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ABSTRACT
CONTEXT AND OBJECTIVE: Type 2 diabetes is a chronic disease associated with a wide range of serious 
health complications that have a major impact on overall health. The aims here were to develop and valida-
te predictive models for detecting undiagnosed diabetes using data from the Longitudinal Study of Adult 
Health (ELSA-Brasil) and to compare the performance of different machine-learning algorithms in this task.
DESIGN AND SETTING: Comparison of machine-learning algorithms to develop predictive models using 
data from ELSA-Brasil. 
METHODS: After selecting a subset of 27 candidate variables from the literature, models were built and 
validated in four sequential steps: (i) parameter tuning with tenfold cross-validation, repeated three times; 
(ii) automatic variable selection using forward selection, a wrapper strategy with four different machine- 
learning algorithms and tenfold cross-validation (repeated three times), to evaluate each subset of variables; 
(iii) error estimation of model parameters with tenfold cross-validation, repeated ten times; and (iv) genera-
lization testing on an independent dataset. The models were created with the following machine-learning 
algorithms: logistic regression, artificial neural network, naïve Bayes, K-nearest neighbor and random forest. 
RESULTS: The best models were created using artificial neural networks and logistic regression. 
These achieved mean areas under the curve of, respectively, 75.24% and 74.98% in the error estimation 
step and 74.17% and 74.41% in the generalization testing step.
CONCLUSION: Most of the predictive models produced similar results, and demonstrated the feasibility of 
identifying individuals with highest probability of having undiagnosed diabetes, through easily-obtained 
clinical data. 

RESUMO
CONTEXTO E OBJETIVO: Diabetes tipo 2 é uma doença crônica associada a graves complicações de 
saúde, causando grande impacto na saúde global. O objetivo foi desenvolver e validar modelos preditivos 
para detectar diabetes não diagnosticada utilizando dados do Estudo Longitudinal de Saúde do Adulto 
(ELSA-Brasil) e comparar o desempenho de diferentes algoritmos de aprendizagem de máquina. 
TIPO DE ESTUDO E LOCAL: Comparação de algoritmos de aprendizagem de máquina para o desenvol-
vimento de modelos preditivos utilizando dados do ELSA-Brasil.
MÉTODOS: Após selecionar 27 variáveis candidatas a partir da literatura, modelos foram construídos e 
validados em 4 etapas sequenciais: (i) afinação de parâmetros com validação cruzada (10-fold cross-valida-
tion); (ii) seleção automática de variáveis utilizando seleção progressiva, estratégia “wrapper” com quatro 
algoritmos de aprendizagem de máquina distintos e validação cruzada para avaliar cada subconjunto 
de variáveis; (iii) estimação de erros dos parâmetros dos modelos com validação cruzada; e (iv) teste de 
generalização em um conjunto de dados independente. Os modelos foram criados com os seguintes al-
goritmos de aprendizagem de máquina: regressão logística, redes neurais artificiais, naïve Bayes, K vizinhos 
mais próximos e floresta aleatória. 
RESULTADOS: Os melhores modelos foram criados utilizando redes neurais artificiais e regressão logística 
alcançando, respectivamente, 75,24% e 74,98% de média de área sob a curva na etapa de estimação de 
erros e 74,17% e 74,41% na etapa de teste de generalização.
CONCLUSÃO: A maioria dos modelos preditivos produziu resultados semelhantes e demonstrou a via-
bilidade de identificar aqueles com maior probabilidade de ter diabetes não diagnosticada com dados 
clínicos facilmente obtidos.
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INTRODUCTION
Type 2 diabetes is a chronic disease characterized by the body’s 
inability to efficiently metabolize glucose, which increases blood 
glucose levels and leads to hyperglycemia. This condition is asso-
ciated with a wide range of serious health complications affecting 
the renal, neurological, cardiac and vascular systems, and it has a 
major impact on overall health and healthcare costs.1

Recent studies have estimated that around 415 million peo-
ple have diabetes, and that the number of cases may increase to 
642 million by 2040. In addition, approximately half of these indi-
viduals are not aware of their condition, which may further inten-
sify the negative consequences of the disease. Diabetes was the 
main cause of death of nearly five million people in 2015, and it 
has been estimated that by 2030 it will become the seventh largest 
cause of death worldwide.2-4

It is believed that diabetes, like other noncommunicable chronic 
diseases, is mainly caused by behavioral factors such as poor diet 
and physical inactivity. Early interventions aimed towards creat-
ing lifestyle changes, with or without associated pharmacological 
therapies, have been proven effective in delaying or preventing type 
2 diabetes and its complications. This has led many countries to 
invest in national programs to prevent this disease. To reduce costs 
and amplify the results, population-level interventions need to be 
combined with interventions that are directed towards individuals 
who are at high risk of developing or already having diabetes,5 so 
as to focus interventions, at the individual patient level, on those 
for whom they are most appropriate.

To this end, over recent years, a series of clinical prediction 
rules have been developed to identify individuals with unknown 
diabetes or those at high risk of developing diabetes.5-9 However, 
few of these rules have been drawn up using the most recently 
developed machine-learning techniques, which potentially have 
the ability to produce algorithms of greater predictive ability than 
those developed through the technique most commonly used to 
date, i.e. multiple logistic regression.

OBJECTIVE
This paper presents the development and comparison of pre-
dictive models created from different machine-learning tech-
niques with the aim of detecting undiagnosed type 2 diabetes, 
using baseline data from the Longitudinal Study of Adult Health 
(ELSA-Brasil).

METHODS
These analyses were performed on data from the baseline survey 
(2008-2010) of ELSA-Brasil, a multicenter cohort study that had 
the main aim of investigating multiple factors relating to adult 
health conditions, including diabetes and cardiovascular dis-
eases. The  study enrolled 15,105 public servants aged between 

35  and 74, at six public higher-education and research institu-
tions in different regions of Brazil between 2008 and 2010, as has 
been previously reported in greater detail.10,11 The institutional 
review boards of the six institutions at which the study was con-
ducted gave their approval, and written informed consent was 
obtained from all participants. 

All analyses were performed using R version 3.2.3. The source 
codes used in the analysis are freely available.

Dataset and preliminary variable selection
Data from the ELSA study baseline were used to create the pre-
dictive models. At this baseline, the 15,105 participants were eval-
uated through interviews, clinical examinations and laboratory 
tests. The interviews addressed educational achievement; char-
acteristics and composition of home and family; dietary habits; 
alcohol drinking habits; smoking habits; presence of dyslipidemia 
or hypertension; physical activity at leisure; sleep quality; medical 
history; and medication use, among other topics. The examina-
tions involved anthropometric measurements and blood and urine 
tests, among others. The study generated more than 1500 variables 
for each participant at baseline, as described previously.10,11 

A total of 1,473 participants were excluded from the present 
analyses because they had self-reported diabetes. Another three 
participants were excluded because some information required for 
characterizing undiagnosed diabetes was missing. An additional 
1,182 participants (8.7%) were excluded from the analyses because 
data relating to other variables were missing. Among the remain-
ing 12,447 participants, 1,359 (11.0%) had undiagnosed diabetes. 

Undiagnosed diabetes was considered present when, in the 
absence of a self-report of diabetes or use of anti-diabetic medica-
tion, participants had fasting glucose levels ≥ 126 mg/dl, glucose 
levels ≥ 200 mg/dl two hours after a standard 75 g glucose load or 
had glycated hemoglobin (HbA1c) ≥ 6.5%.

Through procuring variables in the ELSA dataset that were simi-
lar to those investigated in previously published predictive models 
for detecting diabetes or in situations of high risk of developing 
diabetes, we selected 27 diabetes risk factors for analysis. Any vari-
ables that implied additional costs beyond those of filling out a 
questionnaire and performing basic anthropometry, such as clinical 
or laboratory tests, were excluded so that the model obtained could 
be applied using a straightforward survey and simple anthropo-
metric measurements. The final variable subset was validated by 
experts, and this resulted in the subset of 27 candidate variables 
described in Table 1 and Table 2. Table 2 also presents the analy-
sis target variable of prevalent diabetes “a_dm”. 

The original dataset was randomly divided into two parts in 
the ratio of 70:30. The first part (training/validation dataset) was 
used for parameter and cutoff tuning, automatic variable selection 
and error estimation using cross-validation; the second part (test 
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Table 1. Numerical variables
Variable identity Minimum Median Mean Maximum SD Variable description
a_cons_est_nacl 0.14 9.67 11.65 3533.00 42.57 Estimated daily salt consumption in grams
a_rcq 0.40 0.89 0.89 1.27 0.09 Waist-hip ratio
a_rendapercapita 27.63 1410.90 1756.34 7884.50 1436.67 Per capita family net income in R$
afia7 0.00 0.00 0.12 7.00 0.68 Bicycle use for transport (days/week)

SD = standard deviation.

Table 2. Categorical variables, including the target variable “a_dm”

Variable identity
Number 
of levels

Frequency in each level Description Possible values

a_ativfisica 3 1: 9523; 2: 1735; 3: 1189
Physical activity during 

leisure time
1 = weak; 2 = moderate; 3 = strong

a_binge 2 0: 10764; 1: 1683
Sporadic excessive 

alcohol drinker
0 = no; 1 = yes

a_consdiafrutas 2 0: 5434; 1: 7013
Daily consumption of 

fruits
0 = no; 1 = yes

a_consdiaverduras 2 0: 6003; 1: 6444
Daily consumption of 

vegetables
0 = no; 1 = yes

a_dm 2 1: 11088; 0: 1359 Diabetes mellitus 0 = yes; 1 = no

a_escolar 4 1: 619; 2: 773; 3: 4219; 4: 6836 Education
1 = middle school not completed or less; 2 = middle 
school completed; 3 = high school completed; 4 = 

university undergraduate course completed
a_fumante 3 0: 7212; 1: 3619; 2: 1616 Smoker 0 = never smoked; 1 = former smoker; 2 = smoker

a_gidade 4 1: 2899; 2: 5077; 3: 3320; 4: 1151 Age group
1 = 35 to 44 years; 2 = 45 to 54 years; 3 = 55 to 64 years; 4 

= 65 to 74 years

a_imc2 4 1: 122; 2: 4705; 3: 5011; 4: 2609
Four-level body mass 

index
1 = underweight; 2 = eutrophic; 3 = overweight; 

4 = obese

a_medanthipert 2 0: 9232; 1: 3215
Use of antihypertensive 

drugs
0 = no; 1 = yes

a_medoutahip 2 0: 12367; 1: 80
Use of other 

antihypertensive drugs
0 = no; 1 = yes

a_medredlip 4 0: 11122; 1: 1117; 2: 97; 3: 111
Use of lipid-lowering 

drugs
0 = no use; 1 = use of statins; 2 = use of others; 

3 = use of more than one class

a_sfhfprem 2 0: 12371; 1: 76
Self-reported heart 

failure (< 50 years of age)
0 = no; 1 = yes

a_sfmiprem 2 0: 12386; 1: 61
Self-reported myocardial 

infarction 
(< 50 years of age)

0 = no; 1 = yes

a_sfrevprem 2 0: 12402; 1: 45
Self-reported 

revascularization 
(< 50 years of age)

0 = no; 1 = yes

a_sfstkprem 2 0: 12373; 1: 74
Self-reported stroke 

(< 50 years of age
0 = no; 1 = yes

a_sintsono 2 0: 8321; 1: 4126 Sleep quality 0 = no; 1 = yes

a_sitconj 5
1: 8248; 2: 2028; 3: 1283; 4: 474; 

5: 414
Marital status

1 = married; 2 = divorced; 3 = single; 
4 = widowed; 5 = other

claa2 2 0: 8397; 1: 4050
Pain/discomfort in the 
legs while walking (Q2)

0 = no; 1 = yes

diea133 3 0: 1038; 1: 11136; 2: 273
Coffee consumption 

(Q133)
0 = no; 1 = yes, with caffeine; 2 = yes, decaffeinated

hfda07 2 0: 3271; 1: 9176
Hypertension, family 

history (Q7)
0 = no; 1 = yes

hfda11 2 0: 7879; 1: 4568
Diabetes, family history 

(Q11)
0 = no; 1 = yes

hmpa08 2 0: 8205; 1: 4242 High cholesterol (Q8) 0 = no; 1 = yes
rcta8 2 1: 5566; 2: 6881 Sex 1 = male; 2 = female



Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes – ELSA-Brasil: accuracy study | ORIGINAL ARTICLE

Sao Paulo Med J. 2017;135(3):234-46     237

dataset) was used for generalization tests. The models created were 
evaluated in terms of area under the receiver operating character-
istic curve (AUC), sensitivity, specificity and balanced accuracy 
(arithmetic mean of sensitivity and specificity). The machine-
learning algorithm families of logistic regression, artificial neural 
network (multilayer perceptron/backpropagation), Bayesian net-
work (naïve Bayes classifier), instance-based learning (K-nearest 
neighbor) and ensemble (random forest) were used.

Machine-learning algorithms
The machine-learning algorithms are briefly described below:

Logistic regression12 is a well-established classification tech-
nique that is widely used in epidemiological studies. It is gener-
ally used as a reference, in comparison with other techniques for 
analyzing medical data.

Multilayer perceptron/backpropagation13 is the principal artifi-
cial neural network algorithm. When there is no hidden layer on 
the network, this algorithm is equivalent to logistic regression, but 
it can solve more difficult problems with more complex network 
architectures. The price of using complex architectures is that it 
produces models that are more difficult to interpret. Additionally, 
it can be computationally expensive.

Naïve Bayes classifier14 is a type of Bayesian network that, despite 
enormous simplicity, is able to create models with high predictive 
power. The algorithm works well with heterogeneous data types 
and also with missing values, because of the independent treat-
ment of each predictor variable for model construction.

K-nearest neighbor (instance-based learning)15 is a classical 
instance-based learning algorithm in which a new case is classi-
fied based on the known class of the nearest neighbor, by means of 
a majority vote. This type of algorithm is also called lazy learning 
because there is no model building step and the entire computing 
procedure (i.e. the search for the nearest neighbor) is performed 
directly during the prediction. All the cases (training/validation 
dataset) need to be available during the prediction. 

Random forest16 is a machine-learning algorithm from the 
“ensemble” family of algorithms,17 which creates multiple models 
(called weak learners) and combines them to make a decision, in 
order to increase the prediction accuracy. The main idea of this 
technique is to build a “forest” of random decision “trees” and use 
them to classify a new case. Each tree is generated using a random 
variable subset from the candidate’s predictor variables and a ran-
dom subset of data, generated by means of bootstrap. This algo-
rithm also can be used to estimate variable relevance.

Data preparation
Standardization of numerical variables
Transformation between different data types (categorical or numer-
ical) was performed by means of binarization or discretization, 

when necessary. In binarization, a categorical variable with n levels 
is transformed into n - 1 dummy variables that have values equal to 
“1” when the case belongs to the level represented by the dummy 
variable or “0” otherwise. 

In discretization, a numerical variable is transformed into 
a categorical variable by defining a set of cutoff points for that 
variable, such that the ranges of values between the cutoff points 
correspond to the levels of the categorical variable. The Ameva 
algorithm18 was used to find the best cutoff points for each numer-
ical variable. 

General process of model construction and evaluation
The models were built, evaluated and compared using four 
sequential steps:
1.	 Parameter tuning;
2.	 Automatic variable selection;
3.	 Error estimation; and
4.	 Generalization testing in an independent dataset.

The complete process is depicted in Figure 1. First, manual vari-
able preselection was performed as described above (“Manual 
Variable Selection” box in the Figure). After that, 30% of the 
dataset (“Test” dataset in the Figure), containing 3,709 complete 
cases, was separated for generalization testing, while the other 
part (“Training/Validation” dataset in the Figure), containing 
8,738 complete cases, was used as the dataset for the first three 
steps of the process.

The first step in model building (“Parameter Tuning” box in 
Figure 1) evaluated each machine-learning algorithm with differ-
ent sets of configurable parameters of the algorithm by means of 
tenfold cross-validation, repeated three times. In tenfold cross-val-
idation, the dataset (training/validation) is divided into ten parts, 
of which nine are used for training (selecting) a model and the 
tenth for validation of this model. This process is repeated to cal-
culate the validation measurements, such as AUC, while varying 
the part of the dataset used for validation each time. Finally, the 
mean of the validation measurements across repeats is calculated. 
The results from this step (“Best Parameters” item in the Figure), 
containing the best parameters and cutoffs for classification for 
each algorithm, were used in the next steps.

The second step (“Automatic Variable Selection” box in 
Figure 1) generated four different variable subsets using differ-
ent algorithms and cross-validation (using only the best settings 
found in the preceding step), with the wrapper strategy and a for-
ward selection search for automatic variable selection. The best 
variable subsets found in this step (“Best Variable Subsets” item 
in Figure 1) were used in the next steps. 

The third step (“Error Estimation” box in Figure 1) used cross-
validation to obtain more reliable estimates of the performance 
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of different learning schemes, using the best settings and subsets 
obtained in the preceding steps. 

Finally, the last step (“Generalization Testing” box in Figure 1) 
evaluated models using only the learning scheme that obtained the 
best performance for each algorithm in the test dataset that had 
not previously been used.

The following sections describe each step in more details.

Parameter tuning
This first step in model building evaluated each algorithm with 
different parameter configurations to find out which parameter 
configuration produced the best results for each algorithm and 
data type conversion used. The parameters tested for each algo-
rithm are listed in Table 3. 

Because of the wide range of possible values for the parameters, 
a search strategy was adopted. At first, a limited set of values for 

each parameter was selected, and each combination of parameters 
was evaluated by means of tenfold cross-validation, repeated three 
times, thus generating 30 models. Each instance of machine learning 
was tested with and without data discretization. The results from 

ELSA

Training 
and 

validation 

Test 

Manual variable election 

Dataset splitting 

Training/validation 
data pre-processing 

Test data pre -
processing  

Selection of �nal 
model 

Parameter tuning 

Automatic variable 
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Error estimation Generalization 
testing  

Pre-
processing 
parameters

 

Best
parameters

 

Best variable 
subsets

Figure 1. General process of model construction and evaluation.

Table 3. Parameters analyzed in parameter tuning
Algorithm Parameter Description
Artificial 
neural 
network

Size Number of neurons on hidden layer
Decay Weight decay
Skip Direct link between input and output neurons

Logistic 
regression

Epsilon Convergence tolerance value

Naïve 
Bayes

Laplace Real number to control Laplace smoothing

K-nearest 
neighbor

Minvotes Minimum votes to define a decision
k Number of neighbors considered

Random 
forest

Ntree Number of random trees generated
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the 30 models generated in each test were averaged. The param-
eter configuration that produced the best mean AUC was chosen. 
Moreover, a set of different cutoffs (predefined by the analyst) to 
generate the classification was evaluated to find out which pro-
duced the best classification on average between the 30 models in 
terms of balanced accuracy. 

After that, the results were analyzed and, when necessary, 
new parameter values and/or cutoff points were selected for new 
tests. In this case, the new values were selected around the values 
from which the best results had been obtained up to that moment. 
The idea was to start testing a sparse range of values and then 
decrease the granularity of the values in order to avoid trying 
values that were very likely to produce poor results. This search 
stopped when there was no increase in the predictive power of the 
models that had been created using the specific machine-learning 
algorithm and data type conversion evaluated. 

Automatic variable selection
The automatic variable selection step had the aim of finding sub-
sets from the 27 candidate variables that could increase the per-
formance of the predictive models, compared with other models 
created using different sets of candidate variables. 

These subsets of variables were generated using the wrap-
per strategy.19 In this strategy, models are created and evalu-
ated by means of a machine-learning algorithm and a validation 
method, such as cross-validation, using different subsets of vari-
ables. The subset from which the best performance is achieved, 
in terms of a criterion such as AUC, is chosen as the best subset. 
Because of the large number of possible subsets, a heuristic search 
was used to generate the variable subset candidates that were more 
likely to create better models, thereby optimizing the process. 
The main advantage of this method compared with other strate-
gies is that it evaluates multiple variables together. The drawback 
is that, because it depends on a machine-learning algorithm to 
create/evaluate models, it is possible that the subset of variables 
that produces the best results using one algorithm can produce 
bad results when using another algorithm or another parameter 
setting for the same algorithm.

Four machine-learning algorithms were used: logistic regres-
sion, artificial neural network, K-nearest neighbor and naïve 
Bayes classifier. The random forest algorithm was not included 
because it already performs an embedded variable selection. 
The forward selection search strategy was used in modeling 
because it tends to generate smaller subsets. The same valida-
tion technique (tenfold cross-validation repeated three times), 
decision criterion (mean AUC) and dataset partition that had 
been used in the parameter tuning step were used again in 
this step. The best parameter settings obtained in the param-
eter tuning step were used to configure the parameters of the 

algorithms for this step. Each machine-learning technique gen-
erated a distinct subset of variables. The subsets thus generated 
were used in the next step. 

Error estimation
The error estimation step evaluated each machine-learning 
algorithm using the parameters obtained in the first step and 
the subsets generated in the second step, in addition to the 
original variable subset containing all the candidate variables. 
This step also served to evaluate the use of discretization. The 
evaluation was done through tenfold cross-validation, which 
was repeated ten times to get more reliable prediction perfor-
mance estimates.

Generalization testing
Finally, one model was generated from the training/validation 
dataset for each algorithm, using the best results from the pre-
ceding step. These best models were then evaluated (hold-out 
evaluation) in the test set, since this generalization testing has the 
aim of evaluating model behavior when faced with data that was 
not used in its creation. The results from this evaluation serve as 
a quality measurement for these models.

Development of an equation for application of the results
The model with best results from generalization testing was 
used to create a web tool to apply the questionnaire in practice. 
The prediction from the logistic regression model for any given 
individual is calculated by multiplying that individual’s value 
for each variable in the model by the coefficient derived from 
the model for that variable, and then summing the results and 
transforming this sum into a probability of undiagnosed dia-
betes using the logistic function. If this probability is above the 
predetermined cutoff (here, 11%), the individual is classified as 
positive (at high risk of undiagnosed diabetes); or otherwise, 
as negative. 

RESULTS

Study sample
Among the 12,447 ELSA participants included in this study, 
5,566 (44.67%) were men. The participants were between 35 
and 74 years old; the largest proportion (5,077) was in the group 
between 45 and 54 years old; 6,836 (54.92%) had a complete uni-
versity education or more; 5,011 (40.26%) were overweight and 
2,609 (20.96%) were obese. Using the World Health Organization 
definition (fasting glucose ≥ 110 mg/dl and/or 2  hour post-
load glucose ≥ 140 mg/dl), 5,539 (44.5%) presented intermedi-
ate hyperglycemia. Other details about the study sample can be 
found in Table 1 and Table 2.
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Parameter tuning
The best parameter configuration for each data type conversion 
of each algorithm is depicted in Table 4.

The first and second columns of Table 4 present the name of 
the algorithm and whether discretization was used, respectively. 
The third column shows the values of the parameter configuration 
that provided the best result for the machine-learning algorithm 
and data type conversion of each row. The next four columns pres-
ent basic statistics (mean, standard deviation, first and third quar-
tiles and cutoff points, respectively) of the AUC obtained in the 
cross-validation. The eighth column shows the cutoff that provided 
the mean best balanced accuracy (BA) and the last two columns 
shows the mean balanced accuracy and its standard deviation.

Table 4 shows each machine-learning algorithm with its dif-
ferent data type conversions, sorted in descending order in terms 
of AUC and balanced accuracy for each algorithm and data type 
conversion. 

Although defining which algorithms produce better results 
was not the objective of this step, it was possible to gain an initial 
insight into their predictive powers. In this regard, the best results 
were produced by artificial neural networks and logistic regression 
with mean AUC of 75.24% (row 1) and 74.98% (row 3), respectively. 

Table 4 also shows the impact in terms of performance, when 
discretization was used in each machine-learning algorithm. For 
example, performance decreased (around 1% overall and almost 
3% in the case of random forest) when the data were discretized 
in the models generated by all the algorithms except naïve Bayes. 
In general, the performance behavior of the machine-learning 
algorithms and conversion remained similar for the next steps. 

Another result that can be seen in most cases is the impact 
on the choice of the parameter settings, caused by the conversion 
used. For example, the best performance of the artificial neural 
network algorithm was achieved without data conversion and 
with size = 175 (i.e. 175 neurons in the hidden layer). However, 

when discretization was used, the best parameter setting changed 
to size = 100. 

The best parameter setting achieved was used to configure the 
five algorithms used for the automatic variable selection step, as 
well as in further steps. 

Results from automatic variable selection
The automatic variable selection step generated four distinct sub-
sets of variables as shown in Table 5 (rows 1 to 4): lr-fs, created with 
logistic regression (fs in the name stands for “forward selection”); 
ann-fs, created with an artificial neural network; knn-fs, created with 
K-nearest neighbor; and nb-fs, created with a naïve Bayes algorithm. 

Table 4. Results from parameter tuning

Algorithm
Data 

conversion
Parameters

AUC 
(mean)

AUC 
(SD)

AUC 
(1q)

AUC 
(3q)

Cutoff
BA 

(mean)
BA 

(SD)

Artificial neural network – Size = 175; decay = 2; skip = false 75.24% 1.87% 73.91% 76.77% 0.12 69.04% 2.36%

Artificial neural network Discretization Size = 100; decay = 3; skip = true 74.16% 1.94% 72.71% 74.87% 0.11 67.95% 1.71%

Logistic regression – Epsilon = 0.01 74.98% 1.81% 73.83% 76.27% 0.11 68.46% 2.37%

Logistic regression Discretization Epsilon = 0.01 74.01% 1.98% 72.61% 74.98% 0.11 67.74% 1.98%

K-nearest neighbor – Neighbor = 475 74.45% 2.05% 72.96% 75.56% 0.1 68.59% 1.99%

K-nearest neighbor Discretization Neighbor = 275 73.60% 2.11% 72.31% 74.87% 0.09 67.55% 2.30%

Naïve Bayes Discretization Laplace = 0.001 73.67% 2.26% 72.21% 75.04% 0.09 68.09% 2.11%

Naïve Bayes – Laplace = 1 73.23% 2.58% 71.85% 74.52% 0.31 67.74% 2.57%

Random forest – Ntree = 7,000 72.90% 1.94% 71.77% 74.26% 0.13 67.24% 2.06%

Random forest Discretization Ntree = 4,300 70.85% 2.12% 69.41% 72.56% 0.12 65.55% 2.11%

AUC = area under the ROC curve; SD = standard deviation; 1q/3q = first and third quartiles; BA = balanced accuracy.

Table 5. Variable subsets generated in automatic variable selection

Subset
Best mean 

AUC
Number of 
variables

Variable names

ann-fs 75.48% 14

a_ativfisica, a_binge, 
a_escolar, a_gidade, 

a_imc2, a_medanthipert, 
a_medredlip, a_rcq, 

a_rendapercapita, a_
sfhfprem, diea133, hfda07, 

hfda11, rcta8.

lr-fs 75.44% 11

a_ativfisica, a_binge, a_
escolar, a_gidade, a_imc2, 

a_medanthipert, a_rcq, 
diea133, hfda07, hfda11, 

rcta8.

knn-fs 74.94% 12

a_binge, a_escolar, 
a_gidade, a_imc2, 
a_medanthipert, 

a_medoutahip, a_rcq, 
a_sfmiprem, a_sfstkprem, 

hfda07, hfda11, rcta8.

nb-fs 74.47% 10

a_ativfisica, a_binge, a_
escolar, a_gidade, a_imc2, 

a_medanthipert, a_rcq, 
afia7, diea133, hfda11.
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The first column of Table 5 shows the identifier name of the 
subset, the second column presents the AUC achieved by the vari-
able subset that was chosen for each algorithm, the third shows 
the number of variables of each subset and the fourth presents 
these variable names.

The dataset partitions used for this step were the same as used 
in the parameter tuning step. Thus, it is possible to gain an insight 
into the performance improvement in terms of AUC when using a 
variable subset instead of using all the variables from the original 
dataset. Furthermore, merely the fact that a smaller subset was used 
to create the models is already an advantage because this makes 
the model and its application much simpler.

Because of the nature of the wrapper strategy, it can be expected 
that each machine-learning algorithm will present better results when 
using the variable subset created by the algorithm itself. However, 
in the next step all the subsets were tested with all the algorithms.

Results from error estimation
The aim of this step was to obtain more reliable error estimates 
regarding algorithm performance. For this reason, 10 repetitions 
were used instead of 3, for the repeated tenfold cross-validation, 
thus generating 100 models instead of 30 for each test. 

The machine-learning algorithms were tested using the best 
parameters found in the first step (depicted in Table 4), with the 
variable subsets generated in the second step (described in Table 5), 
as well as with the original set of variables. Performance was tested 
with and without discretization.

Table 6 describes the best results obtained for each machine-
learning algorithm, variable subset and data conversion used. 
Respectively, the columns represent the name of machine-learning 
algorithm used; data type conversion; variable subset; AUC mean, 
standard deviation (SD) and first and third quartiles achieved in 
cross-validation; and mean and standard deviation of the bal-
anced accuracy (BA).

Like in the results from the parameter tuning step, the artifi-
cial neural network algorithm and logistic regression achieved the 
best results. Without data conversion, these algorithms produced 
similar models, with AUC of 75.45% (row 1) and 75.44% (row 4), 
respectively, each using the variable subset generated with its own 
algorithm, as expected. K-nearest neighbor and naïve Bayes also 
reached good results, with AUC of close to 75%. The best results 
with the naïve Bayes classifier were obtained using a subset of 
variables other than nb-fs. This was possible because the variable 
subset search with this algorithm used discretized data following 
the best results from parameter tuning, while the best result in the 
current phase was without variable transformation.

Finally, as in the parameter tuning step, random forest pro-
duced the worst results. Independent of the subset of variables, this 
algorithm showed a worse yield in terms of mean AUC. 

Table 6 also shows the impact of using a specific variable sub-
set, compared with the best results obtained from the models 
generated using the original variable set. This difference is very 
small: around 0.25% better using the variable subset instead of 
all the original variables for the artificial neural network models. 
The results obtained with a subset of variables were slightly bet-
ter (around 0.5%) than the original with logistic regression and 
K-nearest neighbor models. The best naïve Bayes classifier model 
result from using a variable subset was more than 1% better than 
the best result from using all the variables. Finally, random forest 
models produced the best results using all of the available variables.

Results from generalization testing
In generalization testing, the best learning scheme (which 
includes data type conversion used, parameter setting, classifica-
tion cutoff and variable subset) found for each algorithm in the 
preceding step was evaluated in the test dataset, which had been 
separated at the beginning of the process and had not been used 
until this step.

Table 7 shows the best results obtained in the error estimation 
phase together with the results obtained in generalization testing.

All the algorithms maintained good performance in gener-
alization testing. The biggest loss of performance in relation to 
the error estimate step, as assessed from changes in the AUC, was 
1.64% for the K-nearest neighbor algorithm. The artificial neu-
ral network, logistic regression and naïve Bayes had performance 
losses of 1.30%, 1.03% and 0.80%, respectively. The least loss in 
generalization testing was 0.458%, achieved by the random for-
est algorithm, which produced the worst performance in terms 
of AUC of all the algorithms. Nevertheless, the worst result was 
an AUC of 72.35%.

Since the best result from this step in terms of AUC (74.41%) 
was obtained using logistic regression, and given the easy inter-
pretation and applicability of this model, logistic regression was 
chosen to be used to create the diabetes risk assessment tool. 

Web tool proposed for detecting undiagnosed diabetes
Finally, the model generated using the logistic regression algo-
rithm in the generalization test was selected to build a web tool 
for detecting undiagnosed diabetes. This model produced sen-
sitivity of 68% and specificity of 67.2%. The prototype inter-
face of the tool is shown in Figure 2. Since the model was con-
structed and probably would be used in Brazil, the tool was 
created in Portuguese.

The final coefficients of the equation generated are described 
in Table 8.

New cases can be classified using this model, as follows: 
1.	  Standardize the value of the only numerical variable (a_rcq) 

by subtracting the training mean (0.8889311) from the value 
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Table 6. Error estimation results

Algorithm Transformation Variable subset AUC (mean) AUC (SD) AUC (1q) AUC (3q) BA (mean) BA (SD)

Artificial neural network - ann-fs 75.45% 1.96% 74.18% 76.96% 69.36% 2.17%

Artificial neural network - lr-fs 75.42% 1.99% 74.07% 77.04% 69.47% 2.14%

Artificial neural network - knn-fs 75.35% 1.98% 74.06% 76.85% 68.90% 2.09%

Artificial neural network - nb-fs 75.33% 2.05% 74.01% 76.95% 69.23% 2.30%

Artificial neural network - original 75.20% 1.96% 73.93% 76.79% 69.00% 2.20%

Logistic regression - lr-fs 75.44% 1.98% 74.00% 77.04% 69.30% 2.12%

Logistic regression - nb-fs 75.35% 2.02% 73.97% 76.93% 68.93% 2.07%

Logistic regression - ann-fs 75.35% 1.96% 74.09% 76.96% 68.91% 2.07%

Logistic regression - knn-fs 75.32% 1.95% 74.02% 77.00% 68.76% 2.10%

Logistic regression - original 74.94% 1.97% 73.58% 76.53% 68.41% 2.26%

K-nearest neighbor - knn-fs 74.98% 2.13% 73.54% 76.83% 68.52% 2.14%

K-nearest neighbor - ann-fs 74.80% 2.23% 73.51% 76.59% 68.74% 2.04%

K-nearest neighbor - lr-fs 74.77% 2.20% 73.22% 76.69% 68.63% 2.36%

K-nearest neighbor - nb-fs 74.68% 2.17% 73.15% 76.43% 68.64% 2.07%

K-nearest neighbor - original 74.44% 2.32% 72.99% 76.34% 68.52% 2.14%

Naïve Bayes - lr-fs 74.85% 2.20% 73.30% 76.56% 68.95% 2.17%

Naïve Bayes - ann-fs 74.71% 2.23% 73.23% 76.43% 68.79% 2.21%

Naïve Bayes - knn-fs 74.66% 2.19% 73.20% 76.39% 68.58% 2.14%

Naïve Bayes Discretization nb-fs 74.49% 2.12% 72.97% 76.11% 68.15% 2.06%

Naïve Bayes Discretization original 73.75% 2.35% 72.16% 75.53% 68.14% 2.15%

Random forest - original 72.81% 2.32% 71.61% 74.35% 67.06% 2.34%

Random forest - ann-fs 72.10% 2.24% 70.63% 73.79% 64.59% 2.33%

Random forest - knn-fs 71.75% 2.40% 70.05% 73.50% 59.72% 2.43%

Random forest - lr-fs 70.62% 2.53% 68.92% 72.33% 61.85% 2.56%

Random forest - nb-fs 70.42% 2.47% 68.69% 72.24% 61.19% 2.26%

AUC = area under the ROC curve; SD = standard deviation; 1q/3q = first and third quartiles; BA = balanced accuracy.

Table 7. Generalization testing results compared with those of the error estimation step

Algorithm
Error estimation Generalization

AUC BA AUC BA Sensitivity Specificity

Logistic regression 75.44% 69.30% 74.41% 67.62% 67.99% 67.24%

Artificial neural network 75.45% 69.36% 74.17% 67.78% 66.25% 69.30%

Naïve Bayes 74.85% 68.95% 74.06% 68.52% 74.94% 62.1%

K-nearest neighbor 74.98% 68.52% 73.34% 67.76% 70.97% 64.55%

Random forest 72.81% 67.06% 72.35% 67.50% 67.74% 67.24%

AUC = area under the ROC curve; BA = balanced accuracy.

and dividing the result by the training standard deviation 
(0.08615528). 

2.	  Binarize the categorical variables;
3.	  Calculate the sum of the variables created in the preceding 

steps using the coefficients from Table 8;
4.	  Add to this sum the value of the intercept term, described in 

the first row of Table 8;

5.	  Calculate the probability of undiagnosed diabetes for a given 
individual = 1/(1+e-x), where x equals the sum resulting from 
the preceding steps. 

If the probability is greater than 0.11, then classify the individ-
ual as presenting high risk of having undiagnosed diabetes; other-
wise, classify the individual as presenting low risk.
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Figure 2. Prototype for a web interface for the risk equation.
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studies include the definition of the target variable, model objectives 
and candidate variables, among others. These models are gener-
ally constructed using conventional statistical techniques such as 
logistic regression and Cox regression. Systematic reviews5,16,24-26 
present several such studies: some, like ours, have focused on pre-
dicting undiagnosed diabetes; while others have focused on indi-
viduals at high risk of developing incident diabetes.

Use of machine-learning techniques is still new in this field.27-

29 The main studies have compared the results obtained through 
using a specific technique with the results obtained through logis-
tic regression. One report30 described creation of pre-diabetes 
risk models using an artificial neural network and support-vec-
tor machines that were applied to data from 4,685 participants in 
the Korean National Health and Nutrition Examination Survey 
(KNHANES), collected between 2010 and 2011. In comparison 
with results31 from logistic regression on the same dataset, the 
models created using support-vector machines and an artificial 
neural network produced slightly better results. 

Two other reports32,33 also compared artificial neural networks 
with logistic regression for creating predictive diabetes models. In the 
first, models created using artificial neural networks on data from 
8,640 rural Chinese adults (760 of them with diabetes) produced 
better results (AUC = 89.1% ± 1.5%) than models created using 
logistic regression (AUC = 74.4% ± 2.1%). In the second, a radial 
basis function artificial neural network that was applied to data 
from 200 people (100 cases with diabetes and 100 with pre-diabetes) 
at 17 rural healthcare centers in the municipality of Kermanshah, 
Iran, showed better results than logistic regression and discriminant 
analysis, for identifying those with diabetes. Another study34 com-
paring diabetes models created using data from 2,955 women and 
2,915 men in the Korean Health and Genome Epidemiology Study 
(KHGES) showed similar results from logistic regression and naïve 
Bayes, although naïve Bayes showed better results with unbalanced 
datasets. Finally, another study35 used data from 6,647 participants 
(with 729 positive cases) in the Tehran Lipid and Glucose Study 
(TLGS) and created models with decision trees reaching 31.1% 
sensitivity and 97.9% specificity (balanced accuracy was around 
64.5%),36 for detecting increased blood glucose levels.

In summary, use of machine-learning techniques may prove to 
be a viable alternative for building predictive diabetes models, often 
with good results, but rarely with notably superior results, compared 
with the conventional statistical technique of logistic regression.

CONCLUSION
Comparison between different techniques showed that all of 
them produced quite similar results from the same dataset 
used, thus demonstrating the feasibility of detecting undiag-
nosed diabetes through easily-obtained clinical data. The predic-
tive algorithm for identifying individuals at high risk of having 

Table 8. Coefficients from logistic regression model
Binarized variable Coefficient
(Intercept) -1.6929
rcta82 0.1826
a_gidade2 0.6458
a_gidade3 0.9566
a_gidade4 1.0548
a_escolar2 -0.2023
a_escolar3 -0.3556
a_escolar4 -0.6952
diea1331 -0.2811
diea1332 -0.1339
a_binge1 0.2614
a_ativfisica2 -0.1071
a_ativfisica3 -0.3266
a_imc22 -1.0311
a_imc23 -0.8642
a_imc24 -0.3796
a_rcq 0.5417
a_medanthipert1 0.4137
hfda071 -0.1386
hfda111 0.3666

DISCUSSION
We created predictive models for detecting undiagnosed diabetes 
using data from the ELSA study with different machine-learning 
algorithms. The best results were achieved through both an arti-
ficial neural network and logistic regression, with no relevant dif-
ference between them. 

Generally, most of the algorithms used achieved mean AUCs 
greater than 70%. The best algorithm (logistic regression) produced 
an AUC of 74.4%. Since these test dataset values are superior to 
the AUCs of several other scores that were previously validated in 
other populations,20 this score shows potential for use in practice. 

The generalization testing showed the results from asking a 
population similar to that of ELSA some simple questions. Out of 
403 individuals from the testing dataset who had diabetes and did 
not know about their condition, 274 were identified as positive 
cases (68.0% sensitivity) using the model generated through the 
logistic regression algorithm. The web tool prototype for detecting 
undiagnosed diabetes could be refined for use in Brazil. 

The methods and concepts for building predictive models for 
use in healthcare, as well as the challenges and difficulties faced 
when analyzing healthcare data, have been well described.17-23 
Many groups have published predictive models for detecting undi-
agnosed diabetes. Although several groups have reported AUCs 
above 0.80, these values generally reduce to < 0.70 when tested on 
independent samples.20 Differences in predictive power across stud-
ies can be ascribed to different characteristics relating to the differ-
ent datasets, and to different techniques and methods for building 
and evaluating the models. The characteristics that may vary across 
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undiagnosed diabetes — based only on self-reported information 
from participants in ELSA-Brasil, from which the highest AUC 
(0.74) was obtained when tested on a part of the sample that had 
not been used for its derivation — was a logistic regression equa-
tion. However, the machine-learning techniques of artificial neu-
ral network, naïve Bayes, k-nearest neighbor and random forest 
all produced AUCs that were similar or slightly smaller.
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