
370

Revista da Sociedade Brasileira de Medicina Tropical 48(4):370-379, Jul-Aug, 2015
http://dx.doi.org/10.1590/0037-8682-0096-2015Review Article

Corresponding author: Prof. Eduardo Antonio Ferraz Coelho. Laboratório 
de Biotecnologia Aplicada ao Estudo das Leishmanioses/Depto. de Patologia 
Clínica/COLTEC/UFMG. Avenida Antônio Carlos 6627, 31270-901 
Belo Horizonte, Minas Gerais, Brasil.
Phone/Fax: 55 31 3409-4983
e-mail: eduardoferrazcoelho@yahoo.com.br
Received 18 March 2015
Accepted 10 June 2015

Theranostic applications of phage display to control 
leishmaniasis: selection of biomarkers for serodiagnostics, 

vaccination, and immunotherapy
Eduardo Antonio Ferraz Coelho[1],[2], Miguel Angel Chávez-Fumagalli[1], 

Lourena Emanuele Costa[1], Carlos Alberto Pereira Tavares[3], 
Manuel Soto[4] and Luiz Ricardo Goulart[5],[6]

[1]. Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 
Belo Horizonte, Minas Gerais, Brasil. [2]. Departamento de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas 
Gerais, Brasil. [3]. Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas 
Gerais, Brasil. [4]. Centro de Biología Molecular Severo Ochoa,  Consejo Superior de Investigaciones Científi cas-Universidad Autonoma de Madrid, Universidad 
Autónoma de Madrid, Madrid, Espanha. [5]. Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brasil. 
[6]. Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, United States of América.

ABSTRACT
Phage display is a high-throughput subtractive proteomic technology used for the generation and screening of large peptide 
and antibody libraries. It is based on the selection of phage-fused surface-exposed peptides that recognize specifi c ligands and 
demonstrate desired functionality for diagnostic and therapeutic purposes. Phage display has provided unmatched tools for 
controlling viral, bacterial, fungal, and parasitic infections, and allowed identifi cation of new therapeutic targets to treat cancer, 
metabolic diseases, and other chronic conditions. This review presents recent advancements in serodiagnostics and prevention of 
leishmaniasis -an important tropical parasitic disease- achieved using phage display for the identifi cation of novel antigens with 
improved sensitivity and specifi city. Our focus is on theranostics of visceral leishmaniasis with the aim to develop biomarker 
candidates exhibiting both diagnostic and therapeutic potential to fi ght this important, yet neglected, tropical disease.
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INTRODUCTION
Leishmaniasis is a group of cutaneous and visceral 

infections caused by protozoan parasites belonging to the genus 
Leishmania(1). The disease is characterized by high morbidity 
and mortality; it is spread in 98 countries and three continents 
(Asia, Africa, South and Central America), where 350 million 
people are at risk of contracting Leishmania infection(2) (3). Canine 
visceral leishmaniasis (CVL) caused by Leishmania (Leishmania) 
infantum chagasi is a major global zoonosis potentially fatal 
to humans and dogs. The infection is considered endemic in 
approximately 70 countries of southern Europe, Africa, Asia, and 
Central and South America(3) (4). However, geographic distribution 
of CVL is expanding throughout the Western hemisphere, and the 
disease can be currently found in countries from Argentina to the 
United States(5), reaching as far as Southern Canada(6).

Historically, leishmaniasis has been treated by chemotherapy 
using pentavalent antimony compounds like meglumine 
antimonate and stibogluconate. However, these drugs can be 
clinically ineffective in some visceral leishmaniasis (VL) cases 
which tend to relapse at a later stage (7) (8), and may cause side 
effects such as myalgias, arthralgias, pancreatitis, leucopenia, 
and renal, hepatic, and cardiac toxicity(9). The World Health 
Organization (WHO) has recommended the use of liposomal 
ampicillin B (L-AmpB) because of its effi cacy and safety(10); 
however, despite the improvement in therapeutic indexes shown 
by L-AmpB, its application remains limited, mainly because of 
the high cost(11).

In their life cycle, Leishmania parasites progress through 
several stages in different hosts and have developed sophisticated 
mechanisms for host invasion and immune escape. The fi rst 
step in the interaction between the host and the parasite is the 
recognition and binding to host cell receptors. Leishmania spp. 
species express a variety of surface and secreted molecules used 
by the parasite to attach and enter mammalian cells. These factors 
are key determinants of the disease progression, and most studies 
on host-pathogen interactions are focused on the identifi cation 
of Leishmania ligands and related host receptors using classical 
biochemical approaches such as affi nity purifi cation, cross-
linking, immunoprecipitation, and fractionation(12). However, 
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FIGURE 1 - Biopanning cycles in phage display-based antigen selection. Phage particles displaying antigens with high affi nity 
to the immobilized target molecule can be recovered using different elution protocols, including acid elution (glycine•HCl, pH 2.0) 
or competition for the binding to the immobilized target. Recovered phage clones are amplifi ed, titrated, and sequenced.

these techniques are not intended for high-throughput screening 
of multiple candidate molecules. One powerful approach that 
allows overcoming this limitation in the discovery of new 
parasite antigens is phage display technology(13). Phage display 
is a subtractive proteomic technique based on the cloning of 
foreign deoxyribonucleic acid (DNA) in a fi lamentous phage 
and presentation of recombinant peptide variants fused to phage 
outer surface proteins. The method was fi rst described by George 
Smith in 1985 when he reported the expression of a foreign 
polypeptide on the surface of phage particles(14). The nucleotide 
coding sequence of the foreign peptide was genetically fused in 
frame to the gene encoding bacteriophage coat protein, resulting 
in a protein hybrid, which presented the target peptide on the 
outer surface of viral particles(14).

The technique was successfully applied to the construction 
of bacteriophage libraries displaying multiple random surface 
peptides, enabling in vitro and in vivo selection and identifi cation 
of peptide motifs responsible for protein-protein, protein-DNA, 
enzyme-substrate, and other types of molecular interactions(15) (16) (17).
Phage libraries expressing exogenous peptides have been used 
in the identifi cation of cellular receptors and foreign antigens, 

antibody epitope mapping, drug discovery, protein engineering, 
and other applications based on high-affinity interactions 
between the target and recombinant peptides without prior 
knowledge of the motifs in question(18). Synthetic sequences 
mimicking target epitopes can be obtained by screening 
phage libraries; these short peptides called mimotopes that 
can be characterized as continuous/linear or discontinuous/
conformational epitopes of the proteins´ determinant regions, 
which may mismatch or only partially match their primary 
structure, but can perfectly well reproduce its three-dimensional 
conformation(19).

The selection of phage-displayed molecules with high 
affi nity to a particular target is performed by successive selection 
steps called biopanning (Figure 1). The target is immobilized 
on a solid support, and the phage display library in solution 
is applied to allow binding of specifi c variants to the target. 
The number of biopanning cycles depends on the degree of 
enrichment of phage particles displaying motifs specifi c for 
the immobilized target. Usually, three to five biopanning 
cycles are required for a population of phage clones with high 
affi nity to the target; implementation of more than fi ve cycles 
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can favor the selection of high-affi nity variants within the viral 
population, which outcompete those with low affi nity, thereby 
negatively affecting clonal diversity(20). This review explores 
potential use of phage display technology for theranostics of 
leishmaniasis, focusing on recent improvements in biomarker 
discovery strategies that have led to the identifi cation of novel 
vaccine candidates and diagnostic markers for VL.

BACTERIOPHAGES AS TOOLS FOR THE 
DEVELOPMENT OF NEW VACCINES, DIAGNOSTIC 

MARKERS, AND DRUGS

During recent decades, phage display has been widely used 
in medicine and biotechnology, promoting the discovery of new 
drugs and vaccine candidates, and the improvement of diagnostic 
tools for various diseases(21). Thus, it has been successfully 
applied to identify mimotopes used to diagnose malaria(22) 

(23), toxoplasmosis(24) (25), hepatitis A(26), neurocysticercosis(27), 
strongyloidiasis(28), thyroid cancer(29), Chagas’ disease(30), and 
bovine anaplasmosis(31), and to develop vaccine candidates 
against cysticercosis(32), herpes simplex virus infection(33), 
cancer(34), taeniasis(35), hepatitis B(36), trichinellosis(37), 
Alzheimer’s disease(38), and bovine anaplasmosis(39). Phage 
display technology has been also instrumental in the selection of 
therapeutic agents to treat various cancers such as glioblastoma, 
melanoma, leukemia, and prostate and thyroid cancers(40) (41).

Several studies have applied phage display for the development 
of disease diagnostic markers. The strategy was fi rst used in 
neurocysticercosis diagnostics(42). Recently, a phage-based enzyme-
linked immunosorbent assay (ELISA) assay has been employed 
to evaluate transmissible gastroenteritis virus infection in pigs(43); 
the study showed that ELISA coupled with phage display was a 
more sensitive method than conventional antibody-based ELISA. 
In another study, three peptides expressed in reactive phage clones 
and selected against serum from leprosy patients were successfully 
validated as tools for serological diagnosis of leprosy(44). 
A similar approach has been applied to develop diagnostics for 
other animal and human diseases, such as neurocysticercosis(27), 
strongyloidiasis(28), and bovine anaplasmosis(39).

Phage particles carrying antigenic determinants may be 
directly used for therapy. Thus, phage display was applied to 
select mimotopes for the treatment of Mycobacterium ulcerans 
in a mouse model. The authors have demonstrated that a single 
subcutaneous injection of a specifi c (D29) mimotope-expressing 
bacteriophage administered 33 days after bacterial challenge 
was effective in reducing the infection and preventing ulceration.

The protection resulted in a significant reduction of 
bacterial burden accompanied by increased production of 
cytokines, including interferon-gamma (IFN-γ, both in the 
infected footpads and draining lymph nodes. The treatment 
with D29 mimotope also stimulated the increase in infi ltrating 
lymphocytes and macrophages. The study has demonstrated a 
potential of phage-based therapy against M. ulcerans infection, 
paving the way for the development of novel phage-based 
therapeutic approaches(45).

Phage-displayed peptides employed as vaccine candidates 
have two important advantages. First, bacteriophages presenting 

antigenic and immunogenic determinants can be taken up by 
phagocytic cells and processed effi ciently, enabling peptide 
presentation by major class I and II histocompatibility 
complexes(46) (47). Second, the amplifi cation of peptides expressed 
on phage particles is easier and less expensive compared 
to conventional chemical synthesis or recombinant protein 
expression. Moreover, the fi nal product consists of multiple 
virus copies providing high level of mimotope exposure to 
the host’s immune system. In addition, bacteriophages are 
not pathogenic to humans and can replicate inside phagocytic 
cells(37) (48). An important aspect of using phage peptide clones 
as vaccine candidates is the immunostimulatory effect of non-
methylated cytosine-phosphate-guanosine (CpG) motifs present 
in phage genome, which can contribute to the activation of the 
mammalian immune system through Toll-like receptors(49) (50). Thus, 
the application of peptide-carrying bacteriophages can reduce 
or eliminate the need for adjuvants, which are administered 
together with synthetic peptides and recombinant proteins to 
activate and/or improve immunological response to vaccine 
candidates(51). 

PHAGE DISPLAY OF DUAL-FUNCTION PEPTIDES 
TO CONTROL LEISHMANIASIS: 

A THERANOSTIC APPROACH

Serological tests are currently recommended for the 
laboratory diagnosis of CVL. However, the serodiagnostic 
performance of these tests is hampered by insuffi cient sensitivity 
and/or specifi city, leading to the occurrence of false-positive 
results due to cross-reactivity with the antibodies against other 
parasites, such as Trypanosoma cruzi(52) (53) (54), Babesia canis, or 
Ehrlichia canis(55), or false-negative results in infected animals 
with low serum levels of antileishmanial antibodies(56) (57) (58) (59). 
Moreover, the two anti-CVL vaccines commercially available 
in Brazil can induce high production of Leishmania-specifi c 
antibodies in vaccinated animals, which then can be diagnosed 
as infected by serological assays(60).

In an attempt to identify more refined antigens for 
the improvement of sensitivity and specificity of CVL 
serodiagnostics, Costa et al., in 2014(61), have employed the 
sequential subtractive selection of phage-displayed peptides 
using immunoglobulin G (IgG) antibodies purifi ed from non-
infected or those T. cruzi-infected dogs and from symptomatic 
and asymptomatic VL animals. In that study, negative selection 
was applied to eliminate clones with the affi nity to antibodies 
from non-infected or T. cruzi-infected dogs and avoid cross-
reactivity. The remaining phage particles were then subjected 
to positive selection using antibodies from asymptomatic and 
symptomatic L. infantum-infected dogs (Figure 2) and high-
affi nity clones were further validated by ELISA. As a result, 
eight bacteriophage-fused peptides with 100% sensitivity and 
specifi city have been identifi ed. Moreover, no false-positive 
results were observed based on operating characteristic 
(ROC) curves calculated for sera from T. cruzi-infected or 
E. canis-infected dogs, as well as from animals immunized with 
Leishmune® or Leish-Tec® vaccines(61).

The evidence of life-long immunity against Leishmania spp. 
infection has inspired the development of prophylactic 
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FIGURE 2 - Schematic representation of subtractive selection process in phage display. First, negative selection was performed 
to reduce non-specifi c cross-reactivity by removing phage clones with the affi nity to unrelated antibodies derived from non-
infected or Trypanosoma cruzi-infected dogs. Then, the remaining phage particles were subjected to positive selection using specifi c 
antibodies from Leishmania infantum-infected dogs. Phage clones with the affi nity to Leishmania infantum-specifi c antibodies were 
selected, sequenced, and identifi ed (Costa et al., 2013). T.: Trypanosoma; CVL: canine visceral leishmaniasis; IgG: immunoglobulin G.

vaccination models of leishmaniasis, but few of them have 
progressed beyond the experimental stage(62) (63) (64) (65) (66) (67) 

(68). There is evidence that type-1 cell-mediated immunity is 
important for protective response against VL(69). Based on 
the experimental models, several candidates for Leishmania 
vaccine have been identifi ed, including whole parasites(70), 
parasite fractions(71) (72), recombinant proteins(73) (74), poly-
proteins(75), DNA(76) (77), and synthetic peptides(78) (79), which 
exerted immunostimulatory effects and induced variable degrees 
of protection against Leishmania spp. infection. In search of 
vaccine candidates against VL, a recent study has used phage 
display to select parasite-specifi c immunogens, which were 
tested in BALB/c mice for their potential to protect against 

L. infantum infection. Phage clones were tested in vitro for 
their selectivity and specifi city to induce the production of 
IFN-γ and interleukin-4 (IL-4), the cytokines characteristic 
for immune response against Leishmania parasites, and two 
clones, B10 and C01, have been selected (Figure 3). The phage 
clones were further tested in vaccination protocols together 
with saponin as an adjuvant, and demonstrated the induction 
of a T helper 1 (Th1)-specifi c response in vaccinated animals, 
which was characterized by the production of IFN- γ, IL-12, and 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
and reduction of IL-4 and IL-10, as well as the predominance 
of parasite-specifi c IgG2a antibodies, all of them evaluated 
by ELISA procedures. B10- and C01-immunized Leishmania-

Coelho EAF et al. - Phage display in leishmaniasis
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FIGURE 3 - Phage display technology applied to the selection of candidate antigens for the development of Leishmania infantum 
vaccine. Antibodies (IgG) purifi ed from non-infected and L. infantum-infected dogs without or with symptoms of visceral leishmaniasis 
were coupled to magnetic microspheres (beads) conjugated to protein G (A). The IgG-containing microspheres were used for successive 
biopanning cycles to select phage clones with the affi nity to L. infantum- specifi c antibodies purifi ed from parasite-infected dogs (B). 
Selected clones were used for in vitro stimulation of spleen cells derived from naive and chronically infected mice, and the levels of 
IFN-gamma and IL-4 production were determined. Clone specifi city and selectivity were evaluated by comparing IFN-gamma and 
IL-4 levels in spleen cells stimulated with selected clones with those stimulated with the wild-type phage or a non-relevant phage, 
respectively. Two phage clones, namely B10 and C01, which showed the best specifi city and selectivity values, were selected and used in 
the vaccination experiments (C). CVL: canine visceral leishmaniasis; IgG: immunoglobulin G; VL: visceral leishmaniasis; IFN-γ interferon 
gamma; IL-4: interleukin-4; L.: Leishmania.

infected mice demonstrated signifi cant reduction in parasite 
burden in the liver, spleen, bone marrow, and draining lymph 
nodes compared to controls, including wild-type and non-relevant 
mimotope-displaying phages (Figure 4), which correlated with 
higher IFN-γ production by spleen cells of these animals(67).

Aiming to develop a protective vaccine that will be able to 
induce a heterologous protection on leishmaniasis, both clones 
selected in L. infantum were evaluated as immunogens in 
L. amazonensis. This species can cause a wide spectrum of 
clinical symptoms characteristic for leishmaniasis(79). Both 
clones have elicited protective response against parasite 
infection in mice, as evidenced by signifi cant reduction of 
footpad swelling and parasite burden in the infected footpads, 
liver, spleen, bone marrow, and draining lymph nodes compared 

to all control groups (Figure 5). The protection was correlated 
with IFN-γ production mediated by cluster of differentiation 8+ 
(CD8)+ T cell-specifi c response to parasite proteins. The protected 
animals also presented low levels of leishmaniasis-associated IL-4 
and IL-10, as well as increased levels of parasite-specifi c IgG2a 
antibodies (manuscript in preparation). One important aspect in this 
study was that phage clones were administered without adjuvants, 
demonstrating the immunostimulatory activity of phage particles. 
Additional studies are in developing, aiming to identify the native 
proteins in Leishmania spp. that express these target peptides.

The limitation of most studies related to the development 
and selection of vaccine candidates for Leishmania spp. is the 
pre-clinical model chosen for initial screening of promising 
molecules. Although sand fly-transmitted infection in 

Rev Soc Bras Med Trop 48(4):370-379, Jul-Aug, 2015



  375

8

7

6

5

4

3

2

1

0

8

7

6

5

4

3

2

1

0

8

7

6

5

4

3

2

1

0

8

7

6

5

4

3

2

1

0
Saline      Saponin         WTP          B10           C01                            Saline      Saponin      WTP          B10           C01

/Saponin                                                                                          /Saponin

Pa
ra

si
te

 T
itr

e 
(lo

g 10
)

Groups

A B

C D

FIGURE 4 - Vaccination with candidate phage clones protects BALB/c mice against Leishmania infantum infection. BALB/c mice were 
inoculated with saline or immunized with saponin (25µg, Quillaja saponaria bark saponin; Sigma-Aldrich) or with the bacteriophages 
(1 × 1011 phage particles) plus saponin. Three doses were administered at 2-week intervals; 4 weeks after the last immunization, animals 
were subcutaneously infected with 1 × 107 stationary-phase promastigotes of Leishmania infantum. Parasite load in the liver (A), 
spleen (B), paw draining lymph nodes (C), and bone marrow (D) was measured 10 weeks post-infection using a limiting dilution 
method. The data are presented as the mean ± standard deviation of the experimental groups. Statistically signifi cant differences in 
parasite load between B10- and C01-immunized mice and control (wild-type phage-WTP, saponin and saline groups) mice were found 
(Costa et al., 2014). ***P < 0.0001. WTP: wild type phage.

hamsters most closely resembles natural infection in humans, 
this infection model requires specifi c laboratory conditions 
and trained personnel, which are not widely available, thus 
precluding general application of hamsters for initial testing 
of candidate vaccines against VL(80). In contrast, BALB/c 
mice infected with Leishmania donovani or L. infantum is 
one the most widely studied VL models(81), which have been 
employed to characterize immune mechanisms underlying 
the development of organ-specifi c responses against different 
Leishmania species(82). Given that the evaluation of parasite 
burden in several organs is recognized as an important indicator 
of vaccine effi cacy against VL, the BALB/c model is considered 
suitable for the screening of Leishmania vaccine candidates. 
Nevertheless, additional investigations employing other animal 

models and experimental strategies are certainly necessary 
for the validation of bacteriophage-fused peptides as vaccine 
candidates prior to clinical studies.

CONCLUSIONS

Phage display can be considered a robust, accurate, and 
versatile approach that allows the identifi cation of disease-
specifi c dual-function antigens for both diagnostic and therapeutic 
purposes. This technique has been successfully applied for the 
selection of theranostic antigens specifi c for leishmaniasis. The 
search for new theranostic biomarkers for diagnostics, vaccination, 
and/or immunotherapy can be successfully accomplished using 
phage display methodology, which opens new opportunities in 
the fi ght against human and animal diseases.

Coelho EAF et al. - Phage display in leishmaniasis
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were subcutaneously infected with 1 × 106 stationary-phase promastigotes of Leishmania amazonensis. The course of the disease was 
monitored weekly and expressed as the increase in thickness of the infected footpad compared to the uninfected footpad (A). Parasite 
load in the infected footpads was measured 10 weeks post-infection using a limiting dilution method. The data are presented as the 
mean ± standard deviation; a, b, and c indicate statistically signifi cant differences with the saline group, WTP group, and NRP group, 
respectively (P < 0.001) (B) (manuscript in preparation). WTP: wild type phage; NRP: non-relevant phage.
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