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1. Introduction

Designers need to estimate the load bearing capacity 
of piles and the most precise way is through static pile load 
tests. The Brazilian Standard (ABNT 2019) define procedures 
for this type of test, which basically consists on applying 
an increasing load to an executed pile and measuring its 
displacement. Designers can obtain the load bearing capacity 
by examining the load-displacement graph, using criteria 
defined by the standard. Nonetheless, they cannot rely only 
on static pile load tests because they are expensive, time 
consuming and usually executed when part of the piles of 
the project are already in place. The most popular approach 
to estimate pile bearing capacity beforehand is to use semi-
empirical methods, like those proposed by Aoki & Velloso 
(1975), Décourt & Quaresma (1978, 1998) and Meyerhof 
(1976). Most semi-empirical methods propose two separate 
estimates: one for the shaft resistance and another for the 
tip resistance. The total pile bearing capacity given by the 
sum of them. These methods usually estimate the bearing 

capacity through results of in situ tests and pile geometric 
features. In several countries (including Brazil), contractors 
usually only make available the standard penetration test 
(SPT). The main reasons are cost and simplicity when 
compared to methods like the cone penetration test, making 
the SPT popular in those countries. Even when designers 
do have access to other in situ tests, they sometimes rely on 
correlations to convert data into SPT values.

In recent years, machine learning techniques are 
increasingly gaining space within a wide variety of 
engineering applications. Their advantages include the 
capability to deal with large amounts of data and to find 
complex and highly nonlinear relationships among different 
parameters. In geotechnics many works have been using these 
algorithms to solve different kinds of problems with good 
results over traditional methods. Some of these problems 
are: soil classification (Bhattacharya & Solomatine, 2006; 
Kovacevic  et  al., 2010; Bonini  et  al., 2017; Carvalho & 
Ribeiro 2019), soil profiling (Arel, 2012), soil liquefaction 
(Juang & Chen, 1999; Hanna  et  al., 2007; Goh & Goh, 
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2007; Livingston et al., 2008; Kohestani et al., 2015), slope 
stability (Ferentinou & Sakellariou, 2007; Bui et al., 2019; 
Maxwell et al., 2020) , foundation settlement (Samui, 2008; 
Nejad et al., 2009; Nejad & Jaksa, 2017) and bearing capacity. 
For the latter, authors have used well-known algorithms with 
different kinds of inputs, such as wave stress data (Lok & 
Che, 2004; Pal & Deswal, 2008; Maizir & Kassim, 2013; 
Momeni et al., 2015), soil parameters (Pal & Deswal, 2010; 
Moayedi & Hayati, 2019; Kardani et al., 2020), CPT results 
(Ardalan et al., 2009; Shahin, 2010; Kordjazi et al., 2014; 
Kordjazi et al., 2013; Alkroosh et al., 2015) and SPT measures 
(Lee & Lee, 1996; Nawari & Liang, 2000; Ismail & Jeng, 
2011; Benali et al., 2018; Jesswein & Liu, 2018; Pham et al., 
2020). These studies achieved reasonable results for the 
proposed problems. Nevertheless, most of them include 
weaknesses like comparing few techniques or using very 
homogeneous datasets, with all soundings taken from the 
same construction site.

The main objective of this paper is to propose a new 
approach for the use of machine learning techniques, using 
classical semi-empirical methods as a basis for estimating the 
bearing capacity of piles. It is better than previous machine 
learning models from the literature concerning generality 
for tropical soils and ease of use. The used datasets include 
only static load tests (slow maintained load) of pre-cast 
concrete piles executed accordingly to the Brazilian standard 
(see ABNT 2019) and accompanied with SPT soundings. 
The investigation starts with the training of six machine 
learning techniques, producing two models for each one: the 
first using the inputs from the Décourt-Quaresma method and 
the second the inputs from the Meyerhof method. A multiple 
linear regression (LR) is also included as a baseline for 
performance. The authors selected the Décourt-Quaresma 
method because it is commonly used in Brazilian foundation 
projects and Meyerhof for being widely used worldwide. 
Both sets of inputs include pile diameter and length, the 
mean SPT along the shaft and the mean SPT at the pile tip. 
The main difference of the two sets is how mean SPT values 
are calculated.

It is shown in a general application that the precision 
of all machine learning techniques surpassed both Meyerhof 
(1976) and Décourt & Quaresma (1978, 1998) semi-empirical 
methods with respect to RMSE. This work proposes a graphical 
method to provide 90% and 95% confidence intervals for the 
results of the best technique. A case study applies the top two 
machine learning models and the two semi-empirical methods 
to three new examples, from one site that was not included 
in the training dataset. The machine learning techniques 
presented reasonable performance, and were better than the 
semi-empirical methods in two of the three piles.

2. Semi-empirical methods

Semi-empirical methods work based on empirical 
correlations of in situ tests data and adjustments with load test 

results. Results can vary for these methods due to their implicit 
subjectivity. For the Meyerhof method, little subjectivity was 
included because it uses NSPT and pile geometry as inputs, 
which are not sensitive to interpretation. On the other hand, 
the Décourt-Quaresma method relies on soil types as presented 
in Table 1, which are sensitive to interpretation.

In these methods, the pile load capacity tR  is usually 
divided into two parts: lateral friction lR  and tip resistance 

pR , as shown in Equation 1. Different expressions are proposed 
for lR  and pR  in the literature, using information such as soil 
type, pile type, pile geometry and in situ test results.

= +t l pR R R 	 (1)

The authors selected two methods for this study: the 
Décourt-Quaresma method for being popular in Brazil and 
the Meyerhof method for being widely used around the 
world. The next sections describe these methods.

2.1. Décourt-Quaresma

This method obtains the tip resistance using a factor 
related to the soil type, as presented in Table 1. It also 
uses the tip area pA  and the mean NSPT index around the 
pile tip pSPT , considering the value at the tip, the one 
above and the one below. It obtains the lateral resistance 
using pile geometry and the mean NSPT index along the 
pile shaft lSPT . The latter is subjected to 3 15< <pSPT  
and NSPT values used to obtain pSPT  cannot be included. 
The final expression is

. . . . .10 1
3

α β  = + + 
 

l
t p p

SPT
R K SPT A U L 	 (2)

where α  and β  refer to soil and pile type, respectively. U  is 
the pile perimeter and L is the pile length.

2.2. Meyerhof

This method uses the NSPT index, pile length L and pile 
diameter D to estimate the pile bearing capacity. It calculates 

lSPT  as the mean of the whole pile shaft and pSPT  as the 
mean including 8D above the tip and 3D below it (Meyerhof, 
1976). The expression proposed by Meyerhof is

Table 1. Values for K  (Décourt & Quaresma, 1978, 1998).
Soil type K  (KN/m2)

Clays 120
Clayey silts 200
Sandy silts 250

Sands 400
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. . .= +t p p sR A q U L q
	 (3)

where

40. 400.= ≤p
p p

SPT
q L SPT

D 	 (4)

and

2.=s lq SPT 	 (5)

3. Dataset

The information used in this work includes 165 precast 
concrete pile load tests and their respective SPT measures 
collected from many different construction sites in Brazil. 
It was obtained from the works of Lobo (2005), Vianna 
(2000) and Santos (1988) and all load tests were performed 
according to the Brazilian Standard (ABNT, 2019). When 
the maximum applied load was not achieved, the load-
settlement curve was extrapolated using the Van der Veen 
method (Van Der Veen, 1953). Interested readers can find 
further detail about these load tests in Lobo (2005), Vianna 
(2000) and Santos (1988). In specific cases, information 
about pile rupture and comparisons between applied and 
ultimate loads is available.

Figure 1 presents the location of the soundings, most 
of them from the south and southeast regions of Brazil. 
The country presents a predominant tropical climate and 
high temperatures, with 65% of its territory covered by 
non-homogeneous lateritic soils. The clay-ferruginous soil 
is the most common type (Morais et al., 2020). The authors 
had access to some details about the set provided by Vianna 
(2000), which is composed by soundings taken from the city 
of Curitiba, in Paraná state. The geology of this region can 
be divided into three groups: a metamorphic rock complex 
from the Precambian; sedimentary deposits from Tertiary; 
and a more recent sedimentary deposit (Holocene), as a 
result of a partial removal of older sediments (Cenozoic). 
This entire sequence of Cenozoic sediments in the Curitiba 
Basin is named Guabirotuba Formation in the literature 
(Bigarella & Salamuni, 1962).

After assembly, raw data was preprocessed into two 
datasets. The first, named Décourt dataset, uses pSPT , 

lSPT , D (in cm) and L (in m) as calculated in the Décourt-
Quaresma method. The second uses the same inputs, but 
defined accordingly to the Meyerhof method. Notice that 
the difference is how each method calculates pSPT  and 

lSPT , as presented in previous sections. The authors did 
not include soil type among the inputs because, based on 
their previous experience, these variables do not contribute 
to improve accuracy and include too much human error. 
Thus, although the authors consider the position of the water 
table relevant for the problem, they decided not to include 
it because many of the used soundings did not include this 
information. Figure 2 illustrates the variables used in each 
set. The target feature is the pile bearing load capacity uQ  

Figure 1. Number of soundings at each Brazilian state.
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in kN, obtained from the load test. Tables 2 and 3 present 
a sample of each dataset. Unity b refers to the number of 
blows needed for the sampler to penetrate 30 cm into the 
soil (Salgado, 2008).

Tables 4 and 5 present correlation matrices generated 
for each dataset. Inputs are not severely correlated, with all 
values within the interval [ ]0.7,0.7− . This indicates that they 
can be all considered informative, occurring few redundancies 

between them. Notice that the correlation between lSPT  and 
pSPT  is only 0.35 for the Décourt dataset, while it rises to 

0.7 for the Meyerhof dataset. This can be explained by the 
way each method obtains these variables, with completely 
separated soil layers considered for the Décourt dataset and 
an intersection of common soil layers considered for the 
Meyerhof dataset (see Figure 2). D and L are the ones with 
stronger correlation to the output uQ , which was expected.

Figure 2. a) Décourt-Quaresma parameters. b) Meyerhof parameters.

Table 2. Sample from Décourt dataset.

N lSPT  (b) pSPT  (b) L (m) D (cm) uQ  (kN)
1 6.46 27.33 18.90 26 1115
2 7.94 27.33 21.12 26 1005
... ... ... ... ... ...

165 22.71 42.25 7.00 40 1800

Table 3. Sample from Meyerhof dataset.

N lSPT  (b) pSPT  (b) L (m) D (cm) uQ  (kN)
1 4.16 27.33 18.90 26 1115
2 6.04 27.33 21.12 26 1005
... ... ... ... ... ...

165 12.80 51.67 7.00 40 1800

Table 4. Correlation matrix for Meyerhof dataset.

lSPT  (b) pSPT  (b) L (m) D (m) uQ  (KN)

lSPT  (b) 1 0.70 -0.25 0.11 0.13

pSPT  (b) 0.70 1 0.11 0.33 0.39
L (m) -0.25 0.11 1 0.62 0.66
D (m) 0.11 0.33 0.62 1 0.84

uQ  (KN) 0.13 0.39 0.66 0.84 1
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4. Model description

After pre-processing, this study uses both datasets to 
train a set of selected machine learning algorithms. First step 
is organizing each dataset as a matrix, where each column 
represents an input or the output and each line represents 
an example. In other words, each dataset becomes a 165 5×  
matrix. Next, it divides the examples (lines) of each dataset 
into two portions: the training set and the test set. This work 
uses the leave-one-out cross validation approach, using the 
full dataset for training except for one example kept apart for 
test. The procedure tests all examples and the final accuracy 
is given by the mean (Wong, 2015).

The coefficient of determination [ ]2 0,1∈R  is one 
metric used in this work to evaluate the performance of the 
algorithms. It is obtained using Equation 6, where ˆiy  is a 
predicted value obtained from the model, iy  is an observed 
value from dataset, y  the mean of all observed values and 
ne is the number of examples. In this work, iy  is the pile 
bearing load capacity ( uQ ) of a specific pile i. 2R  values close 
to 1 imply that the target variable is completely explained by 
the used model. 0 means no connection between predicted 
and observed values. The literature considers this metric a 
meaningful indicator of accuracy (Draper & Smith, 1998).

( )

( )

2
2 1

2

1

ˆ
=

=

−
=

−

∑
∑

ne
ii

ne
ii

y y
R

y y
	 (6)

Other performance metric adopted in this work is 
the root mean square error (RMSE). It is calculated for all 
machine learning models and is given by Equation 7.

( )2

1

ˆ

=

−
= ∑

ne
i

i

y y
RMSE

ne
	 (7)

The machine learning techniques used in this work are 
k-nearest neighbor (KNN), kernel-KNN (KKNN), decision 
tree (DT), random forest (RF), artificial neural networks 
(ANN) and support vector machines (SVM). The following 
subsections present them, with a brief overview of its 
functionality. They were chosen considering their popularity 
within machine learning applications, their different biases and 

their reasonable results towards this work dataset. Multiple 
linear regression (LR) is also included as a baseline for the 
performance of the techniques.

4.1 KNN and KKNN

The KNN technique understands each example as 
a point whose coordinates are the inputs. It expects that a 
new example would have an output similar to those that are 
close in this input space. The regression problem can use 
Equation 8, which defines the output of the new example as 
the average value of its k nearest neighbors.

1

1ˆ
=

= ∑
k

i j
j

y y
k 	 (8)

This work weights the output of each neighbor with 
respect to its distance to the new example, giving more 
weight to closer ones to improve accuracy (Dudani, 1976). 
It calculates the distance using the Minkowski metric, as 
presented in Equation 9. In this work 2=p , which leads 
to the Euclidian metrics. Equation 9 gives the distance 
between arbitrary points represented by vectors a and b, 
with components ( )1, , na a  and ( )1, , nb b , considering 
an n-dimensional space.

( )
1/

1

,
=

 
 = −
 
 
∑

pn
p

i i
i

d a ba b 	 (9)

KNN has the disadvantage of poor performance for some 
type of complex problems (Kuo et al., 2008). The KKNN 
technique solves this problem by changing the distribution of 
samples, mapping them into a higher dimensional input space. 
The objective is to obtain a linear problem in this new space, 
equivalent to the nonlinear problem of the original space. 
Equation 10 presents an example of mapping a n-dimensional 
input space into a m-dimensional space:

( ) ( ) ( ) ( )( )
( )

1 1

1 2

, , , , ,

 , 

ψ ϕ ϕ

ψ

= → =

∈ ∈

 

mapping

n ma a

S S

a a a a

a a
	 (10)

Table 5. Correlation matrix for Décourt dataset.

lSPT  (b) pSPT  (b) L (m) D (m) uQ  (kN)

lSPT  (b) 1 0.35 -0.15 0.06 0.09
SPT  (b) 0.35 1 0.28 0.51 0.56

L (m) -0.15 0.28 1 0.62 0.66
D (m) 0.06 0.51 0.62 1 0.84

uQ  (kN) 0.09 0.56 0.66 0.84 1
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1S  is the original n-dimension space and 2S  the new m-dimension 
space. a is a vector in 1S  and ( )ψ a  is its corresponding vector 
in 2S . ψ  defines the mapping from 1S  to 2S  and , 1, ,ϕ = i i m
, are input mapping functions. One problem in this approach 
is that finding ψ  is usually impracticable. Nevertheless, the 
mapping does not require ψ  if the internal product ( ) ( ).ψ ψa b  
is known for arbitrary vectors a  and b. This inner product 
is called kernel (Yu et al., 2002).

The most commonly used kernel functions are: polynomial, 
radial basis and sigmoid, as shown in Equations 11, 12 and 13, 
respectively:

( ) ( ), 1 . ρ= +K a b a b 	 (11)

( )
2

2,
σ

 −
= −  

 
K exp a ba b 	 (12)

( ) ( ).  γ ω= +K tanha,b a.b 	 (13)

where ρ , σ , γ  and ω  are adjustable parameters and .a b is the 
inner product between vectors a and b. This work uses the 
radial basis kernel based on preliminary tests.

4.2 DT and RF

A DT model is a flow-chart-like structure, with nodes 
that create ramifications dividing the dataset. It starts with 
a single root node that receives the complete dataset and 
distributes it to other nodes using a rule, which is usually an 
inequality applied to one of the inputs. New nodes receive 
portions of the dataset, subjects them to their rules and 

distributes them to other nodes, forming the branches of 
the tree. The last nodes, called leafs, assign outputs to the 
examples. Figure 3 presents a scheme of a DT.

One disadvantage of DTs is that they tend to become 
overspecialized in the dataset used for training, which 
prejudices performance for new examples. This behavior 
is called overfitting. RF is a technique based on DTs that 
minimizes this problem by using a collection of different DTs 
built randomly. The algorithm selects a subset of examples 
for each tree and node, ensuring that they are different. After 
RF creates the trees, each one make a separate prediction 
and the mean gives the final value (Ho, 1995).

4.3 ANN

The interaction of neurons in the human brain inspires 
the ANN algorithm. Its structure consists of a number of 
processing elements or nodes that are arranged in layers: an 
input layer, an output layer and one or more hidden layers. 
Each node from the first layer receives an input ix , which 
is multiplied by an adjustable connection weight ijw . These 
values are inputs for the neurons of the next layer, that sum 
them and add a threshold value θ j to obtain a combined input 

jI . Then, the algorithm applies an activation function ( )jf I  
to produce the output jo , as expressed in Equations 14 and 15.

θ= ∑ +j ij i jI w x 	 (14)

( )=j jo f I 	 (15)

This work uses a sigmoid function for activation, which 
is expressed as:

Figure 3. Example of a decision tree.
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( ) 1
1 λ−=
+ j

j If I
e

	 (16)

where λ is a calibration parameter.

4.4 SVM

SVMs use statistical learning principles as a basis. 
Their main objectives are minimizing errors associated with 
the training dataset and maximizing the generalization of the 
model (Vapnik, 1999). The algorithm uses a set of functions 
for its regression model that can have a solution as given 
in Equation 17:

y = w.x + ι 	 (17)

where ( ) ( )1 1, , , ,=  l lx y x yx , ∈ mRx  is the input of l samples 
and m dimensions, ∈ mRy  is the output, w is the weight 
vector and ι  is the bias. The margin is a distance from the 
hyperplane which is set to contain all points, as illustrated 
in Figure 4. This distance is the error ∈ to be minimized, 
included in Equation 18 as follows:

. ∈= + ±y w x ι 	 (18)

Equation 19 presents the function to be minimized. 
ξi and *ξi  are parameters introduced to penalize points outside 
the margins and parameter C controls these penalties (Smola 
& Scholkopf, 2004). The algorithm solves this optimization 
problem using Lagrange multipliers (Vapnik, 1998).

( )2 *

1

1
2

ξ ξ
=

+ +∑
l

i i
i

Cw 	 (19)

This procedure is valid for linear problems. One can 
extend it to nonlinear problems using kernels to map the input 
data into a higher dimensional space. It is the same approach 
described for the KKNN. The authors chose radial basis 
functions after observing better accuracy in preliminary tests.

4.5 LR

A LR seeks a linear relationship between the input 
variables and the output. Equation 20 represents the model 
generated by this kind of regression:

0 1 1 2 2ˆ β β β β= + + + +i n ny x x x 	 (20)

where ˆiy  is the predicted variable, β j  are the coefficients 
determined by the model and jx  are the input values for the 
problem.

This technique has the advantage of being simple and 
widely used in geotechnical engineering practice, but it cannot 
reproduce non-linear behavior. Although it is not expected 
to obtain good results from this technique, it is included in 
this work as one of the baselines for the performance of the 
machine learning techniques.

5. Results and discussion

5.1 General application

The objective of this example is to apply the six machine 
learning techniques to Décourt and Meyerhof datasets, using 
RMSE and 2R  metrics to evaluate performance. The baselines 
for performance are the original semi-empirical methods 
and LR.

Tables 6 and 7 present the performance obtained using 
the Décourt and Meyerhof datasets, respectively. RF was the 
technique with best accuracy, presenting the lowest RMSE in 
both tables. The second best was KNN for Décourt, followed 

Table 6. Performance metrics using Décourt dataset.

Algorithm RMSE (kN) 2R
RF 642.38 0.765

KNN 651.24 0.762
ANN 659.08 0.752

KKNN 665.37 0.750
LR 684.22 0.732

SVM 686.24 0.744
DT 704.40 0.717

Figure 4. Graphical representation of Support Vector Machines.
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by ANN and KKNN. For Meyerhof, the second best was 
ANN followed by KKNN and KNN. DT presented the worst 
performance, which can be explained by the tendency of this 
technique to overfit. SVM presented poor performance as 
well, worse than LR which is the baseline.

Table 8 presents a comparison between the performance 
of the semi-empirical methods (Décourt-Quaresma and 
Meyerhof), the LR and the RF algorithms. The subscript Dq 
indicates the use of the Décourt dataset for training. One can 
observe that even LR surpass the semi-empirical method of 
Meyerhof, encouraging the use of machine learning techniques 

for this type of problem. This conclusion is corroborated by 
other studies (Lee & Lee, 1996; Pham et al., 2020).

Figure 5 complements the comparisons presented in 
Table 8, with abscissas representing measured values and 
ordinates representing predicted values. This study uses 
logarithm scale to better represent the wide range of values. 
A predicted value equal to the observed one produces a point 
at the black line, while poor predictions tend to produce points 
far from it. Note that the cloud of white circles, that represents 
RFMey, is clearly more concentrated around the black line than 
black squares and triangles, which represent semi-empirical 
methods. It is also shown that the semi-empirical methods 
tend to underestimate the load bearing capacity, while points 
from RFMey tend to be split in half by the black line.

In order to present a complementary analysis, 
Table 9 presents predicted values using RFDq, the corresponding 
measured values Qu and the ratio between them. This ratio 
is organized in ascending order including all 165 load tests, 
with a range from 0.340 to 4.62. The objective is to produce 
confidence intervals for the RFDq /Qu values, allowing a better 
understanding of the accuracy of the algorithm.

The authors first verify whether the RFDq /Qu results 
follow a normal distribution using the Shapiro-Wilk test. 

Table 7. Performance metrics using Meyerhof dataset.

Algorithm RMSE (kN)

RF 651.16 0.758
ANN 660.44 0.751

KKNN 676.31 0.742
KNN 679.90 0.741
LR 694.52 0.724

SVM 704.65 0.728
DT 706.02 0.715

Table 8. Performance results by method.

Method RMSE (kN) 2R
RFDq 642.38 0.765
LRDq 684.22 0.732

Meyerhof 896.08 0.662
Décourt-Quaresma 909.98 0.748

Table 9. Relation between predicted and measured values.

RFDq (kN) Qu (kN) RFDq /Qu

1803 5300 0.340
1203 2720 0.442

... ... ...
2770 600 4.62

Figure 5. Graphical comparison between methods studied in this work.
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The procedure uses a significance level of 5% and a starting 
null hypothesis H0 that data follows a normal distribution. 
However, when calculating the p-value, the result was far 
below 5%, indicating that the data does not have a normal 
behavior. This means that it is not possible to apply the 
confidence level theory for this distribution.

To solve this problem, this study proposes a less 
rigorous approach using the concept of percentiles. The nth 
percentile is a value greater than n  percent of all values 
in the list. The authors use the RFDq /Qu ordered list from 
Table 9 to estimate the confidence interval, considering that it 
must be centralized in the list with respect to the percentiles. 
The analysis proposes two confidence intervals: one of 
90%, that must be limited by the 5th and 95th percentiles, 
and one of 95%, that must be limited by the 2.5th and 97.5th 
percentiles. This procedure resulted [ ]0.603, 2.185  for the 
90% confidence interval of RFDq /Qu and [ ]0.559,  2.170  for 
its 95% confidence interval.

Figure 6 illustrates these results. Abscissa axis represents 
measured values, the ordinate axis represents predicted values 
and each point represents a RFDq /Qu value. The continuous 
line is the locus of points with RFDq = Qu, while the other lines 
represent the limits of the confidence intervals. Considering 
engineering practice, this graph can give to geotechnical 

engineers a sense of which confidence interval would suit 
better their specific case.

5.2 Case study

This section presents a case study with new examples 
to validate the generated models. The analysis uses results 
taken from three SPT soundings and load tests of precast 
concrete piles located in a construction site in Monte Largo, 
Paraná state, Brazil. These examples came from Lobo (2005) 
and were not used to train the machine learning techniques. 
The objective is to evaluate what would be the accuracy of 
the models if applied in the future to a completely new site. 
Figure 7 presents the SPT values and load test information.

The study starts calculating the results obtained with 
the original semi-empirical methods of Décourt-Quaresma 
and Meyerhof, as well as for the best performing techniques 
for each dataset. To facilitate comparisons, Table 10 presents 
all relative errors. For a predicted value ˆiy  and an observed 
value iy , the relative error is ˆ /= −i i i iRE y y y .

Note that the first example seems to be more difficult than 
the other two. One possible explanation for this disparity is the 
soil of this examples, with the first underrepresented within 
the training datasets. This issue is investigated incorporating 

Figure 6. Confidence intervals for ratio between observed and predicted values.

Table 10. Relative errors for the load tests from Monte Largo.

Relative error
Décourt-Quaresma Meyerhof

Déc RFDq KNNDq Mey RFMey ANNMey

6.48 26.26 24.12 35.60 33.62 53.94
40.04 10.50 19.39 31.50 14.44 1.24
43.81 2.46 8.45 32.71 11.50 0.41
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Figure 7. SPT sounding and load test for the pile tests. Adapted from Lobo (2005).
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these piles to the datasets, to verify if performance changes. 
The objective is verifying if the inclusion of two of the load tests of 
this construction site helps predicting the third one, as performed 
in the leave-one-out methodology. Table 11 presents the result.

One can observe that most machine learning techniques 
presented some improvement for the first example, which 
is still the most difficult. For the other two, although some 
specific values increased, the overall performance of the 
techniques can be considered better. This allows concluding 
that the inclusion of information from the same construction 
site helped improving performance. In other words, the 
performance of the techniques for new examples depends 
on its representativity within the training dataset.

6. Conclusions

This work applies machine learning techniques to predict 
the bearing capacity of concrete precast piles. It presents two 
examples, the first with a general application and the second 
with a case study. The results obtained in the first example, 
considering all techniques applied to both datasets, allows 
concluding that RF is the best algorithm for this problem, 
with lower RMSE values. KNN and ANN also detached 
from the others, presenting the second best performance 
for Décourt-Quaresma and Meyerhof datasets, respectively. 
The semi-empirical methods of Décourt-Quaresma and 
Meyerhof presented a relatively poor performance in this 
example with an RMSE close to 900, being surpassed by all 
other techniques including LR. These results demonstrate 
that machine learning algorithms are a good alternative for 
predicting the ultimate bearing capacity of piles. The analysis 
proposed an approximation of the confidence intervals using 
the concept of percentile. A graph presented two intervals, 90% 
and 95%, to give engineers choices for the desired accuracy.

The second example presented a study to evaluate the 
effect of the representativity of the dataset. Results confirm 
that performance depends on representativity and also reveal 
the limits of these models, which tend to present poor accuracy 
for examples very different from the ones contained in the 
used datasets.
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List of symbols

a,b:	 Arbitrary vectors
ai,bi:	 Vector components
b:	 Number of blows needed for the sampler to penetrate 
30 cm into the soil
Ap:	 Area of the pile tip
f:	 Activation function
Ij:	 Combined input of a neuron
k:	 Number of nearest neighbors
K:	 Soil type factor
K(a,b):	 Kernel
l:	 Number of samples for a SVM
L:	 Pile length
n,m:	 Space dimensions
ne:	 Number of examples
oj:	 Output of a neuron 
p:	 Exponent of Minowsky equation
qp,qs:	 Parameters of Meyerhof´s method
Qu:	 Pile bearing load capacity 
R2:	 Coefficient of determination
REi:	 Relative error
Rl:	 Lateral friction 
RMSE:	 Root mean square error
Rp:	 Tip resistance 
Rt:	 Pile load capacity
S1,S2:	 Spaces of dimension n and m, respectfully
SPTl:	 Mean NSPT index along the pile shaft

Table 11. Relative error for predictions made with the updated datasets.

Relative error
Décourt-Quaresma Meyerhof

RFDq KNNDq RFMey ANNMey

25.62 24.12 31.72 53.94
9.25 20.65 6.55 1.55
2.59 3.47 11.64 0.61
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SPTp:	 Mean NSPT index around the pile tip
U:	 Pile perimeter
w:	 Weight vector 
wij:	 Adjustable connection weight
x:	 Input of a SVM
xi:	 Input of a neuron
xi,yi:	 Components of x and y, respectfully
y:	 Output of a SVM
yi:	 Observed value
ˆiy :	 Predicted value
y :	 Mean of all observed values
ξi, *ξi ,C:	 Parameters of a SVM
α, β:	 Parameters of Décourt-Quaresma method
θj:	 Threshold value
ρ,σ,γ,ω:	 Kernel parameters
φi:	 Component of 𝜓
𝛽j:	 Coefficients to be determined for a LR
𝜄 :	 Bias of a SVM
𝜆:	 Calibration parameter
𝜓:	 Mapping vector
𝜖:	 Error to be minimized
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