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ABSTRACT 

Aluminum alloys are not covered by their specific weight. Each class of aluminum alloy presents a set of 

properties that are favorable to a given function in the same product, just as the alloys may be present in the 

same vehicle. However, it is necessary to know the changes in the mechanical properties that occur with the 

union process of these aluminum alloys. The objective of this study was to evaluate the mechanical and mor-

phological properties of alloys 5383 H34, 5754 H34 and 6005 T6 similarly welded and dissimilar by the MIG 

process. Six combinations of these alloys were characterized by mechanical tensile, folding and Vickers mi-

cro-hardness tests, as well as scanning electron microscopy (SEM) and optical microscopy (OM). Among the 

results obtained, a decrease in tensile strength was observed for all welded alloys. In addition, the microhard-

ness was affected in the melt line, in the weld bead and in the HAZ (heat affected zone). The main causes of 

the reduction of the mechanical resistance of the welded alloys were the grain growth and the precipitate dis-

solution. The data obtained in this study contribute in a very positive way to the development and dimension-

ing of new projects and technologies involving aluminum alloys. 

Keywords: microstructure, dissimilar welding, mechanical resistance, grain morphology. 

RESUMO 

As ligas de alumínio são amplamente aplicadas no setor de transporte devido ao seu baixo peso específico. 

Cada classe de liga de alumínio apresenta um conjunto de propriedades que são favoráveis a uma determina-

da função a qual a peça irá exercer no produto, assim diferentes ligas podem estar presentes em um mesmo 

veículo. Entretanto, faz-se necessário conhecer as mudanças nas propriedades mecânicas que ocorrem com o 

processo de união dessas ligas de alumínio. Este estudo teve por objetivo a avaliação das propriedades mecâ-

nicas e morfológicas das ligas 5383 H34, 5754 H34e 6005 T6 soldadas de forma similar e dissimilar pelo 

processo MIG. Seis combinações destas ligas foram caracterizadas por ensaios mecânicos de tração, dobra-

mento e microdureza Vickers, além de análises de microscopia eletrônica de varredura (MEV) e microscopia 

óptica (MO). Dentre os resultados obtidos verificou-se uma diminuição na resistência à tração para todas as 

ligas soldadas. Além disso, a microdureza foi afetada na linha de fusão, no cordão de solda e na ZTA (zona 

termicamente afetada). As principais causas da redução da resistência mecânica das ligas soldadas foram o 

crescimento de grão e a dissolução de precipitados. Os dados obtidos neste estudo contribuem de forma mui-

to positiva para o desenvolvimento e dimensionamento de novos projetos e tecnologias envolvendo ligas de 

alumínio. 

Palavras-chave: microestrutura, soldagem dissimilar, resistência mecânica, morfologia dos grãos. 
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1. INTRODUCTION 

Aluminum alloys have advantageous properties if compared to other metals like steel, such as resistance to 

weather, high mechanical resistance, low specific weight, high malleability and easy processing [1]. One of 

the most explored characteristics is the low specific weight, mainly in the transportation sector [2]. 

Each aluminum alloy class has a set of properties that are favorable to a certain function at which the 

part will have on the product. Once the complexity of the existing functions in a transportation vehicle is 

known, it is necessary to use more than one aluminum alloy for the development of a project. 

Regardless of the joining process type used between parts of different aluminum alloys, such process 

will cause changes on the mechanical behavior of the joint [3, 4, 5]. Therefore, it is necessary for the product 

designer to know them, to allow the use of adequate calculations and considerations to develop the project [6]. 

This joint can be carried out by means of welding, allowing the assemblage of products with an efficient 

weight reduction [7]. Among the various existing welding processes, one of the most commonly used is the 

MIG process, because of its versatility and performance. MIG weld (Metal Inert Gas) or GMAW (Gas Metal 

Arc Welding), or according to the designation given by European standards EN 131, is characterized by the 

fusion of the base metal by an electric arc caused by the current that crosses the consumable wire, protected 

by a flow of inert gas [8, 9]. However, this process has the disadvantage of not presenting the same results for 

all the types of alloys [10]. 

Studies show that each dissimilar combination of alloys in aluminum under different heat treatments 

will have a distinct mechanical behavior after they are welded by MIG process [11,8]. It is necessary, thus, to 

study specifically each new alloy developed with its respective treatment, for the scaling of a project. 

In order to know the behavior of the joint between those alloys and allow the projects that use them to 

be developed with the consideration of the properties and characteristics of those joints, this work proposes 

the study of alloys 5383 H34 and 5754 H34 and 6005 T6, welded by MIG process, with the optical micros-

copy (OM), scanning electron microscopy (SEM), traction trials, bending and Vickers micro-hardness tech-

niques, previously chemically characterized by optical spectrometry. The data obtained by means of different 

methods were analyzed and compared, in a way that they can be relevant for the development of new projects 

and technologies involving those alloys. 

2. MATERIALS AND METHODS 

The aluminum alloys 5754 H34, 5383 H34 and 6005 T6 had their chemical composition determined by opti-

cal spectrometry with plasma coupled by Spectro device, Spectromaxx model.  

The three alloys were welded according to Figure 1, by double pulsed MIG process, executed manual-

ly with the preparation in a 45° angle. The weld was done with the horizontal displacement in favor of the 

melting puddle, at the speed of 0.45 mm/s, with torch tilt at 60°. The machine used was of the brand Castolin 

Eutectic, model MigPulse 3001 DP, in alternating current of 111 A, under 21.8 V tension. The addition metal 

used was in accordance with the European standard AWS A5.10: ER5356, with 1.2 mm diameter, made of 

aluminum, and of chemical composition of Si: 0.25%, Fe: 0.4%, Cu: 0.1%, Mn: 0.2%, Mg: 5.0%, Cr: 0.2%, 

Zn: 0.1%, Ti: 0.2%. The gas used was argon, at 99.99% purity level. All the welding parameters were kept 

constant during the whole process. 

 

Figure 1: Combination of aluminum alloys used for the tests. 
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After the test pieces were welded, they were subjected to a traction test, according to the standard 

ASTM E8/E8M 2009, with test pieces machined in accordance with the referred standard. The test was car-

ried out in a tests universal machine EMIC DL 10.000, with load cell of 100 kN.  

The samples for microhardness profiling were extracted from the cross section of the parts, according 

to detail A-A of Figure /l1. After polished, the micro-hardness profile was elaborated by means of the ma-

chine Vickers Hardness Tester, model HVS-5. The load used for the test was of 0.2 kg; it was kept for 10 s 

until it was released. 

For the analyses by OM and SEM, the surface of each sample was sanded with sander granulations at 

200, 400, 600, 800, 1000 and 1200; after that, they were polished with polishing cloth, with Diapol diamond 

paste and lubricant (Panambra – Brazil) of 6 µm, 3 µm and 1 µm. The final polishing was carried out with 

colloidal silica of 0.04 µm (Struers – Denmark). The chemical attack was carried out with two reagents at 

different concentrations: 60% of HCl, 20% of HNO3, 10% of HF and 10% of distilled water (Reagent 1) and 

2.5% of HNO3, 1.5% of HCl and 1% of HF (Reagent 2). The polished and chemically attacked samples were 

observed with an optical bench microscope, brand ZEISS, model AXIOSCOP 2 MAT and with a scanning 

electron microscope, brand Shimadzu, model SS-550, with acceleration of 15 kV. 

3. RESULTS AND DISCUSSION 

Table 1 presents the result of the optical spectrometry for the alloys 5383 H34, 5754 H34 and 6005 T6. Mag-

nesium is the element that is present in the biggest quantity in alloys 5383 and 5754. The highest hardness 

and resistance to aluminum is a solid solution of Mg2Si, Al6(Fe,Mn) and Al3Mg2 is attributed to that element 

[12]. In alloy 6005, the most abundant element, besides aluminum, is silicon, present at 1.15%; it has low 

solubility in aluminum [12], but increases the alloy resistance when combined with magnesium (present at 

0.54% in alloy 6005) and heat treated, forming precipitates of Al-Mg-Si in GP phases Zone Mg2Si, β Mg5Si6, 

β’ Mg9Si5 e β’’ Mg2Si [13]. 

Table 1: Chemical composition of samples. 

 

Si (%P/P) Fe(%P/P) Cu(%P/P) Mn(%P/P) Mg(%P/P) Cr(%P/P) Zn(%P/P) Ti(%P/P) 

5383 H34 0.1326 0.2731 0.0136 0.6178 5.0413 0.0893 0.007 0.0333 

5754 H34 0.154 0.2925 0.032 0.3644 2.8714 0.0581 0.007 0.0155 

6005 T6 1.1558 0.2103 0.1182 0.1474 0.537 0.0007 0.0053 0.0131 

 

The traction test was carried out in the samples the way they were received and after the welding pro-

cess. The samples as they were received, i.e., without welding, had the following results in the traction test: 

210, 278 and 155 MPa of yield strength for 5754, 5383 and 6005, respectively. The results for ultimate ten-

sile stress were 160, 270 and 150 MPa, respectively. Figure 2 presents the result of the traction tests for the 

test pieces welded in similar and dissimilar ways.  

  

Figure 2: Results of the traction tests of welded test pieces considering engineering tensile. 
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By comparing the result of the traction tests of alloys TPs the way they were received (without weld-

ing) to the similar alloys after welded, one could notice a decrease on the maximum tension and on the yield 

strength for all the samples. The resistance to traction and the yield strength of alloy 5754 reduced around 

16%, due to the welding process. For alloy 5383, this reduction was more evident, presenting a reduction of 

24% on the yield strength and of 26% on the values of ultimate tensile strength. Alloy 6005 had a reduction 

of 23% on the values of yield strength and of 14% on the ultimate tensile strength, always being compared to 

the results of alloys without welding. This way, it could be noticed that there was a loss of mechanical re-

sistance caused by the welding process in alloys of similar materials. The decrease in maximum stress and 

yield strength is caused by the heat input generated by welding, which generates loss of strength in 6XXX 

and 5XXX family alloys [20] 

For dissimilar samples, it is believed that the joint between different materials results in the loss of 

mechanical resistance with the welding process, i.e., it is expected that the joint resistance is equal or inferior 

to the resistance of the alloy with the lowest flow limit and the lowest resistance to traction. The weakest 

joint location is the cause of the reduction in mechanical strength, the HAZ [18] . 

In order to verify this supposition, the result obtained for the traction test with TPs welded in a dissim-

ilar way was compared to the result obtained from the alloy with the lowest resistance (without welding).  

Nevertheless, a reduction of 41% was observed for the values of yield strength and of 18% on the values of 

maximum tension for the joint of welded alloys 5754-5383, when they were compared to the values present-

ed by alloy 5754 (the alloy least resistant to traction). Joint 5383-6005 lost 34% on the yield strength and 

17% on the maximum tension, when compared to alloy 6005. The union 5754-6005 had a reduction of 53% 

on the yield strength and of 13% on the maximum tension, when it was compared to alloy 6005. 

When we compare the results of ultimate tensile strength and of yield strength (Figure 2) of the dis-

similar samples with similar welded alloys, it is not possible to notice a significant difference on these values. 

Therefore, it can be concluded that the resistance of the dissimilar alloy is equivalent to the resistance to the 

material with the lowest resistance, similarly welded.  

Aiming to evaluate the alterations of mechanical properties on butt weld and on diverse joint areas, 

micro-hardness profiles were elaborated to each dissimilar union. Figure 3 presents results on the Vickers 

micro-hardness and co-relate them, through graphics background image, to the location in which the indenta-

tions were done on the test pieces.  

Alloys 5754 and 5383 as received have the hardness of 84.02 HV0.2 and 102.27 HV0.2 respectively. For 

the welding of alloy 5754 with alloy 5383, it could be observed that there was loss of micro-hardness in the 

weld seam, when compared to alloy 5754. The micro-hardness decreases on alloy 5383, near the weld seam. 

Thus, the heat generated by the welding affected the micro-hardness of alloy 5383 and 5754. 
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Figure 3: Result of Vickers micro-hardness for alloys 5754 - 5383, 5383 – 6005 and 5754-6005. 

For the dissimilar alloys 5754-6005, there was a slight increase on the micro-hardness values for alloy 

5754 by a few points, the probable cause is that they are high AL2O3 sites, which are particles present in alu-

minum and magnesium alloys and significantly increase the hardness of the material [19]. It could be per-

ceived that there were some oscillations on the values measured in the fusion lines and on the weld seam, 

possibly generated by the presence of micropores, located under the surface where the indentation was done, 

due to vaporation of Mg and Zn elements [21]. For alloy 6005, there was a decrease on micro-hardness on 

HAZ when compared to the alloy as received, with 83,32 HV0,2; it spread up to a distance of 16,5 mm from 

the weld seam center. This effect was also found in a similar way by GUNGOR, et al. [14] in the welding of 

other alloys of the family 6XXX. 

For the hardest alloy, 5383, after welding with the least hard one, 6005, a reduction on the hardness 

values was noticed, beginning at 4 mm from the fusion line on alloy 5383. The weld seam had less variation 

on the measurements, and a gradual reduction of the joint micro-hardness was noticed. 

Optical microscopy was used to investigate how the alloys’ microstructure was affected by the heat 

and how this influenced on the modification of the mechanical properties of tensile strength and micro-

hardness. Figure 4a presents the optical micrography of alloy 6005 T6 as-received condition, and, on Figure 

4b, after it was welded, at a distance of 7.5 mm from the center of the butt weld. One can notice an increase 

of the average grain size; the alloy as it was received presented an increase on the grain average size. The 

alloy, as-received condition, had a grain average size of 0.015 mm; after the welding process, this size went 

up to 0.096 mm. As alloy 6005 T6 has the grain size controlled by thermal treatment, and it was modified by 

the action of the welding heat, this phenomenon can be attributed to the loss of resistance, as observed in the 

traction tests. Figure 4c presents the micrograph at 6 mm from the joint center for alloy 6005, done in the 

interface area between the HAZ and the butt weld. It can be observed that the precipitates on grain bounda-

ries start to dissolve, and the linear continuity observed in Figures 4a and 4b was lost. In Figure 4d the mi-

crograph of the butt weld center is presented. In that area, there was a dissolution of precipitates characteris-

tic of β-Mg2Si, which contributes to the reduction on resistance to traction in this alloy family [15]. 
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a b 

  
c d 

Figure 4: Micrographs of alloy 6005 T6 as it was received attacked by Reagent 2. As it was received, with 10x of magni-

fication (a), after the welding, at HAZ, with 50x (b); of butt weld and HAZ interface, with 50x (c); of the butt weld with 

50x (d). 

The micrographs of Figures 5a and 5b have the same magnification and were taken in different posi-

tions in relation to the weld seam, which allowed the comparison of the microstructure at 18 mm (5a) and at 

8 mm (5b) from the butt weld center. With the distance of 18 mm from the butt weld, the material micro-

structure was not altered; at 8 mm from the butt weld center, there were not modifications on grain morphol-

ogy either. The elongated grains, characteristic of rolled alloys, were affected by the heat, which is noticed 

since 12 mm of distance from the butt weld center, and then the grains start to have morphology that resem-

bles the equiaxial.  

Near the weld seam, the grains start to have a less elongated form, but they still present a reduced size. 

A huge modification on the grain size happens at 6 mm from the weld seam center. The average size of the 

grain went up from 0.0011 mm to 0.0083 mm. In this area, there was a microstructural change. In places 

where there were not alterations caused by the heat, the grains were horizontally elongated; on the weld seam, 

the grains increased considerably, and became diagonally-oriented, as can be seen in the image of Figure 5d. 

An increase of 7.5 times of the average grain size could be noticed. Such change in microstructure can be 

related to the reduction of the micro-hardness average value of 19 HV. 
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Figure 5: Optical Micrographs of welding of similar alloys 5383 with, attacked by Reagent 1. At 18 mm from the butt 

weld center (a), at 8 mm from the butt weld center (b). Figure 9: at HAZ (c), and at the fusion line with the butt weld (d). 

In Figure 6, it is possible to observe how the resistance increase mechanism of alloy 5383 was altered. 

One can observe the detail of the formation of unconformities’ movement lines [16], and notice that entire 

blocks were displaced, a characteristic of cold work hardening [17]. In Figure 6 it can be noticed that this 

mechanism of resistance increase was modified when there was the fusion of the material with the additional 

metal, by the change of crystals orientation, for they lost the horizontal fibrous orientation, which provides 

resistance to that alloy. In Figure 6, one can observe the loss of morphology of elongated grains, a character-

istic of laminated materials after the welding, once that in the butt weld area, such morphology was altered. 

This can explain the decrease on the values of resistance to traction and hardness observed in the mechanical 

tests. 
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Figure 6: Micrograph of the welding of dissimilar alloy 5383 as received, attacked with Reagent 1 (b, c), of 

the alloy as it was received, and on the butt weld (d, e). 

4. CONCLUSION 

Alloys 5383 H34, 5754 H34 and 6005 T6 are compatible with MIG welding and do not lose resistance to 

traction when they are similarly welded. It means that the total resistance of this combination can be consid-

ered as the alloy resistance that is the least resistant when welded. Even though alloy 5383 presents a de-

crease on micro-hardness after it was welded, the areas that present lower micro-hardness were the fusion 

line and the HAZ in the dissimilar alloy at 5383. Therefore, those joint points can be considered the most 

susceptible to failures. The main cause of the reduction on resistance to traction and on the micro-hardness of 

alloys 5383 and 5754 was the loss of morphology of elongated grains and grain growth.  

The data obtained from this study contribute in a very positive way to the development and the scaling 

of new projects and technologies involving those alloys.  
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