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ABSTRACT
Self Compacting Concrete (SCC) is an engineered concrete manufactured in such a way that it can compact 
itself independently, without any external vibrations or equipment. The self-weight of the SCC is specifically 
higher than that of the Conventionally Vibrated Concrete (CVC) because of more fines in the SCC. The fines 
help to achieve self-compaction, but at the same time, it creates more shrinkage in the SCC. The fibers were 
used in the SCC to reduce these shrinkages. This investigation uses, various percentages of natural kenaf fibers 
such as 0.1%, 0.2%, 0.3% and 0.4%. Due to this variation in the fiber fractions, the workability properties are 
affected in the SCC. If the workability gets affected, the concrete does not have the self-compaction property and 
behaves as CVC. Hence the current research focuses on the SCC Workability Properties (WP) and optimization 
of SCC mix utilizing machine learning techniques. Considering the advantages of past research, a model was 
developed with a fusion approach that incorporates Principal Component Analysis (PCA) for SCCWP. Initially, 
the dataset is processed with the help of standardization using an SCC mix. The processed output is fed into 
principal component analysis for a dimensional shift from high to low. Then the low dimensional data is given 
as input to the effect of various workability properties of Fiber Reinforced Self Compacting Concrete (FRSCC) 
which was modeled using a Support Vector Machine (SVM) and Logistic Regression (LR). A comparison has 
been made, logistic regression produces a more reliable outcome compared to support vector machine in terms 
of all the evaluation metrics used.
Keywords: Self Compacting Concrete; Fiber Reinforced; Machine Learning; Optimization; Logistic 
Regression; Support Vector Machine.

1. INTRODUCTION
Self Compacting Concrete (SCC) is a novel type of concrete that is placed and compacted without the use of 
vibration [1]. Even when reinforcements are congested, they can flow under their self-weight, filling formwork 
and achieving complete compaction. Similar to the Conventionally Vibrated Concrete (CVC), the SCC has the 
same durability and engineering attributes. [2]. Vibration-free and compaction-free concrete have been produced 
in Europe since the early 1970s for congested reinforcements. The various cementitious material utilizations 
reduced the quantity of the cement required so, that the CO2 emission is reduced due to the cement production 
[3]. SCC can be designed to meet density, workability, strength, and durability requirements. The increased 
powder content in SCC may induce more plastic shrinkage or creep than CVC [4]. It is important to take these 
things into account when developing and defining SCC. Currently, there is a lack of understanding of these 
factors, and this study focuses primarily on these issues. SCC enables rapid concreting, reducing construction 
time and allowing for easier flow around congested reinforcing due to supplementary cementitious materials 
[5]. Higher levels of finish and durability are feasible because of the high degree of homogeneity, few voids, and 
consistent concrete strength that may be achieved with SCC fluidity and resistance to segregation [6]. SCC is 
frequently manufactured with a low water-cement ratio, which enables strong initial strength, prior demolding, 
and speedier service use. Eliminating vibrating machinery enhances the working conditions at construction 
sites and precast locations where the concrete is poured by minimizing worker exposure to noise and vibration. 
SCC is an extremely appealing option for precast and other works [7]. The most recent information available 
to producers and customers at the time had been provided by EFNARC’s “Specification & Guidelines for Self-
Compacting Concrete,” which was published in 2002 [8].
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The fibers were added in the SCC, to reduce the brittle property and enhance the tensile properties 
[9]. Kenaf fiber is a natural fiber that is available in India over almost all the states. In ancient days across 
India, the kenaf fibers were used for connecting wood planks etc. These kenaf fibers have good mechanical 
properties. The kenaf fiber creates a better bond between the cement matrix and it is an effective green waste 
product for the construction industry [10]. The natural kenaf fibers are more effective in the enhancement of 
the shrinkage properties of the composites and it is free of cost since it is a waste product accumulated in 
large quantity [11]. It has more durability and strength when compared to other natural fibers. These kenaf 
fibers have good mechanical properties. However, the alkali treatments required for natural fibers to improve 
all these properties [12].

The Machine learning algorithms used in Artificial Intelligence (AI) are broadly categorized into four 
types (i) Supervised and (ii) Unsupervised (iii) Semi-Supervised (iv) Reinforced learning [13]. Each modeling 
algorithm has specific features and applications. Machine Learning is a powerful computation tool since it 
requires less time and more accuracy due to the training of the model compared to traditional computational 
modeling [14]. Since material science research has labeled or targets for predictions, supervised learning 
modeling is used. Supervised learning has many algorithms like linear regression, logistic regression and KNN 
etc. Linear regression is used for the continuous target values. For the prediction of strength and durability of 
the concrete linear regression (Simple linear or Multilinear regression) is used since the strength values are 
continuous [15]. Logistic regression is a simple tool when modeling the dependence of binary and multiple-
class response variables on one or more independent variables [16]. Mathematical modeling is employed 
to evaluate the strength and durability properties of the concrete with various admixtures at various partial 
replacements [17].

The workability testing procedure for the SCC is different from the CVC. In CVC, only the slump height 
decides the workability parameter, whereas, in the case of SCC it has to satisfy three properties like flowability, 
passing ability, and segregation resistance [18]. Cement-based nanocomposites are an active area of study, 
specifically using AI techniques to evaluate and predict cement-based materials mechanical characteristics 
[19, 20, 21]. Also, some scientists have tried using ML techniques to assess the effectiveness of cement-based 
nanocomposites. As an illustration, the mechanical properties of cement-based materials can be predicted using 
artificial neural networks (ANN) as well as other genetic optimization techniques. To predict how strong recycled 
aggregate concrete will be, KHADEMI et al. [22] studied the usage of multiple linear regression and adaptive 
neural fuzzification systems. Similarly, in a subsequent investigation, KHADEMI and JAMAL [23] utilized 
the same method to forecast the strength development of the concrete made from recycled aggregate after 
two weeks of curing. The aforementioned method yielded findings that were in agreement with the projected 
ones, proving the viability of using machine learning approaches to foretell the efficiency of cemented-based 
materials. Unfortunately, there is little data to back up the claims that artificially intelligent approaches may 
accurately and efficiently increase the strength properties of cemented-based composites that employ mining 
waste for aggregates. In addition, it is worth noting that the aforementioned computer vision methods have been 
effectively adapted towards the forecast of the concrete structures, although these investigations still have the 
constraints of uncertainty, being moment, and low efficiency.

The field also makes use of more sophisticated algorithms like the random forest, support vector machine, 
and decision tree. It’s important to highlight that almost all machine learning algorithms can provide reliable 
predictions, but there is little study on how different models affect reliability. The aforementioned methods vary 
in their sensitivity to various types of datasets and features. 

In this research work the SCC was produced with various proportions of fly ash for enhancing the 
workability properties and kenaf fiber for enhancing the strength properties of the concrete. Based on this for 
various mix proportions, the workability parameters are measured in the fresh Self Compacting Concrete. These 
workability parameters help determine the nature of the concrete due to fly ash and kenaf fiber. Then these 
workability parameters are converted into categorical values for the logistic regression modeling. The logistic 
regression algorithm is used for the classification of concrete based on the workability parameters. Modeled the 
hypothesis for prediction the whether the given mix proportions are achieving self-compaction or not based on 
the LR. The LR is primarily a binary classification hypothesis like 0 or 1, True or False or Yes or No. Based 
on that the hypothesis was created for predicting workability properties of SCC. Generally, Machine Learning 
algorithms required data sets. The data set was prepared based on the various mix proportions with their relevant 
workability parameters.

2. MATERIALS AND METHODS
The materials used for the production of Fiber Reinforced Self Compacting Concrete (FRSCC) are listed 
below.
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2.1. Cement
The Ordinary Portland Cement (OPC) 53 Grade were used in the SCC mix which satisfying the IS 12269-2013 
[24]. The cement-specific gravity is 3.15 and 5% fineness.

2.2. Fly ash
The class F-Fly Ash obtained from the Ennore-Chennai plant is utilized in the research work and satisfies the IS 
3812(1)- 2013 [25] which has a specific gravity of 2.12.

2.3. Fine aggregate
Locally available natural sand as a Fine Aggregate contains more fines to satisfy the SCC criteria. The specific 
gravity of the sand is 2.53 (Zone II), and it complies with IS 383-2016 [26].

2.4. Coarse aggregate
Locally available natural Coarse Aggregates of 12 mm size with a specific gravity of 2.63 is used in the research 
work. The unit weight is 1610 kg/m3.

2.5. Water
The water free from impurities and salts is used for mixing the SCC.

2.6. Super plasticizer
The Polycarboxylate Ether based Super Plasticizer is used to obtain the flow of SCC it has a specific gravity of 
1.1, which includes the viscosity modifying agent.

2.7. Kenaf fiber
In this work, the Kenaf Fiber is obtained from the villages near Villupuram district, Tamil Nadu, India. The 
naturally available Kenaf Fiber is treated with 5% NaOH in the laboratory as shown in Figure 1. The NaOH alkali 
treatment helps enhance the natural fiber’s mechanical properties and compatibility properties in the composite 
matrix [27]. The diameter of the fiber ranges from 0.8 to 1.2 mm, and the length of the fiber ranges from 20 mm 
to 25 mm (20 to 25 aspect ratio) and the proportions are based on clause 4.5.7 of IRC SP:46-2013 [28].

Figure 1: Kenaf Fiber.
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3. METHODOLOGY
This section explores various techniques that are used to predict self-compacting concrete workability. A dataset 
has been created to analyze the efficacy of the proposed framework, which is given in Table 1 and Table 2. The 
raw dataset is initially preprocessed using the standardization technique (SSC-Mix). Then, check whether high 
dimensions exist over the dataset. If so, the dataset is fed as input to the PCA. Then, the transformed output 
is provided as input to the logistic regression and support vector machine. Finally, the most feasible model is 
determined with the help of various performance evaluation metrics. The proposed architecture is represented 
in Figure 2.

4. EXPERIMENTAL INVESTIGATION

4.1. Mix proportions of self-compacting concrete
The mix proportions for SCC are designed based on the IS10262-2009 [29] and IS 456-2000 [30] recommenda-
tions for SCC. The mix design proportions keep fine and coarse aggregate fractions constant and the sample mix 
is represented in Figure 3. The various percentages of partial replacement of cement by fly ash and the addition 
of various percentages of the alkali-treated kenaf fiber are presented in Table 1.

Figure 2: Proposed Architecture.

Figure 3: Self Compacting Concrete Mix.
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Table 1: Mix Proportions of Fiber Reinforced Self Compacting Concrete.

MIX ID CEMENT 
(kg/m3)

FLY ASH 
(kg/m3)

FIBER
(kg/m3)

FINE  
AGGREGATE 

(kg/m3)

COARSE  
AGGREGATE  

(kg/m3)

WATER 
(LITRES)

SP 
(LITRES)

SCC_FA00_KF0.0 480 0 0 956 766 173 4.32

SCC_FA00_KF0.1 480 0 1.21 956 766 173 4.32

SCC_FA00_KF0.2 480 0 2.42 956 766 173 4.32

SCC_FA00_KF0.3 480 0 3.63 956 766 173 4.32

SCC_FA00_KF0.4 480 0 4.84 956 766 173 4.32

SCC_FA10_KF0.0 432.5 47.5 0 956 766 170 4.23

SCC_FA10_KF0.1 432.5 47.5 1.21 956 766 170 4.23

SCC_FA10_KF0.2 432.5 47.5 2.42 956 766 170 4.23

SCC_FA10_KF0.3 432.5 47.5 3.63 956 766 170 4.23

SCC_FA10_KF0.4 432.5 47.5 4.84 956 766 170 4.23

SCC_FA15_KF0.0 408.5 71.5 0 956 766 169.5 4.14

SCC_FA15_KF0.1 408.5 71.5 1.21 956 766 169.5 4.14

SCC_FA15_KF0.2 408.5 71.5 2.42 956 766 169.5 4.14

SCC_FA15_KF0.3 408.5 71.5 3.63 956 766 169.5 4.14

SCC_FA15_KF0.4 408.5 71.5 4.84 956 766 169.5 4.14

SCC_FA20_KF0.0 385 95 0 956 766 168 4.05

SCC_FA20_KF0.1 385 95 1.21 956 766 168 4.05

SCC_FA20_KF0.2 385 95 2.42 956 766 168 4.05

SCC_FA20_KF0.3 385 95 3.63 956 766 168 4.05

SCC_FA20_KF0.4 385 95 4.84 956 766 168 4.05

SCC_FA25_KF0.0 360.5 119.5 0 956 766 166.5 3.96

SCC_FA25_KF0.1 360.5 119.5 1.21 956 766 166.5 3.96

SCC_FA25_KF1.2 360.5 119.5 2.42 956 766 166.5 3.96

SCC_FA25_KF0.3 360.5 119.5 3.63 956 766 166.5 3.96

SCC_FA25_KF0.4 360.5 119.5 4.84 956 766 166.5 3.96

SCC_FA30_KF0.0 337 143 0 956 766 165 3.87

SCC_FA30_KF0.1 337 143 1.21 956 766 165 3.87

SCC_FA30_KF0.2 337 143 2.42 956 766 165 3.87

SCC_FA30_KF0.3 337 143 3.63 956 766 165 3.87

SCC_FA30_KF0.4 337 143 4.84 956 766 165 3.87

4.2. Workability properties of SCC
The self-compaction is achieved based on the fresh concrete properties. To attain self-compaction, the given fresh 
concrete mix should satisfy the three essential properties: flowability (filling ability), passing ability (passing 
between the reinforcement), and stability (segregation resistance). Each property devices a different testing 
procedure and testing methods. In this research work, the slump flow test is chosen for measuring the flowability 
of the concrete, V-funnel test is selected to measure the filling ability and segregation resistance of the concrete, 
and the L-box test is conducted to measure the passing ability of the concrete between the reinforcements. The 
maximum size of the aggregate used in the concrete is limited to 20 mm in all the tests.

The test results are converted into binary values, such as 0 and 1, for modeling in the machine learning 
algorithm. The conversion of the binary value is based on the EFNARC and IS 456–2000 guidelines. Table 3 
indicates the EFNARC and IS 456-2000 guidelines. Table 2 represents the binary values of the Workability 
Parameters of FRSCC.
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4.3. Standardization
The first step in machine learning modeling is standardization. The standardization technique is an important 
tool that needs consider in logistic regression or any machine learning algorithm. The input parameters of the 
hypothesis have various ranges of scales and units which leads to bias in the output. For example, cement range 
from 337–480 kg/m3 which is more than the fiber range 0–4.84 kg/m3 or in some cases some input features are 
in kg/m3 and some features in percentage. So, to avoid misclassification, this standardization technique is used. 
The standardization technique is used in the input features of the SCC mix. This feature scaling is an essential 

Table 2: Workability Parameters of FRSCC.

MIX ID SLUMP V-FUNNEL L-BOX
SCC_FA00_KF0.0 1 1 1
SCC_FA00_KF0.1 1 1 1
SCC_FA00_KF0.2 1 0 0
SCC_FA00_KF0.3 0 0 0
SCC_FA00_KF0.4 0 0 0
SCC_FA10_KF0.0 1 1 1
SCC_FA10_KF0.1 1 1 1
SCC_FA10_KF0.2 1 1 0
SCC_FA10_KF0.3 1 0 0
SCC_FA10_KF0.4 0 0 0
SCC_FA15_KF0.0 1 1 1
SCC_FA15_KF0.1 1 1 1
SCC_FA15_KF0.2 1 1 1
SCC_FA15_KF0.3 1 0 0
SCC_FA15_KF0.4 1 0 0
SCC_FA20_KF0.0 1 1 1
SCC_FA20_KF0.1 1 1 1
SCC_FA20_KF0.2 1 1 1
SCC_FA20_KF0.3 1 1 0
SCC_FA20_KF0.4 1 0 0
SCC_FA25_KF0.0 1 1 1
SCC_FA25_KF0.1 1 1 1
SCC_FA25_KF1.2 1 1 1
SCC_FA25_KF0.3 1 1 1
SCC_FA25_KF0.4 1 1 0
SCC_FA30_KF0.0 1 1 1
SCC_FA30_KF0.1 1 1 1
SCC_FA30_KF0.2 1 1 1
SCC_FA30_KF0.3 1 1 1
SCC_FA30_KF0.4 1 1 1

Table 3: Workability Guidelines of SCC.

CLASSIFICATION 1 0
Slump Flow 650 mm – 800 mm Other than 650 mm – 800 mm

V-Funnel 6 sec – 12 sec Other than 6 sec – 12 sec
L-Box 0.8 ratio – 1.0 ratio Other than 0.8 – 1.0 ratio
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Table 4: Standardized Mix Proportions of FRSCC.

MIX ID CEMENT 
(kg/m3)

FLY 
ASH  

(kg/m3)

FIBER
(kg/m3)

FINE  
AGGREGATE 

(kg/m3)

COARSE 
AGGREGATE 

(kg/m3)

WATER 
(LITRES)

SP 
(LITRES)

SCC_FA00_KF0.0 1.688 –1.688 –1.414 0.000 0.000 1.681 1.463
SCC_FA00_KF0.1 1.688 –1.688 –0.707 0.000 0.000 1.681 1.463
SCC_FA00_KF0.2 1.688 –1.688 0.000 0.000 0.000 1.681 1.463
SCC_FA00_KF0.3 1.688 –1.688 0.707 0.000 0.000 1.681 1.463
SCC_FA00_KF0.4 1.688 –1.688 1.414 0.000 0.000 1.681 1.463
SCC_FA10_KF0.0 0.678 –0.678 –1.414 0.000 0.000 0.517 0.878
SCC_FA10_KF0.1 0.678 –0.678 –0.707 0.000 0.000 0.517 0.878
SCC_FA10_KF0.2 0.678 –0.678 0.000 0.000 0.000 0.517 0.878
SCC_FA10_KF0.3 0.678 –0.678 0.707 0.000 0.000 0.517 0.878
SCC_FA10_KF0.4 0.678 –0.678 1.414 0.000 0.000 0.517 0.878
SCC_FA15_KF0.0 0.168 –0.168 –1.414 0.000 0.000 0.323 0.292
SCC_FA15_KF0.1 0.168 –0.168 –0.707 0.000 0.000 0.323 0.292
SCC_FA15_KF0.2 0.168 –0.168 0.000 0.000 0.000 0.323 0.292
SCC_FA15_KF0.3 0.168 –0.168 0.707 0.000 0.000 0.323 0.292
SCC_FA15_KF0.4 0.168 –0.168 1.414 0.000 0.000 0.323 0.292
SCC_FA20_KF0.0 –0.331 0.331 –1.414 0.000 0.000 –0.258 –0.292
SCC_FA20_KF0.1 –0.331 0.331 –0.707 0.000 0.000 –0.258 –0.292
SCC_FA20_KF0.2 –0.331 0.331 0.000 0.000 0.000 –0.258 –0.292
SCC_FA20_KF0.3 –0.331 0.331 0.707 0.000 0.000 –0.258 –0.292
SCC_FA20_KF0.4 –0.331 0.331 1.414 0.000 0.000 –0.258 –0.292
SCC_FA25_KF0.0 –0.851 0.851 –1.414 0.000 0.000 –0.840 –0.878
SCC_FA25_KF0.1 –0.851 0.851 –0.707 0.000 0.000 –0.840 –0.878
SCC_FA25_KF1.2 –0.851 0.851 0.000 0.000 0.000 –0.840 –0.878
SCC_FA25_KF0.3 –0.851 0.851 0.707 0.000 0.000 –0.840 –0.878
SCC_FA25_KF0.4 –0.851 0.851 1.414 0.000 0.000 –0.840 –0.878
SCC_FA30_KF0.0 –1.351 1.351 –1.414 0.000 0.000 –1.423 –1.463
SCC_FA30_KF0.1 –1.351 1.351 –0.707 0.000 0.000 –1.423 –1.463
SCC_FA30_KF0.2 –1.351 1.351 0.000 0.000 0.000 –1.423 –1.463
SCC_FA30_KF0.3 –1.351 1.351 0.707 0.000 0.000 –1.423 –1.463
SCC_FA30_KF0.4 –1.351 1.351 1.414 0.000 0.000 –1.423 –1.463

process in modeling. In this case, the input features (X) are materials used. These features need a scaling process, 
the standardization is done by the statistical equation is known as Z-score normalization and the standardized 
mix proportions of FRSCC is presented in Table 4.

X_New =
X-Mean

Standard Deviation
� (1)

4.4. Principal component analysis (PCA)
In general, real-time data are purely highly dimensional in nature. So, processing those data is a very much 
complex task. Hence current research recommends a Principal Component Analysis (PCA) approach to con-
verting high-dimensional to low-dimensional data [31]. There are seven input features in each mix, truly it is 
not requiring all the features in training the model. In the mix design, the aggregates are kept constant. So, in 
the standardization process, both are zero. The remaining features are Cement, Fly Ash, Kenaf Fiber, Water and 
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Super Plasticizer. It is very difficult to make the model hypothesis correlate all five features with targets. So, that 
PCA analysis is done. The PCA for two components is illustrated in Figure 4.

Let’s consider the above Table 5, X1 and X2 values are the given data point which is the normal (X1, 
X2) coordinate.

Step 1: To calculate the mean value of both X1, X2

0
 ( 1)

1 = 
n

i
g X

X
m

=∑ � (2)

0
 ( 2)

2 = 
n

i
g X

X
m

=∑ � (3)

Using Equations 2 and 3, the mean value of both X1 and X2 is determined, which is X1 = –0.10377 and 
X2 = 0.10377 respectively.

Step 2: Data adjusting
To make all the data points pass through the origin, subtracted every data point X1 and X2 to their 

respective mean value. This process is said to be Data Adjust. the results of the data adjustment will be in 
Table 6.

The average of the results of data adjustments is zero. From the data adjustment process, clearly 
understand that without applying the data adjustment process, the data point did not pass through the origin. If 
plot the original data point in the graph, it means it deviates from the origin. Hence, a data adjustment process is 
required in principle component analysis.

Step 3: Determine the Covariance matrix
It is the estimation between the two dimensions. Utilizing determining covariance matrix, we determine 

how variables X1 and X2 vary together.

Figure 4: Principal Component Analysis for Input Mix Proportions.

Table 5: Input Data.

X1 1.688 1.688 0.678 0.678 0.168 0.168 –0.331 –0.331 –0.851 –0.851 –1.351 –1.351 –1.351

X2 –1.688 –1.688 –0.678 –0.678 –0.168 –0.168 0.331 0.331 0.851 0.851 1.351 1.351 1.351

Table 6: Output After the Process of Data Adjustment.

X1 –1.792 –1.792 –0.782 –0.782 –0.272 –0.272 0.227 0.227 0.747 0.747 1.247 1.247 1.247

X2 1.792 1.792 0.782 0.782 0.272 0.272 –0.227 –0.227 –0.747 –0.747 –1.247 –1.247 –1.247
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0
( 1 ) ( 2 )

( 1,
1

2)
1

2n

i
X X

Co X
X X

v X
n

=
− −

=
−

∑ � (4)

X1 – Original x-axis data point.
X– – The mean of X.
X2 – Original y-axis data point.
X––2 – The mean of Y.
N – Total sample.
Note: Positive value implies that, if our output is positive, then its direction would be the same. For 

instance, the X1 value increases corresponding X2 value also increases.

Step 4: Covariance Matrix
The covariance is (X1,X1) & (X2,X2) are 1.140 and (X1,X2) & (X2,X1) are 0.000. These elements 

present in non-diagonals in this covariance matrix are positive. Also expect both X1 and X2 values are increases 
together.

Step 5: Determine Eigen value and Eigen vector for the covariance matrix
Eigenvector represents the projected vector of the data. It is directed perpendicularly towards the data and 

the new direction determines the most important data which lies in the following values for the given example,

1.140 1  0
  =    = 

1.140 0  1
Eigen value Eigen vectors   

   
   

Step 6: To determine PCA value
The highest Eigenvalue with the corresponding Eigenvector will be selected as PCA, then the rest of the 

dimension is ignored.

1. Take ‘n’ dimension data (here n = 2), so need to find ‘n’ Eigenvector.
2. Then Eigenvector ‘P’ can be selected. Also, p < n and need to reduce the original dimension.

So, the entire re-represent data are determined using the given formula. Also, the data taken here is data 
adjustment output.

Resultant vector = Row feature vector * Row data adjust

4.5. Logistic regression
Logistic Regression (LR) is a powerful classifier found among supervised machine-learning algorithms [32]. It 
is an extension of the generic regression modeling that, when imposed on a dataset, reflects the probability of 
a given instance occurring or not occurring [33]. Since it is probability-based, the outcome of the model will 
fall somewhere between 0 and 1 and LR determines the likelihood of a new observation falling into a particular 
category. As a consequence of this, a threshold is chosen and applied, which specifies the break between the two 
classes so that the LR can be implemented as a binary classification. For example, a probability value that has 
been determined as being greater than 0.5 is referred to as belonging to “class A,” while anything lower than that 
value belongs to “class B.” The LR model can be generalized as a multinomial logistic regression [34], which 
allows for the modeling of categorical variables that have more than two possible values (Figure 5).

Initially, LR analyses the instance of the given dataset and fits the logistic model over the data point by 
using a function such as 1

1 + e–z
 an error has been minimized with help of the cost function.

0 1 1 2 2
( )In  =  +   +  +  + 

1 ( ) n n
P Z b b A b A b A

P z
 
 − 

 � (5)
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The LR model establishes a direct relationship between the likelihood of Y and the predictor variables 
through the use of Equation 8. Estimating the values of the n + 1 uncertain variables in the equation is the 
purpose of LR. The likelihood ratio compares the likelihood of success against the likelihood of failure and 
minimizes the error. The logistic transformation guarantees that predicted values do not exceed the range of 0 to 
1 and prevent such values from falling outside of the range [35].

( ) ( ) = 
1 ( )

odds eventProbability Event
odds event+

� (9)

4.6. Support vector machine (SVM)
SVM is a classification method that optimizes the use of marginal planes. In its most basic form, the SVM is 
a binary linear classifier [36, 37]. But it can also analyze non-linear data with the help of Kernels and multi-
class data with the help of a variety of approaches. In addition to this, it divides the classes according to the 
dimensions of the space (also known as the ideal margin) between both borderline occurrences (called Sup-
port Vectors). Because of this, some refer to it as the optimal margin classifier. SVM has been adapted to deal 
with multi-class issues by utilizing methods like One-Against-One [38], One-Against-Rest [39], and Acyclic 
Directed Graph SVM [40], amongst others.

4.6.1. Linear SVM
The Linear SVM technique has seen an extensive application for classification and prediction [20]. This method 
is founded on a collection of very effective learning strategies that implement the statistical learning model [20]. 
Initially, support vector machines (SVMs) were developed to address binary classification. They are capable 
of working on problems involving the classification of multiple classes by integrating multiple binary SVM 
classifiers for every pair of categories. In addition, SVM can be modified to function as a nonlinear classifier 
by making use of nonlinear kernels in the training process. The simplest version of the support vector machine, 
which identifies an input vector y Rn, is defined as follows:

( ) = ( ) + g y y cωφ � (10)

2
1, ,

1 1  ||   ||  + 
2j

M
jja

min D
Nω ξ

ω ξ
=∑ � (11)

Subject to the following constraints,

( ) . ( )   1i j j jZ y cωφ ξ+ ≤ − � (12)

ξ ≥ 1, for j = 1,…, M� (13)

Figure 5: Logistic Regression Model.
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where ‘c’ and ‘a’ are two variables that need to be estimated based on their respective inputs. The symbol (y) 
represents the non-linear convolution layer in the feature space. Unlike other classifiers, the Support Vector 
Machine (SVM) finds a negotiated compromise between providing a basis corresponding to generalisation and the 
empirical error by minimising systemic risk rather than by minimising empirical error in the training dataset [41].

4.6.2. Non-linear SVM classification
In many scenarios, effective predictive results cannot be obtained utilizing linear SVM because the data cannot 
be separated linearly. It is necessary to convert the input data into a space with a higher dimension., where it 
can be linearly separated, by the use of an appropriate mapping function (a kernel function). Consequently, a 
hyperplane can be used to partition data even in significantly greater spaces. Figure 6. shows how a nonlinear 
kernel functional, like a Radial Basis Kernel, can transform data that is not differentiable in two dimensions into 
data that is manageable in the nonlinear feature set.

One possible expression for a non-linear SVM in generality is:

1
( ) =  P( , ) + M

i i i ji
g x x y y cα

=∑ � (14)

In addition, the Lagrangian optimization problem is altered for a generalized non-linear support vector machine 
by the substitution yi of with a mapping function P(yi, yj) that is responsible for the non-linear mapping together 
into a feature set, as seen in the following expression:

1 1 1
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2

M M M
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The following is an expression that may be used to describe a generic decision boundary for non-linear 
SVM. This function is utilized for constructing the best possible hyperplane that separates the feature space.

( )1
( ) =  P( , ) + M

i ij
g x x yi y cα

=∑ � (17)

4.6.3. Different kinds of kernel function for non-linear SVM
One type of data-independent algorithm is the kernel approach. The inner components of a subspace are ana-
lyzed using the kernel function. To clarify, a kernel-based approach consisted of a component that carries out 
the mappings into the feature set, and then a trained model is used in the feature set to unearth the linear patterns 
therein. Within the fields of statistics study and machine learning, this technique has long since been standard 
practice. By applying a computational shortcut known as the kernel function, one can easily express the linear 
patterns in high-dimensional spaces. Its primary benefit is that it allows the user to create a non-linear boundary 
by employing techniques originally developed for linear classifiers. For another, it enables the use of a classifier 
that does not naturally map onto a finite-dimensional vector space.

4.6.3.1. Linear kernel
The linear kernel is shown by the kernel function of x and y, which is written as:

K(yi, yj) = yi 
. yj.

This expression is used to measure how non-linear the training dataset is also a benchmark for the final 
improved performance in categorization when non-linear kernels are being used.

4.6.3.2. Polynomial kernel
Polynomial mapping is a generic process for sculpting that does not follow a straight line. This is done with the 
following term:

( )p ( ) = 1 + ( )
t

i j i jy , y y y⋅ � (18)
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where ‘t’ is a factor that the user can set. One problem with this technique is that it can give rise to overfitting 
because using a polynomial degree makes the classification texture more complicated.

4.6.3.3. Sigmoid kernel
A hyperbolic tangent feature in the contour of a sigmoid is used in neural networks. In SVM classification, a 
sigmoidal kernel could also be used, which is written as follows:

{ }p ( ) = tan (   ) + i j i j
.y , y y y cγ � (19)

4.6.3.4. Radial basis function kernel
To construct the Gaussian Radial Basis Function (RBF) Kernel is:
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|| ||
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Exponential RBF could be used if the way the hyper-plane regions are defined is not consistent. refers to 
how skewed the dispersion is, and it is a parameter that the user can change.

5. RESULT AND DISCUSSION
The experimentation carried out to develop FRSCC is examined in this section. The proposed model encom-
passes the machine learning approach such as principal component analysis and logistic regression. The dataset 
has been created based on the various laboratory workability tests which have given in Tables 1 and 2. So far, no 
research work carried forward to predict the workability of the SCC using machine learning approaches. Hence 
our research work is concerned with the development of SCC workability parameters. Our proposed work uti-
lizes two classification algorithms for effectively categorizing the self-compacting concrete including SVM and 
LR. Also, performance evaluation metrics such as accuracy, precision, recall, sensitivity, specificity, F1-score 
and ROC curve has been determined for both the classification algorithms and comparison have been made. 
From the comparison, Logistic Regression produces a more reliable outcome than support vector machine.

The confusion matrix is used to assess the classification model’s performance by using Python Pro-
gramming with different random state conditions. A two-dimensional matrix with predicted and actual values 
is called a confusion matrix. The value from the specified target in the workability test is the actual value. The 
predicted value is the mix’s feasibility as ascertained by applying the hypothesis. Since this is a classification 
hypothesis, the model’s performance is evaluated using this confusion matrix as a basis. In addition to predicting 
accuracy, the confusion matrix also identifies the kind of error that occurs in the model. There are four cases 
in the confusion matrix True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).

The testing data sets consist of a total of six targets. The model selects the six random targets with their 
corresponding mix proportions for the hypothesis testing. The confusion matrix for the logistic regression slump 
flow test is given in Figure 6. From the confusion matrix for the slump flow test, the TP is five, TN is one and 
both FP & FN is zero. So, the Type I and Type II errors in the hypothesis are zero. Therefore, the accuracy of 
the model is 100%. Also, the following equations represent the formulas for the evaluation metrics that are used 
in the present work.

, = 
, , ,
TP TNAccuracy

TP TN FP FN
∑

∑
� (21)
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The confusion matrix for the logistic regression V-Funnel test is given in Figure 7. From the confusion 
matrix for the V-Funnel, the TP is four, TN is one but the FP is one. The target is zero, the model predicted the 
target as one. So, it is a Type I error. Therefore, the accuracy of the model is reduced in the testing data set. The 
accuracy of the model is 83.33% for the V-Funnel test.

The confusion matrix for the logistic regression L-Box test is given in Figure 8. From the confusion 
matrix for the L-Box, the TP is three, TN is two but the FN is one. The target is one, the model predicted the 
target as zero. So, it is a Type II error. Therefore, the accuracy of the model is reduced in the testing data set. The 
accuracy of the model is 83.33% for the L-Box test also.

A graph known as a Receiver Operating Characteristic curve (ROC curve) shows the classifier’s accuracy 
when using all available modelling tools. Plotting the true positive rate (TPR) against the false positive rate 
(FPR) at different threshold values yields the ROC curve.

Figure 7: Confusion Matrix for the V-Funnel.

Figure 6: Confusion Matrix for the Slump Flow.
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The True Positive Rate (FPR) is given by the relation

TPR =
TP

TP + FN

The False Positive Rate (FPR) is given by the relation

FPR =
FP

TN + FP

Figure 9. displays the ROC curve for the slump flow model. The TPR vs. FPR of Slump Flow is used to 
plot it. Given that the slump model’s Area Under the Curve (AUC) is 1.0, the model’s accuracy is 100%. 

Figure 10. displays the ROC curve for the V-funnel model. The V-Funnel’s TPR vs. FPR is used to plot 
it. Given that the V-funnel model’s Area Under the Curve (AUC) is only 0.75, the model’s accuracy is 75%.

Figure 11. displays the L-box model’s ROC curve. Plotting is done using the L-Box TPR vs. FPR. Since 
the Area Under the Curve (AUC) for the L-box model is 0.87, the model’s accuracy is 87%.

Figure 8: Confusion Matrix for the L-Box.

Figure 9: ROC Curve for the Slump Flow.
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Figure 10: ROC Curve for the V-Funnel.

Figure 11: ROC Curve for the L-Box.

Table 7: Comparison of Performance between Support Vector Machine (SVM) and Logistic Regression without Principal 
Component Analysis.

PERFORMANCE EVALUATION 
METRICS USED

SUPPORT VECTOR MACHINE 
(SVM)

LOGISTIC REGRESSION 
(LR)

Accuracy 93.76 95.32

Precision 94.32 95.93

Recall 93.82 94.21

Sensitivity 92.21 95.01

Specificity 93.01 95.49

F1-score 92.29 95.29
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Figure 12: Comparison of Performance of SVM and Logistic Regression without PCA.

Table 8: Comparison of Performance between Support Vector Machine (SVM) and Logistic Regression with Principal 
Component Analysis.

PERFORMANCE EVALUATION 
METRICS USED

SUPPORT VECTOR 
MACHINE (SVM)

LOGISTIC REGRESSION 
(LR)

Accuracy 96.32 99.03

Precision 95.49 98.21

Recall 95.21 98.66

Sensitivity 95.39 98.01

Specificity 94.93 98.25

F1-score 95.01 98.65

Figure 13: Comparison of Performance of SVM and Logistic Regression with PCA.

Table 7 explores the working performance of the SVM and LR without PCA. From the comparison, 
we can find that logistic regression performs well with an accuracy of 95.32%, which is a comparably good 
outcome to support vector machine. It can be given in a visualized way in Figure 12. Followed by this, Table 8  
explores the working performance of the SVM and LR with PCA. From the comparison, we can find that logistic 
regression performs well with an accuracy of 98.32%, which is a comparably good outcome to support vector 
machine. It can be given in a visualized way in Figure 13 The performance of the classification outcomes is 
gradually increased once PCA is applied. From that, we infer this dataset required dimensionality reduction 
approaches to produce a reliable outcome.
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6. CONCLUSION
In this research work, the Fiber Reinforced Self Compaction Concrete (FRSCC) workability attributes were 
categorized using machine learning-based modeling. This classification can be used to forecast the optimal 
Self Compaction Concrete (SCC) mix as well as whether the supplied mix of fiber reinforced concrete 
satisfies the self-compaction requirement or not. There are thirty data sets were used in the modeling for 
Slump flow, V-Funnel, and L-Box with different mix proportions. The modeling is based on the Logistic 
Regression (LR) and Support Vector Machine (SVM) approach of binary classification without and with 
Principal Component Analysis (PCA). The performance of LR is more than 5-10% when compared to SVM. 
The confusion matrix and ROC curve were used to predict the performance of the Logistic Regression model. 
For the slump flow model, the accuracy of the prediction is more when compared to the training. It shows 
that the ML-based modeling predicts the FRSCC performance well with given input mix proportions. For 
V-Funnel and L-Box the accuracy of the prediction is similar to the training and it has Type I and Type II 
errors and these errors are minimized using more data sets in the training. It will be optimized by the more 
input data sets. From the research, the performance of Logistic Regression modeling is more efficient for 
the prediction of FRSCC workability properties than SVM. More trials and material wastages were reduced 
by using the Logistic Regression modeling. The optimized Self Compaction Concrete (SCC) mix can be 
produced using Logistic Regression with Principal Component Analysis (PCA). This model is a very effective 
and less time-consuming process. The model can be exported and utilized in Ready-Mix Concrete plants for 
Fiber Reinforced Self-Compaction Concrete (FRSCC) production.
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