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ABSTRACT
Introduction: Microsporidia constitute the most common black fl y pathogens, although the species’ diversity, seasonal occurrence 
and transmission mechanisms remain poorly understood. Infections by this agent are often chronic and non-lethal, but they can 
cause reduced fecundity and decreased longevity. The objective of this study was to identify microsporidia infecting Simulium 
(Chirostilbia) pertinax (Kollar, 1832) larvae from Caraguatatuba, State of São Paulo, Brazil, by molecular and morphological 
characterization. Methods: Larvae were collected at a single point in a stream in a rural area of the city and were kept under 
artifi cial aeration until analysis. Polydispyrenia spp. infection was characterized by the presence of at least 32 mononuclear spores 
measuring 6.9 ± 1.0 x 5.0 ± 0.7µm in persistent sporophorous vesicles. Similarly, Amblyospora spp. were characterized by the 
presence of eight uninucleate spores measuring 4.5 x 3.5µm in sporophorous vesicles. Results: The molecular analysis confi rmed 
the presence of microsporidian DNA in the 8 samples (prevalence of 0.51%). Six samples (Brazilian larvae) were related to 
Polydispyrenia simulii and Caudospora palustris reference sequences but in separate clusters. One sample was clustered with 
Amblyospora spp. Edhazardia aedis was the positive control taxon. Conclusions: Samples identifi ed as Polydispyrenia spp. and 
Amblyospora spp. were grouped with P. simulii and Amblyospora spp., respectively, corroborating previous results. However, 
the 16S  gene tree showed a considerable distance between the black fl y-infecting Amblyospora spp. and the mosquito-infecting 
spp. This distance suggests that these two groups are not congeneric. Additional genomic region evaluation is necessary to obtain 
a coherent phylogeny for this group.

Keywords: Microsporidae. Amblyospora spp. Polydispyrenia spp. Phylogenetic analysis.

Black fl ies (Diptera: Simuliidae) cause severe medical 
and veterinary problems worldwide. Simuliidae species are 
able to transmit parasites that can result in severe disease in 
humans and animals. In addition, their bites can cause allergic 
reactions and dermatitis in sensitized individuals, resulting 
in severe economic losses to tourism centers and negatively 
impacting animal production1-3. Black fl y control remains a 

major public health challenge. Microsporidia are unicellular, 
eukaryotic organisms that are obligate, intracellular parasites 
with public health relevance4. Several studies have suggested a 
new classifi cation for microsporidia as fungi, but Ebersberger5 
stated that phylogenetic analysis did not support fungal 
characterization for this group.

Microsporidia are the most common black fl y pathogens, 
although the species’ diversity, seasonal occurrence and 
transmission mechanisms remain poorly understood6,7. 
Infections caused by this agent are often chronic and non-lethal, 
but they can cause sub-lethal host effects, such as reduced 
fecundity, decreased life span and general loss of vigor8. 

The objective of this study was to identify microsporidian 
species infecting Simulium (Chirostilbia) pertinax (Kollar, 1832) 
larvae from Caraguatatuba City, on the north coast of State of 
São Paulo, by molecular and morphological characterization.

The city’s economy greatly depends on tourism. Thus, the 
Simuliidae population plays an important role because black 
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METHODS

fl y bites annoy visitors and have deleterious effects on the local 
economy. Monitoring and controlling black fl ies are essential 
to avoiding seasonal population outbreaks.

Sampling and biological material processing

The sampling period was from May to August 2013, and the 
samples were collected from a stream in Caraguatatuba City, 
located on the north coast of the State of São Paulo, Brazil, which 
has a total area of 458,097km2 and had a population at that time 
of 100,8409. All of the larvae were held in aerated containers 
with water from the breeding site until examination. Tissues 
showing evidence of infection (whitish abdomens or whitish 
digestive tracts) were dissected in NaCl 0.9% solution, and fat 
bodies and adjacent tissues were removed10. Processed samples 
were frozen in 1.5ml tubes with 30µl of diethylpyrocarbonate 
(DEPC) (Invitrogen® Life Technologies, Carlsbad, CA, USA). 
Fresh smears of fat bodies were made, fi xed with methanol for 
5min and stained with 10% Giemsa in 7.4 pH buffer for 20min. 
The slides were washed in water and dried at 25°C overnight11 
for further morphological analysis of spores. 

Morphological analysis

The Nis Elements F 3.0 NIKON H550S software, with 
phase III objective scale 100X settings, was used for spore 
measurement. Morphological characterization was performed 
according to Sprague12.

Molecular assay

Molecular assays were performed with frozen tissues 
from infected larvae, and Aedes aegypti larvae infected with 
Edhazardia aedis were used as positive controls. 

DNA extraction

Larvae exhibiting symptoms of infection had deoxyribonucleic 
acid (DNA) extracted using a viral DNA kit (QIAamp® viral 
RNA, Qiagen, Inc, Hilden, Germany). Healthy larvae (Figure 1A) 
were discarded. Tissue samples were processed with a proteinase 
K kit, incubated at 56°C for 2h and mixed every 20min. The 
supernatants were used to amplify the r16S ribosomal gene13.

Small subunit ribosomal gene (SSUrDNA) PCR (r16S)

Polymerase chain reaction (PCR) amplifi cation was performed 
with 18f (CAC CAG GTT GAT TCT GCC) and 1492r (GGT 
TAC CTT GTT ACG ACT T), according to Vossbrinck et al.14.

The amplifi cation products were visualized on 2% agarose 
gels, with positive and negative controls and a 100 bps ladder 
(Invitrogen® Life Technologies, Carlsbad, CA, USA), following 
electrophoresis.

Nucleotide sequencing

PCR products were purifi ed with the Illustra GFX PCR DNA 
and Gel Band Purifi cation Kit (GE Healthcare Limited, Little 
Chalfont, Buckinghamshire, UK) and were quantifi ed with 2% 
agarose gel ethidium bromide staining, according to the Low 

DNA Mass Ladder (Invitrogen®) protocol. The products were 
sequenced using an ABI PRISM Big Dye Terminator Cycle 
Sequencing Ready Reaction kit (PE Applied Biosystems), 
following the standard manufacturer protocols. The data were 
analyzed with the phred/phrap software, and the contigs were 
assembled with the cap3 software15.

Phylogenetic analysis 

The analyses were performed using the Seaview software16. 
A phylogenetic tree was constructed, with reference 
sequences32-46 from Table 1 (supplementary fi le), using the 
maximum likelihood method with the general time reversible 
(GTR) model of nucleotide substitution and gamma distribution 
(G) (GTR + G)17. The model was selected by the Modeltest 
software, version 3.0.618, and was optimized by the Seaview 
software. We calculated the bootstrap values with 1,000 
replications to support the verification of branches in the 
topologies of the trees obtained, and bootstrap values greater 
than 70 were considered signifi cant.

Nucleotide sequences and accession numbers 

The nucleotide sequences obtained in this work were 
submitted to the GenBank nucleotide sequences databank 
under the following accession numbers GenBank: KC855552-
KC855557 (L1_L6); and GenBank: KC855558 (L2).

A

B

FIGURE 1 - Simulium pertinax larvae. Healthy larvae with 
normal coloration of the integument (A). Larvae with symptoms 
of microsporidian infection in the fat bodies (B).
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TABLE 1 - Sequences and accession numbers used for phylogenetic analysis.

Organism Host Geographic locale Accession number

Amblyospora bracteata  Odagamia ornata Czech Republic AY09006832

Antonospora scoticae Andrena scotica USA AF024655*

Paranosema grylli Gryllus bimaculatus St. Petersburg, FL, USA AY30532533

Polydispyrenia simulii Odagamia ornata Czech Republic AY09006932

Weiseria palustris Cnephia ornithophilia USA AF132544*

Nosema algerae Anopheles stephensi Illinois, USA AF06906334

Thelohania solenopsae Solenopsis invicta USA AF03153828

Janacekia debaisieuxi Odagamia ornata USA AY09007035

Hamiltosporidium magnivora Daphnia magna Russia AJ302318.1*

Ichthyosporidium sp. Leiostomus xanthurus  Not Informed L3911031

Glugea anomala Gasterosteus aculeatus Norway AF044391.136

Vavraia oncoperae Wiseana spp. New Zealand X7411237

Vavraia culicis Aedes albopictus USA AJ25296129

Endoreticulatus schubergi Lymantria dispar Switzerland L3910931

Vittaforma corneum Homo sapiens USA L3911231

Nucleospora salmonis Oncorhynchus tshawytscha Canada U7817638

Enterocytozoon bieneusi Homo sapiens USA AF02465739

Encephalitozoon cuniculi Oryctolagus cuniculus USA Z19563.140

Encephalitozoon intestinalis Homo sapiens USA U0992941

Encephalitozoon hellem Homo sapiens USA L1907042

Nosema bombycis Bombyx mori Switzerland L3911131

Vairimorpha necatrix Malacosoma americanum Not Informed Y002664

Nosema vespula Species Unknown USA U11047*

Nosema apis Apis mellifera New Zealand U97150.143

Amblyospora ferocious Psorophora ferox Argentina AY09006232

Amblyospora criniferis Aedes cernifera Argentina AY09006132

Amblyospora stimuli Diacyclops bicuspidatus USA AY09005032

Amblyospora canadensis Ochlerotatus canadensis USA AY09005632

Amblyospora cinerei Aedes cinereus USA AY09005732

Amblyospora cinerei Acanthacyclops vernalis USA AY09005932

Amblyospora cinerei Acanthacyclops vernalis USA AY09005832

Amblyospora cinerei Cyclops venustoides USA AY09006032

Amblyospora connecticus Ochlerotatus cantator USA AF025685*

Amblyospora excrucii Ochlerotatus excrucians USA AY09004332

Amblyospora stimuli Aedes stimulans USA AF02768527

Amblyospora excrucii Acanthocyclops vernalis USA AY09004432

Amblyospora khaliulini Ochlerotatus communis USA AY09004532

Amblyospora khaliulini Acanthocyclops vernalis USA AY09004632

Amblyospora khaliulini Acanthocyclops vernalis USA AY09004732

Table 1 - continues....
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TABLE 1 - Continuation.

Organism Host Geographic locale Accession number

Amblyospora weiseri Ochlerotatus cantans USA AY09004832

Amblyospora stictici Ochlerotatus sticticus USA AY09004932

Edhazardia aedis Aedes aegypti Thailand AF02768427

Amblyospora sp. Cyclops strenuus Czech Republic AY09005532

Amblyospora californica Culex tarsulis USA U6847344

Amblyospora sp. Culex nigripalpus USA AY09005332

Amblyospora sp. Culex salinarius USA U6847444

Amblyospora salinaria Culex salinarius USA AY32627032

Culicospora magna Culex restuans USA AY09005432

Culicospora magna Culex restuans USA AY32626932

Intrapredatorus barri Culex fuscanus Norway AY01335945

Amblyospora indicola Culex sitiens India AY09005132

Amblyospora opacita Culex territans USA AY09005232

Hyalinocysta chapmani Culiseta melanura USA AF48383746

Hyalinocysta chapmani Orthocyclops modestus USA AF48383846

Culicosporella lunata Culex pilosus USA AF02768327

Parathelohania anophelis Anopheles quadrimaculatus USA AF02768227

Parathelohania obesa Anopheles crucians USA AY09006532

Trichotuzetia guttata Cyclops vicinus Czech Republic AY32626832

Hazardia milleri Culex quinquefasciatus Argentina AY09006732

Hazardia sp. Anopheles crucians USA AY09006632

Marsoniella elegans Cyclops vicinus Czech Republic AY09004132

Gurleya vavrai Daphnia longispina Finland AF39452630

Gurleya daphniae Daphnia pulex Austria AF43932030

Larssonia obtusa Daphnia pulex Sweden AF39452730

Berwaldia schaefernai Daphnia galeata Czech Republic AY09004232

Varimorpha sp. Solenopsis richteri USA AF03153928

Amblyospora sp. Simulium sp. UK AJ25294929

USA: United States of America; FL: Florida; UK: United Kingdom.*Unpublished. 

RESULTS

A total of 1,574 S. pertinax larvae were examined. Eight 
larvae exhibited symptoms of microsporidian infection localized 
to the fat body (Figure 1B).

Morphological characterization indicated Polydispyrenia 
spp. infections in 7 larvae (Figure 2A), representing 87.5% of the 
infected larvae. Amblyospora sp. infection was observed in one 
larva (12.5% of the infected larvae) (Figure 2B). The prevalence 
of microsporidia parasitizing larvae of S. pertinax was 0.51%.

Polydispyrenia spp. infections were characterized by the presence 
of at least 32 mononuclear spores contained within a persistent 
sporophorous vesicle, with the spores measuring 6.9 ± 1.0 x 5.0 ± 0.7µm 
(n = 23). Similarly, Amblyospora spp. were characterized by the 
presence of eight uninucleate spores contained within a sporophorous 
vesicle, with the spores measuring 4.5 x 3.5µm (n = 12).

The PCR products targeting the 16S region and electrophoresis 
agarose gel analysis confi rmed the presence of microsporidian 
DNA in 8 samples.

Six samples (Brazilian larvae) were found to be related to, but 
in a separate cluster (Figure 3) than, the Polydispyrenia simulii 

Carvalho IMVG et al. - Characterization of microsporidia in Simulium pertinax
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FIGURE 2 - Phase-contrast microscopy of smear slides of 
Simulium pertinax infected by microsporidia. Sporophorous 
vesicle of Polydispyrenia sp. containing 32 mononuclear spores 
(A). Octospores of Amblyospora spp. containing 8 uninucleate 
spores each (B).

A

B

[GenBank: AY090069] and Caudospora palustris [GenBank: 
AF132544] reference sequences (with 100% bootstrapping). One 
sample (L2) was clustered with Amblyospora spp. [GenBank: 
AJ252949] with 100% bootstrapping. The Edhazardia aedis 
positive control (CONT+) taxon was clustered with Edhazardia 
aedis [GenBank: AF027684] with 100% bootstrapping.

DISCUSSION

Herein, we reported microsporidia parasitizing S. pertinax 
larvae in the State of São Paulo, with a prevalence of 0.51%. 
Araújo-Coutinho6 previously reported a 0.5-2.0% prevalence 
of microsporidia in S. pertinax in State of Rio de Janeiro. Our 
study showed a similar prevalence to that previously reported 
by Crosskey19 in other populations of black fl ies, with rates 

of up to 1%. Polydispyrenia spp. were the most prevalent 
parasitic species in S. pertinax from Caraguatatuba/SP in this 
study, while Amblyospora spp. showed a higher prevalence in 
Rio de Janeiro6. This difference could be explained by the small 
sample size, which prevented further analysis of the species 
population dynamics between S. pertinax from Rio de Janeiro 
and Caraguatatuba.

In this study, spores of the Polydispyrenia spp. measured 
6.9 ± 1.0μm in length x 5.0 ± 0.7μm in width. Araújo-Coutinho6 
reported spores of a similar size for a Polydispyrenia sp. from 
S. pertinax that was ovocylindrical and measured 7.0 ± 0.6 x 
4.9 ± 0.8μm. However, Castello-Branco and Andrade20 reported 
larger-sized spores measuring 8.3μm in length x 6.3μm in width 
for P. simulii from S. pertinax collected in State of São Paulo, 
Brazil. Sprague12 stated that the spore dimensions were 4.5 
to 5.5μm x 2.5 to 3.5μm for P. simulii with the hosts listed as 
S. pertinax and S. perfl avum from Brazil. 

In this study, for Amblyospora spp. from Caraguatatuba, 
the spore measurement was 4.5μm in length x 3.5μm in width, 
similar to that found by Araújo-Coutinho6 for Amblyospora spp. 
infecting S. pertinax in the State of Rio de Janeiro. Both of these 
results were similar to those from Amblyospora bracteata and 
Amblyospora varians, described in black fl ies in North America 
and Europe21. According to Sprague12

, the morphological 
similarity between species of microsporidia, particularly the 
spore measurements, makes identifi cation diffi cult, and other 
methods are needed for identifi cation. Such evidence indicates 
that spore dimension diversity is too variable; thus, molecular 
analysis could help in species identifi cation.

Our sample, identifi ed morphologically as Polydispyrenia 
spp., was grouped with the P. simulii and C. palustris clusters. 
This identifi cation corroborated previous results22-26 regarding 
the phylogeny of these parasites.

The genera Parathelohania, Hazardia, Marsoniella, 
Gurleya, Larssonia, Berwaldia, Varimorpha, Amblyospora 
and the Amblyospora sp. from S. pertinax in this study form a 
separate group from the main Amblyospora cluster (Figure 3). 
Excluding the Varimorpha sp., which was characterized in an 
ant species, Solenopsis richteri (Forel, 1909), all genera in this 
group are parasites of aquatics hosts27-30.

Because the Amblyospora group is divided into two clades, 
corresponding to the hosts (Culex or Aedes/Ochlerotatus)28, 
the aquatic group also demonstrated distinct phylogenetic 
characteristics according to the host. The genera that infect both 
Culex quinquefasciatus (SAY, 1823) and crustaceans (Hazardia, 
Marsoniella, Gurleya, Larssonia and Berwaldia) are the main 
members of this clade. The genera that infect anopheline 
mosquitoes (Parathelohania), simulids (Amblyospora spp  
3 in this study) and a species of ant (Varimorpha sp.), are 
more closely related to the aquatic group than to the main 
Amblyospora group. The Amblyospora spp. in this study were 
clustered with Amblyospora sp. (AJ252949) from Simulium 
spp. from the Paleartic29

,; confi rming the morphological and 
molecular similarities between these 2 species.

Phylogenetic analysis with the 16S gene showed considerable 
distance between the Amblyospora spp., which infect simulids, 

Rev Soc Bras Med Trop 47(5):624-631, Sep-Oct, 2014
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FIGURE 3 - Phylogenetic tree generated for microsporidia. Unrooted tree constructed with the maximum likelihood method using the 
general time reversible model of nucleotide substitution and gamma distribution (GTR + G), using Seaview software. The robustness of 
the phylogenetic groups was evaluated using 1,000 bootstrap replicates, and bootstrap values greater than 70 were considered signifi cant.

and the main group of Amblyospora spp., which infects 
mosquitoes, indicating that these groups are not congeneric. 
The differences between taxonomic relationships, based 
on phylogenetic placement and classical morphological 
characteristics, could probably be explained by the possibility 
that some of these characteristics (diplokaryon, sporophorous 
vesicles, and meiosis) appear to have multiple origins31. Thus, 
molecular analysis of other genomic regions could improve 
the phylogenetic understanding of microsporidia. This work 

contributes to the phylogenetic analysis of microsporidia 
because it provides two genus sequences from these parasites.

The authors declare that there is no confl ict of interest.
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