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ABSTRACT: Soil enzymes play a fundamental role in nutrient cycling in forest systems. The 
stoichiometry of C, N, and P–acquiring enzymes has been used to indicate nutrient limitation 
in the soil. However, the enzymatic stoichiometry remains poorly understood in pure and mixed 
eucalypt plantations. Thus, this study aims to assess the activity of enzymes in the soil to 
address the hypothesis that the introduction of N2-fixing trees could influence the enzymatic 
stoichiometry on C, N, and P cycling. The activity of β-glucosidase (BG), urease (U), and acid 
phosphatase (AP) was assessed in soil (0-20 cm depth) of pure Eucalyptus grandis without (E) 
and with N fertilization (E+N), and a mixed system with E. grandis and Acacia mangium (E+A), 
and a pure A. mangium (A) plantation at 27 and 39 months after planting. The activities of BG/U, 
BG/AP, and U/AP were used to calculate the enzyme C/N, C/P, and N/P ratios, respectively. 
Rates of N–acquiring enzymes were higher in E and E+N, while soil microorganisms invested in 
P–acquiring enzymes in A and E+A. The vector length and angle demonstrated that C demand by 
microorganisms does not change in relation to N and P, regardless of the treatment. However, N 
demand decreased in relation to P in A and E+A (mainly at 27 months). Our results suggest that 
enzymes activity in pure eucalypt systems is limited for their soil-litter nutrient contents. At the 
same time while acacia and mixed plantation seem to invest in P–acquiring enzymes to improve 
biological N2 fixation promoted by diazotrophic bacteria associated to acacia.
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Introduction

Eucalyptus grandis is an exotic plant species cultivated 
in Brazil due to its high adaptability to edaphoclimatic 
fluctuations (Araujo et al., 2010). However, E. grandis 
cultivated under a monocrop system presents low 
environmental sustainability, mainly because of its 
potential effects on soil properties (Gonçalves et al., 
2013; Pereira et al., 2018). For instance, E. grandis 
requires high extraction of nutrients and exerts a long-
term negative balance in the soil N–pool (Bouillet et al., 
2008; Pulito et al., 2015). 

Regarding soil microorganisms, studies have 
reported positive (Mendhama et al., 2002), negative 
(Behera and Sahani, 2003), and even transitional effects 
(Araujo et al., 2010) on soil microbial biomass and 
activity after the planting of E. grandis. A recent report 
demonstrated that pure E. grandis plantations deposit 
nutrient-poor litter into the soil (high C/N ratio); thereby 
reducing the nutrient cycling by microbiome (Pereira 
et al., 2018). However, introducing an N2-fixing plant 
species intercropped with E. grandis has been suggested 
to improve the soil microbial properties (Koutika et 
al., 2021). In this context, Acacia mangium has been 
recommended as an intercropping plant species, mainly 
due to its capacity of fixing N2 from the atmosphere, 
which increases N availability in the soil (Paula et al., 
2015), improves P dynamics (Pereira et al., 2021) and 
mycorrhizal associations (Bini et al., 2013; Pereira et al., 
2018). 

The microbial activity drives soil nutrient 
dynamics (Koutika et al., 2020; Liu et al., 2020). Thus, 
assessing the stoichiometry of β-glucosidase, urease, 
and acid phosphatase allows determining soil nutrient 
availability (Moorhead et al., 2016). In addition, these 
enzymes indicate nutrient turnover (Das and Varma, 
2010) and provide a measurement of ecosystem 
metabolism (Hill et al., 2012), showing potential 
nutrient limitations for soil microorganisms. 

No studies have investigated enzyme 
stoichiometry in pure and mixed eucalypt and 
acacia plantations, especially in tropical soils. This is 
particularly important since tropical soils are limited 
in terms of organic matter (OM) and Acacia mangium 
presents the potential to improve soil fertility and 
ecosystem services (Cardoso et al., 2020; Pereira et 
al., 2020). These conditions can shift the enzymatic 
stoichiometry of nutrients, mainly C, N, and P. Thus, 
in this study we hypothesized that introducing the N2-
fixing Acacia mangium could influence the enzymatic 
stoichiometry, mainly those enzymes related to nutrient 
cycling. 

Materials and Methods

Experimental site, treatments, and sampling

This study was carried out at the municipally of Itatinga 
(23°03’47” S, 48°37’16” W, altitude 830 m), São Paulo 
State, Brazil. The climate in the region is Cfa (Köppen 
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system), with an annual rainfall of 1,350 mm (Alvares 
et al., 2013). The soil of the region is a Rhodic Ferralsol 
(FAO classification), with medium texture (~83 % sand) 
(Laclau et al., 2008). 

The area with E. grandis was planted in Dec 2013, 
under a random block design with four treatments: a) 
pure E. grandis without N fertilization (E); b) E. grandis 
with N fertilization (E+N); c) pure A. mangium (A); and 
d) mixed system with E. grandis and A. mangium (E+A). 
The trees were planted spaced 3 m × 3 m, resulting in 
a total area of 1,296 m2 (36 m × 36 m) in each plot. The 
mixed system (E+A) was installed with double rows (i.e., 
two A. mangium and two E. grandis lines, successively) 
(Pereira et al., 2018). The treatment E+N was fertilized 
in Dec 2013 and 2014, using 10 and 90 kg−1 of N ha−1 as 
ammonium sulphate, respectively. 

Soil and litter sampling

We sampled soil and litter at the 27th and 39th months 
after tree plantation, corresponding to Mar 2016 and 
2017, respectively, to assess differences between the 
beginning and the maximum litterfall period. The soil 
was sampled at 0-20 cm following the Voronoi polygon 
procedure (Honda, 1978; Saint-André et al., 2005; Pereira 
et al., 2018). In this case, six trees in each plot were 
chosen, and soil samples were homogenized in a sterile 
bag, obtaining a composite sample (Santana et al., 2021). 
The sampled litter followed the same standardization 
procedure. However, we used a template (25 cm × 25 
cm) placed on the soil surface and sampled all organic 
material underneath. Thus, we sampled 16 soil samples 
(from four treatments and four blocks) in two sampling 
periods, totaling 64 samples, 32 for each soil and litter 
layer.

Soil and litter characterization

Before analyzing the enzyme activities, soil samples 
were sieved (2 mm) and stored at 4 °C. For chemical and 
physical analyses soil samples were also sieved (2 mm) 
and air-dried for 72 h. Litter was oven-dried at 60 °C for 
24 h and ground (1 mm) for the chemical analyses.

The soil pH was determined in 0.01 mol L–1 CaCl2 
solution (Raij, 2001). Soil organic matter (SOM) was 
physically fractionated from 20 g using the granulometric 
method (Brandani et al., 2016; Christensen, 2001). This 
process separated four fractions; however, we used 
only the most labile organic fraction (OF – 2,000 – 75 
μm) because no differences were observed between 
treatments for the other fractions. Total organic 
carbon (TOC), on full mineral soil, as well as the C, 
N and P contents in the soil labile OF fraction (i.e., 
labile-C, labile-N and labile-P) were determined via dry 
combustion with an elemental analyzer (Nelson and 
Sommers, 1983; Christensen, 2001). Dry combustion in 
the elemental analyzer determined Total-C, Total-N, and 
Total-P in the litter (Pereira et al., 2018). The relationships 
between C, N, and P were calculated (i.e., C/N and C/P 
ratios, respectively). The soil-litter properties in pure 
and mixed E. grandis and A. mangium plantations are 
shown in Table 1.

Measurement of soil enzyme activities

Enzyme activities, that is, β-glucosidase (BG), urease 
(U), and acid phosphatase (AP), were determined 
according to standard methods. Briefly, the 
β-glucosidase (EC 3.2.1.21) activity was measured 
using ρ-nitrophenyl β-glucopyranoside as substrate 
under incubation (1 h, 37 °C) in a modified buffer 

Table 1 – Soil and litter properties in pure and mixed E. grandis and A. mangium plantations. E = E. grandis, E + N = E. grandis with N 
fertilization, E + A = mixed E. grandis and A. mangium and A = A. mangium plantation at 27 and 39 months after planting.

E E+N A E+A E E+N A E+A
27 months 39 months

Litter - - - - - - - - -
C g kg–1 521ns 526ns 514ns 527ns 518ns 519ns 517ns 519ns

N g kg–1 8.48Ca 8.52Cb 14.09Ab 11.50Bb 9.10Ca 10.33Ca 16.60Aa 13.79Ba

P g kg–1 3.50Ba 3.11Ba 4.16Aa 4.60Aa 3.30Bb 3.38Bb 4.01Ab 4.82Ab

C/N - 61.65Aa 61.99Aa 36.56Ca 46.16Ba 57.41Aa 50.93Bb 31.02Cb 38.12Bb

C/P - 146Aa 167Aa 140.2Ba 123.7Ba 155.4Aa 152Aa 128Ba 105Ba

Soil - - - - - - - - -
pH - 4.03ns* 3.58ns 4.10ns 4.40ns 3.78ns 3.70ns 4.23ns 4.45ns

Total C g kg–1 41.7Aa 35.8Ba 44.7Aa 43.77Aa 27.6Bb 28.5Bb 29.07Bb 44.15Aa

Total N g kg–1 1.85Aa 1.60Aa 1.95Aa 1.89Aa 1.31Bb 1.31Bb 1.27Bb 1.93Aa

Labile C g kg–1 4.82Ba 5.27Ba 10.02Aa 9.97Aa 6.00Ba 6.60Ba 9.80Aa 10.44Aa

Labile N g kg–1 0.16Ba 0.17Ba 0.35Aa 0.34Aa 0.20Ba 0.22Ba 0.35Aa 0.36Aa

Labile P mg dm–3 2.20Bb 2.11Bb 4.63Aa 4.58Aa 1.19Bb 1.53Bb 5.01Aa 4.74Aa

*Means followed by the same letter do not differ (Tukey’s test at > = 5 %). Capital letters in the row compare treatments within each period and lowercase letter in 
the row compare periods within each treatment (n = 4). ns, not significant. Total C, Total Organic Carbon; Total N, Total Nitrogen; Labile C, N and P, carbon, nitrogen, 
and phosphorus determined in the labile soil organic fraction (2,000–75 µm); C, N and P, total content of carbon, nitrogen, and phosphorus in litter and C/N and C/P 
their ratios.
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adjusted to pH 6.0. The ρ-nitrophenol form was 
determined spectrophotometrically at 410 nm (Eivazi 
and Tabatabai, 1988). The acid phosphatase (EC 3.1.3.2) 
activity was measured using disodium ρ-nitrophenyl 
phosphate as substrate under incubation (1 h, 37 °C) 
in a modified universal buffer adjusted to pH 6.5. 
The amount of ρ-nitrophenol formed was measured 
spectrophotometrically at 420 nm (Tabatabai and 
Bremner, 1969). The urease (EC 3.5.1.5) activity was 
determined using the method of Kandeler and Gerber 
(1988) with urea as substrate under incubation (1 h; 
37 °C). The amount of ammonium produced was 
determined using the Kjeldahl method (Pereira et al., 
2018). All results of enzyme activities were expressed 
in nmol g–1 h–1. After obtaining the results for the C, N, 
and P–acquiring enzymes, they were used to calculate 
the enzymes C/N, C/P, and N/P ratios, respectively.

Enzymatic stoichiometry

The enzymatic stoichiometry was estimated according to 
the vector method proposed by Moorhead et al. (2016), 
as follows:

Vector L (unitless) = X Y2 2+      (1)

Vector A (degree) = Degrees (Atan2 (X, Y))  (2)

where:

 X
Enzyme C

Enzyme C Enzyme P
=

+
 

  
,Y

Enzyme C
Enzyme C Enzyme N

=
+

 
  

 
 

Statistical analyses 

The homogeneity and normality of variance were 
examined by the Levene and Shapiro-Wilks test, 
respectively. The dataset was analyzed using the ANOVA 
and the Tukey test compared significant attributes at 

5 %. A Principal Components Analysis (PCA) biplot 
was used to compare the soil properties between the 
different pure and mixed plantations, including soil 
and litter chemical properties, enzyme activity and 
stoichiometry. The data analyses were performed in 
the R software (version 3.6.3) and Canoco® software for 
Windows (v. 4.5).

Results

The activity of N–, C– and P–acquiring enzymes varied 
according to treatments and periods (Figures 1A-C). The 
highest N–acquiring enzyme values were observed in 
E and E+N at both 27 and 39 months after planting 
(Figure 1A). However, N–acquiring enzymes had the 
highest values at 39 months compared to 27 months. In 
contrast, the highest values of the P–acquiring enzyme 
were observed in A and E+A, but the values did not 
vary between periods (Figure 1C). C–acquiring enzyme 
did not generally vary between treatments in both 
periods (Figure 1B). 

The enzymatic stoichiometry varied between 
treatments and periods (Figure 2). In general, the values 
of enzyme C/N ratio were higher at 27 months than 39 
months. The highest values of the enzyme C/N ratio 
were observed in A and E+A, at 27 months, while no 
differences were observed at 39 months. In contrast, 
the highest values of enzyme C/P and enzyme N/P 
were observed in E and E+N. In addition, the values 
of enzyme C/P and enzyme N/P were highest at 39 
months than 27 months. The vector L (length) did not 
vary between treatments in both periods, while vector 
A (angle) increased in A and E+A at 27 months and did 
not vary at 39 months (Table 2). 

The PC1 and PC2 explained 45.6 % and 23.0 % of 
the total variation, respectively, and clustered the values 
of the C–, N–, and P–acquiring enzymes and their 
stoichiometry with soil and litter properties (Figure 3). 
In general, four clusters were found, being E and E+N 

Figure 1 – Potential activity of soil N, C, and P acquiring enzymes [(A), (B) and (C), respectively], in pure and mixed E. grandis and A. mangium 
plantations. E = E. grandis, E + N = E. grandis with N fertilization, E + A = mixed E. grandis and A. mangium and A = A. mangium plantation at 
27 and 39 months after planting. Means followed by the same letter are not different at the 5 % probability level using the Tukey’s test (n = 4). 
Uppercase letters compare treatments within each period and lowercase letters compare periods within each treatment.
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(27 months) correlated to vector L and influenced by C/P 
and C/N ratios of litter, while E and E+N (39 months) 
correlated with the C– and N–acquiring enzymes, and 
enzymes N/P and C/P ratios. On the other hand, A and 
E+A (27 months) correlated with vector A and the 
enzyme C/N ratio, and with total-C, total-N, and litter-P. 
Finally, A and E+A (39 months) correlated with the 
P-acquiring enzymes, litter-N, labile-N, labile-C, labile-P, 
and the pH. 

Discussion

In this study, we assessed the stoichiometry of C–, 
N–, and P–acquiring enzymes in the soil covered by 
pure and mixed eucalypt with acacia plantations under 
tropical conditions. We investigated the hypothesis 
that the introduction of A. mangium, an N2–fixing tree 
species, could influence the enzymatic stoichiometry 
in soils. Enzymes play a fundamental role in soil 
functioning, acting on biochemical processes related to 
organic matter transformations. The C–, N–, and P–
acquiring enzymes catalyze several reactions in organic 
wastes, promoting nutrient cycling in a forest system. 
In particular, urease, and other amidohydrolasesare 
responsible for the breakdown of protein-related 
compounds, generating NH4

+ as final product. In this 
study, the values of the N-acquiring enzymes were 

highest after 39 months (Figure 1A), suggesting a 
depletion of organic N from the litter that stimulated 
the higher activity of the N–acquiring enzymes 
(Ma et al., 2014). When considering treatments, the 
N-acquiring enzymes showed higher activities in E and 
E+N, suggesting a microbial community delivering a 
significant content of N–acquiring enzymes to promote 
litter degradation. Interestingly, as the pure eucalypt 

Table 2 – Vector analysis between pure and mixed E. grandis and 
A. mangium plantations. E = E. grandis, E + N = E. grandis with N 
fertilization, E + A = mixed E. grandis and A. mangium and A = A. 
mangium plantation at 27 and 39 months after planting.

Vector L (Length) Vector A (Angle)
27 months 39 months 27 months 39 months

E 0.68ns 0.66ns 1.00b 1.02ns

E + N 0.66ns 0.67ns 1.01b 1.01ns

A 0.65ns 0.64ns 1.15a 1.02ns

E + A 0.64ns 0.64ns 1.17a 1.03ns

Figure 2 – Soil enzymatic stoichiometry in pure and mixed E. grandis and A. mangium plantations. E = E. grandis, E + N = E. grandis with N 
fertilization, E + A = mixed E. grandis and A. mangium and A = A. mangium plantation at 27 and 39 months after planting. Means followed by 
the same letter are not different at the 5 % probability level by the Tukey’s test (n = 4). Uppercase letters compare treatments within each period 
and lowercase letters compare periods within each treatment.

Figure 3 – The Principal Component Analysis (PCA) between 
soil-litter properties, microbial diversity, enzymes activities and 
stoichiometry in pure and mixed E. grandis and A. mangium 
plantations. E = E. grandis, E + N = E. grandis with N fertilization, 
E + A = mixed E. grandis and A. mangium and A = A. mangium 
plantation at 27 and 39 months after planting (n = 4).
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plantation presented a nutrient-limited litter (Table 1), 
with a high C/N ratio (Pereira et al., 2018) and numerous 
recalcitrant compounds (Bini et al., 2013), the increase 
in the N-acquiring enzyme activity did not reflect in 
differences in total N soil N contents in pure eucalypt, 
regardless of the sampling period (Table 1). Thus, as 
eucalypt is a non–N2–fixing species, we expect that the 
microbial community might utilize resources to acquire 
N in the litter. In contrast, A and E+A have observed 
the highest P–acquiring enzyme values in both periods 
(Figure 1C). In A and E+A the values of organic labile 
P were higher (Table 1), which could explain the 
higher activity of the P–acquiring enzyme. Recently, 
Hummel et al. (2021) showed that the activity of 
phosphatase was higher in soil containing more organic 
P. Another possible explanation could be that, since 
A and E+A presented the lowest C/N and C/P ratios 
in the litter (Table 1), favoring the microbial-induced 
transformations and thus improving the P availability 
to plants. Naturally, N2–fixing tree species require a 
significant amount of available P to efficiently promote 
the biological nitrogen fixation. Therefore, microbes 
probably associated with A and E+A plantations can 
overcome P limitation by synthesizing phosphatases 
enzymes to acquire organic P from soil and/or litter. 
In this study, no differences were observed to C–
acquiring enzymes between treatments (Figure 1B) and 
these enzymes did not correlate with any differences 
between the C content in the litter (Table 1). In addition, 
different types of litter, such as those found in mixed 
plantations, do not seem to stimulate specifically the 
activity of β-glucosidase, since other enzymes can play 
significant roles in this condition (e.g., cellulase) (Leroy 
et al., 2018). 

The results for enzymatic stoichiometry showed 
that in A and E+A plantations, the soil microorganisms 
invested less N (Figure 2), while P–acquiring enzymes 
increased (Figure 2). Once again, it suggests that in A and 
E+A, an N2-fixing plant species, i.e., A. mangium, could 
increase soil N-pools (Paula et al., 2018; Pereira et al., 
2021), therefore decreasing the N–acquiring enzymes. 
Regarding E and E+N, the results could suggest that in 
soil with the contribution of a high C/N ratio from the 
litter (Table 1), the P–acquiring enzyme (phosphatase) 
decreases (Mooshammer et al., 2012), thereby impacting 
nutrient dynamics. 

The analysis of the vectors allows estimating the 
relative microbial investments in C versus nutrient 
acquisition (vector length) and P versus N acquisition 
(vector angle) (Moorhead et al., 2016). Vector L showed 
no differences between treatments and periods (Table 2), 
meaning that probably the C demand does not change 
in relation to N and P. On the other hand, the vector 
angle increased in A and E+A at 27 months, suggesting 
decreased demands for N in relation to P (Fanin et al., 
2016). As discussed above, A. mangium contributes to 
increasing N in the soil thus, decreasing the N demand 
for microbial communities. 

The PCA demonstrated that soil or litter properties 
clustered pure and mixed treatments differently (Figure 
3). Greater litter C/N ratios positively correlated with E 
and E+N, especially 27 months after plantation. Litter 
decomposition can be limited by N, partly explaining 
the positive correlation of N–acquiring enzymes in 
later periods (39 months) and perhaps in E and E+N in 
subsequent years. It demonstrates that the activity of 
soil enzymes increased towards a great litter C/N ratio, 
suggesting N limitation for decomposers (Güsewell and 
Freeman, 2005). On the other hand, labile soil elements 
(C, N and, P), as well as the total content of C, N, 
and P of litter positively correlated with pure A and 
E+A, both at 27 and 39 months after planting (Figure 
3). Recently, Zhou et al. (2018) demonstrated that N 
addition via biological fixation stimulated the soil 
microbial functions, especially the enzyme activities in 
the initial stage of litter decomposition, increasing soil 
fertility. 

Similar forest management demonstrated an 
increase in alkaline and acid phosphatase in the 
presence of A. mangium under a mixed plantation 
with E. grandis (Bini et al., 2013). More importantly, 
the ratio of arbuscular mycorrhizal colonization was 
strongly correlated with soil phosphatase activity. 
Thus, these interactions present important biological 
indicators to plant nutrition under mixed forest 
systems. In addition, our results could integrate 
future studies to introduce enzymes as a win–win 
combination for soil health and functions in forest 
plantations, as it is currently documented for cereal 
crops in Brazil (Lopes et al., 2013; Mendes et al., 2021; 
Lopes et al., 2021).

Conclusions

This study demonstrated that pure and mixed 
eucalypt plantations changed the stoichiometry of 
the C–, N–, and P–acquiring enzymes in the soil; 
thereby, confirming our initial hypotheses. The rates 
of N–acquiring enzymes were higher in pure eucalypt 
plantation, regardless of N fertilization, especially at 
27 months after planting; however, this increase did 
not result in enhancement in N–pools in the soil or 
litter. Conversely, soil microorganisms invested in 
P–acquiring enzymes in pure A. mangium and mixed 
plantation, resulting in more significant amounts of 
labile soil elements and possibly increasing the energy 
flow to biological N fixation promoted by A. mangium. 
The vector analyses (L and A) demonstrated that C 
demand by microorganisms does not change in relation 
to N and P, regardless of the treatment. However, N 
demand decreased in A and E+A (mainly at 27 months) 
in relation to P. These results suggest that short-term 
mixed plantations affect soil fertility and microbial 
functions in mixed eucalypt plantations, while the 
nutrient availability in pure systems is closely limited 
for their soil-litter nutrient contents.
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