENDONÇA, V.R., SILVA, F.B.F., PARIS, E.C., RIBEIRO, C., "Niobium oxides: an overview of the synthesis of Nb_2O_5 and its application in heterogeneous photocatalysis", *Química Nova*, 2014.

[12] TABELA DE VALORES DE ABSORÇÃO NO INFRAVERMELHO PARA COMPOSTOS ORGÂ-NICOS. USP, Disponível em: https://edisciplinas.usp.br, acessado em fevereiro de 2020.

[13] ARTINI, C., PANI, M., CARNASCIALI, M. M., BUSCAGLIA, M. T., PLAISIER, J. R., COSTA, G. A., "Structural Features of Sm-and Gd-doped Ceria Studied by Synchrotron XRay Diffraction and μ-raman Spectroscopy," *Inorganic Chemistry*, v. 54, n. 8, pp. 4126–4137, 2015.

[14] PADILHA, A. F., "Microscopia Eletrônica de Transmissão", Disponível em: https://www2.sorocaba.unesp.br/professor/jrborto/2008S2/POSMAT/MET_notes.pdf, acessado em Novembro de 2020.

[15] GONÇALVES, J.F., "Síntese e caracterização de catalisadores a base de níquel suportado em alumina e nióbia para reforma a vapor de metano", Tese D.Sc – Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil, 2018.

[16] Ferreira, H.S., Rangel, M.C., "Nanotecnologia: aspectos gerais e potencial de aplicação em catálise", *Química*. *Nova*, v.32, 2009.

ORCID

Rodolfo de Andrade Schaffner	https://orcid.org/0000-0002-9435-2693
Alan Marchesi Fortes	https://orcid.org/0000-0003-1251-1329
Sergio Vitor Cavalcanti Trevisan	https://orcid.org/0000-0002-5605-1363
Roberta C. P. Rizzo Domingues	https://orcid.org/0000-0002-8775-4344
Leandro da Conceição	https://orcid.org/0000-0003-2759-2176
Helton José Alves	https://orcid.org/0000-0001-6942-1020