Acessibilidade / Reportar erro

Multi-scale formulation for analysis of the plate bending problem considering dissipative processes in the microstructure and coupling BEM and FEM

ABSTRACT

Analyses of the bending problem of plates composed of heterogeneous materials are performed considering a multi-scale modelling. The macro-continuum, represented in this paper by the plate, is modelled by a nonlinear formulation of the boundary element method (BEM) taking into account the consistent tangent operator (CTO) in the iterative procedure required to solve the plate equilibrium problem. The micro-scale is represented by the RVE (Representative Volume Element) being its equilibrium problem solved in terms of dis-placements fluctuations by a Finite Element Formulation (FEM), where the volume averaging hypothesis of strain and stress tensors is used to make the micro-to-macro transition. To each point of the macro-continuum where the stresses and constitutive tensor have to be computed, a RVE must be assigned, where inclusions and voids can be defined inside the matrix in order to represent the microstructure of a heterogeneous material. In the numerical examples are considered different RVEs with elastic inclusions, while for the matrix the Von Mises or Mohr-Coulomb criteria can be adopted to govern its material behavior. Different volume fractions have been adopted for the inclusions in order to verify its influence on the homogenized response of the microstructure as well as on the mechanical behavior of the macrostructure. To solve the RVE equilibrium problem, boundary conditions in terms of displacement fluctuations have to be imposed, which for the numerical examples presented in this paper will be adopted periodic.

Keywords:
Multi-scale modelling; homogenization; boundary elements; plate bending

Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com