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ABSTRACT. The covariance selection in Gaussian graphical models consists in selecting, based on a sam-
ple of a multivariate normal vector, all those pairs of variables that are conditionally dependent given the
remaining variables. This problem is equivalent to estimate the graph identifying the nonzero elements on
the off-diagonal entries of the precision matrix. There are different proposals to carry out covariance selec-
tion in high-dimensional Gaussian graphical models, such as neighborhood selection and Glasso, among
others. In this paper we introduce a methodology for evaluating the performance of graph estimators, defin-
ing the notion of non-informative estimator. Through a simulation study, the empirical behavior of Glasso
in different structures of the precision matrix is investigated and its performance is analyzed according to
different degrees of density of the graph. Our proposal can be used for other covariance selection methods.

Keywords: covariance selection, gaussian graphical model, glasso.

1 INTRODUCTION

In the last two decades, high-dimensional Gaussian graphical models have become in a powerful
tool to represent the conditional independence relationships between a large collection of random
variables and they have gained importance in the modeling of problems of different disciplines
in particular in human genetics (see for instance [18] and [23]).

More formally, if X = (X1, . . . ,Xp) is a p-dimensional multivariate Gaussian vector with covari-
ance matrix ΣΣΣ, its inverse ΩΩΩ represents the conditional association structure; i.e. if ωi j denotes
the i, j entry of the matrix ΩΩΩ then ωi j = 0 iff Xi and X j are conditionally independent given the
remaining variables. A Gaussian graphical model (GGM) is the undirected graph G = (V,E) as-
sociated with X , where V = {1, . . . , p} and E is the set of edges defined as (i, j) ∈ E iff ωi j = 0.
Thus, finding the set of variables that are conditionally dependent is equivalent to determining
the set of nonzero elements in the precision matrix.
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584 ASSESSMENT OF COVARIANCE SELECTION METHODS IN GGM

Covariance selection (see [7]) is a denomination for the set of procedures that pursue the objective
of identifying the conditional dependency in a GGM from a sample.

In high dimension, when the number of variables p is larger than the number n of observations,
the sample covariance matrix SSS is not invertible and the maximum likehood estimate (MLE)
of ΩΩΩ does not exist. When p/n≤ 1, but close to 1, SSS is invertible but ill-conditioned, increasing
the estimation error [16]. To deal with this problem, several covariance selection procedures have
been developed assuming that the precision matrix is sparse, that is, it has few non-zero elements.

Meinshausen and Bühlmann [20] propose to estimate ΩΩΩ via Lasso and lay the foundations of the
asymptotic theory when the sample size n and the number of variables p tend to infinity. Friedman
et al. [11] propose to estimate ΩΩΩ with a Lasso regularization of the log-likelihood through a
coordinate descent algorithm and call their proposal Glasso. Another alternative is a constrained
l1-minimization for inverse matrix estimation (CLIME) due to Cai et al. [5]. Lafit et al. [14]
propose to estimate the graph and the precision matrix with a step-by-step algorithm, called
StepGraph, suggesting that both Glasso and CLIME could be highly sensitive to the structure of
ΩΩΩ (see also the arxiv version [13]).

In order to evaluate the sensitivity of an estimation method to the structure and density of a
GGM, our proposal consists of introducing the notion of “non-informative estimator”, based on
the sensitivity and specificity measures. In high-dimensional GGM estimation the computation
time es very important. As this time is much higher for StepGraph and CLIME than for Glasso,
in our simulation study we will focus only on Glasso. Through this study we will show that the
graph recovery performance of Glasso is highly sensitive both to the number of edges of E and
to the structure of ΩΩΩ.

The rest of the article is organized as follows. Section 2 introduces some general settings and
measures to evaluate GGM estimation. Section 3 gives our simulation results. Section 4 submit
the analysis of a real data set. Finally, in Section 5 we present general conclusions.

2 EVALUATION OF GGM ESTIMATION

2.1 General settings

In this section we review some necessary definitions and concepts. Let G = (V,E) be a graph
where V 6= /0 is the set of nodes and E ⊆ V ×V = V 2 is the set of edges. For simplicity we
assume that V = {1, . . . , p}. We assume that the graph G is undirected, that is, (i, j) ∈ E if and
only if ( j, i) ∈ E. Two nodes i and j are called connected, adjacent or neighbors if (i, j) ∈ E.

Let

(X1, . . . ,Xp)
> ∼ N(000,ΣΣΣ), (2.1)

where ΣΣΣ = (σi j)i, j=1...,p is a positive-definite covariance matrix.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Given (2.1), its Gaussian graphical model (GGM) is the graph such that V indexes the set of
variables {X1, . . . ,Xp} and E is defined by:

(i, j) /∈ E if and only if Xi � X j | XV\{i, j},

where � denotes conditional independence.

There exists an extensive literature on GGM. For a detailed treatment of the theory see for
instance [15], [9], and [4].

In a GGM the set of edges E represents the conditional dependence structure of the vector
(X1, . . . ,Xp). One way to represent this dependence structure as a statistical model is through a
parametrization for E. Using well known results of classical multivariate analysis, given the pre-
cision matrix ΩΩΩ= (ωi j)i, j=1...,p = ΣΣΣ

−1, it can be proved that the set of edges is fully characterized
by the support of the precision matrix

SUPP (ΩΩΩ) = {(i, j) ∈V 2 : i 6= j∧ ωi j 6= 0}. (2.2)

Namely,

∀(i, j) ∈V 2, i 6= j : (i, j) ∈ E if and only if ωi j 6= 0. (2.3)

For an exhaustive treatment of these results see, for instance, [2], [6], [15] and [8].

There exist a wide variety of structures for ΩΩΩ models, as for example:

• Nearest neighbors model of order k, denoted NN(k) and described in [18]. For each node
are selected k neighbors at random and then k symmetric entries of ΩΩΩ are chosen.

• Block diagonal matrix model with q blocks of size p/q, denoted BG(q). Each block has
diagonal elements equal to 1 and off-diagonal elements equal to 0.5.

• Random model, denoted RN(prob). Given two nodes i and j, they are connected with
probability “prob”, obtaining a graph with approximately p(p−1)prob/2 edges.

Hence, every structure define a family of models {NN(k)}k, {BG(q)}q and {RN(prob)}prob

indexed by the corresponding parameters.

These graph models are widely used in the genetic literature to model gene expression data as
detailed in [18] and [17]. Figure 1 displays the graphs with p = 100 nodes of the models NN(2),
BG(20) and RN(0.01); it can be seen that they represent very distinct structures of conditional
association between variables.

There are different options to quantify the sparsity of a graph (see [20], [22]). In this paper, given
a GGM, we define a simple sparsity measure of its graph given by

d =
NL

p(p−1)/2
,

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Figure 1: Graphs of NN(2), BG(20) and RN(0.01) graphical models for p = 100 nodes.

where NL denotes the number of edges of the graph and p(p−1)/2 is the total number of edges
that a graph with p nodes can have. Thus d measures the density or sparsity of the graph and
varies between 0 and 1. When d = 1 we call the graph totally dense and it has all possible edges
and if d = 0 we call the graph totally sparse and E = /0.

For every parameter k, q and prob of NN(k), BG(q) and RN(prob) respectively, we have an
associated density dk, dq and dprob. So, every family can be written as {NN(k)}dk , {BG(q)}dq

and {RN(prob)}dprob . In this way, we have three structures, each one being a family of ΩΩΩ models,
indexed by their densities.

Finally, it is important to emphasize that, the covariance selection or precision matrix estimation
allows us, based on a data set, to obtain an estimate of the set of edges and therefore an estimate
of the GGM.

2.2 Minimum density and not informative estimator

Let X denote a n× p data matrix of the normal multivariate distribution (2.1) and let
Ω̂ΩΩ= (ω̂i j)i, j=1...,p be an estimator of ΩΩΩ based on X. So, according to (2.2) and (2.3), an estimation
of the set of edges can be defined as Ê = {(i, j) ∈V 2 : i 6= j∧ ω̂i j 6= 0}.

Assuming that we know the true ΩΩΩ model, to analyze the performance of the estimator, regarding
the identification of the nonzero off-diagonal elements of ΩΩΩ, we evaluate its ability to recover the
graph E based on Ê. For this purpose, we use the Matthews correlation coefficient [19]

MCC =
TP×TN−TP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
,

and the measures

specificity =
TN

TN+FP
and sensitivity =

TP
TP+FN

,

where TP, TN, FP and FN are, in this order, the number of true positives, true negatives, false
positives and false negatives. Larger values of MCC, sensitivity and specificity indicate a better
performance [3, 10].

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Assume that G = {Ωd}d is a family of GGM indexed by the density of its members, like those
introduced in Section 2.1 and let Ωd ∈G. We define

τ = τ(d,n) =: min{specificity,sensitivity}

We adopt as criteria to claim that the estimator is not informative if τ < 0.7. The choice of the
threshold 0.7 is due to the fact that this value is the maximum attained by τ with estimators such
as CLIME and StepGraph that outperform Glasso for different models, sample sizes and values
of p as it is shown in [14].

We further define the minimum density as

dmin = dmin(n) =: min{d : τ(d)< 0.7} .

Thus dmin represents the lowest density or the lowest proportion of edges from which the
estimator is no longer informative.

3 SIMULATION AND NUMERIC RESULTS

In this section, to estimate the precision matrix we use the algorithm developed by Friedman
et al. [11] called Glasso, which is obtained by solving the following `1 penalized-likelihood
problem:

min
ΩΩΩ�0

(
−log{det[ΩΩΩ]}+ tr{ΩΩΩX′X}+λ ‖ΩΩΩ ‖1

)
, (3.1)

where X denotes, as before, the data matrix and the minimum in (3.1) is obtained over all non-
negative semidefinite matrices. The R-package CVGLASSO implements Glasso by selecting the
regularization parameter λ by cross validation with K = 5 folds. Thus, setting n and choosing
the GGM, we obtain for each replicate an estimate of the precision matrix Ω̂ΩΩ and therefore an
estimate of the set of edges Ê.

In our simulation study we empirically address Glasso’s performance in estimating the graph
of a GGM, considering two main objectives: to study how sensitive Glasso is to variations in
the structures of the precision matrix and to determine the number of edges that it can estimate
before becoming uninformative.

3.1 Simulation scheme

We consider the dimension value p = 100 and the ΩΩΩ structures introduced in Section 2.1:

Model 1. NN(k), with k = 2,5,7,10,20,30,40,50,60 and 80. To generate this model we
use the “NeighborOmega” function of the R-package TLASSO.

Model 2. BG(q) with q = 1,2,4,5,10,20,25,50 and 100 blocks. To generate it we use the
“Bdiag” function of the R-package MATRIX.

Model 3. RN(prob) with prob = 0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6 and 0.7. To generate
it we use the function “huge.generator” of the R package HUGE.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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For every ΩΩΩ belonging to Model 1, 2 and 3 and sample size n = 30,50,100,200,500 we generate
R = 50 replicates.

For each graph and its respective density d we calculate the means and standard deviations of
sensitivity, specificity and MCC for the Glasso estimator in the R replicates of each n. From
these measurements we obtained τ̂(d,n) = min

{
specificity,sensitivity

}
where the bar indicates

an average over the R replicates (note that τ̂ is obtained by plug-in the Monte Carlo computation
of the sensitivity and specificity of the estimator of the ΩΩΩ matrix). Then, we compute d̂min. For
simplicity, we will omit the “hat” symbol.

3.2 Results

Figure 2 shows, for Models 1-3, the performance of the MCC for Glasso as a function of the
density coefficient of the graph, according to the sample size. Different behavior patterns of the
MCC are observed for the three models. Glasso’s performance improves when n grows and it
gets worse when the density of the graph increases.

Model BG(q). Model NN(k). Model RN(prob).

Figure 2: MCC curves for the Glasso estimator, according to sample size n, as functions of the
density coefficient of the graph.

Figure 3 display sensitivity, specificity and MCC curves for the Glasso estimator, according to
sample size n, as functions of the density coefficient of the graph. Notice that in all three types
of models, the Glasso estimator tends to estimate with low sensitivity and high specificity, which
implies that there are few false positives but many false negatives. In other words, Glasso is
conservative and tends to incorporate few edges but, as shown in [14], it incorporates more false
positives than other estimators such as CLIME and StepGraph.

Table 1 shows de minimum (estimated) density dmin for the Models 1-3 and different sample
sizes. We observe that for the BG(q), NN(k) and RN(prob) models, Glasso produces poor esti-
mates for graphs that have more than 9%, 25% and 31% of edges, respectively. Furthermore, in
the NN(k) model, for example, when p > n, good estimates can be obtained for graphs that have
only 4% edges, and if n = 100 or n = 200 this percentage increases. This and what happens for

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Model BG: n = 50 Model NN: n = 50 Model RN: n = 50

Modelo BG: n = 100 Modelo NN: n = 100 Modelo RN: n = 100

Model BG: n = 200 Model NN: n = 200 Model RN: n = 200

Figure 3: Sensitivity, specificity and MCC curves for the Glasso estimator, according to sample
size n, as functions of the density coefficient of the graph.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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the other two models, indicates that to achieve a good estimate in denser graphs it is necessary to
increase the sample size.

Table 1: dmin for the three models and different sample sizes

Model n = 30 n = 50 n = 100 n = 200
BG(q) 0.03 0.03 0.04 0.09
NN(k) 0.04 0.04 0.08 0.25
RN(prob) no inf no inf 0.1 0.31

4 REAL DATA ANALYSIS

Patients with breast cancer treated by neoadjuvant chemotherapy can reach two states, “patho-
logical complete response” (pCR) or “residual disease” (RD). pCR state is associated with the
long-term cancer-free survival and RD indicates that disease persists.

Based on measurements of gene expression levels Hess et al. [12] developed a multigene predic-
tor of pCR or RD responses. Their data base has 22283 gene expression levels for 133 patients,
with 34 pCR and 99 RD. Based on Natowicz et al. [21], Ambroise et al. [1] study the conditional
dependence of 26 key genes estimating the graph, assuming the existence a latent structure of the
network consisting of hidden clusters. They impose this structure supposing that a node belongs
to only one cluster and they use a multinomial distribution to model this assumption.

In this section using the same dataset than in [1] we compare the estimated networks (graphs) for
pCR, RD and for all patients, abbreviated as BOTH. We compare estimated graph using graphical
lasso (Glasso), CLIME and StepGraph proposed by [11], [5] and [14], as we mentioned before.
For Glasso and CLIME we use the R-packages CVGLASSO and CLIME respectively with the
tuning parameter provided by package default. The package STEPGRAPH, written in R, was
provided by the authors of [14]. Figures 4, 5 and 6 display the resulting network obtained from
each of the estimation methods, and Table 2 exhibits the estimated network density for the 26
genes for each class.

Note that in the three classes, RD, pCR and BOTH, StepGraph estimates a sparse network com-
pared with Glasso and CLIME. Even more, StepGraph does not detect conditional dependence
between any of the 26 genes in the pCR class and conversely, Glasso and CLIME estimates a
more dense network compared to RD class. StepGraph shows that the behaviour of the structure
dependence is very different in pCR state than in RD state.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Glasso CLIME StepGraph

Figure 4: Estimated graph of the GGM for the 26 genes corresponding to RD class.

Glasso CLIME StepGraph

Figure 5: Estimated graph of the GGM for the 26 genes corresponding to pCR class.

Glasso CLIME StepGraph

Figure 6: Estimated graph of the GGM for the 26 genes corresponding to BOTH classes.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Table 2: Estimated network density for the 26 genes from breast cancer gene expressions data.

RD pCR BOTH
Glasso 0.745 0.535 0.394
CLIME 0.926 0.895 0.988
StepGraph 0.215 0.000 0.209

5 CONCLUSIONS

This paper introduces a methodology to evaluate the performance of Gaussian graphical model
estimators, based on the definition of non-informative estimator notion.

Through a simulation study, the empirical behavior of Glasso in different structures of the pre-
cision matrix is investigated and its performance is analyzed according to different degrees of
density of the graph. The results obtained show that, in terms of the graph recovery, Glasso is
not invariant to the precision matrix structure. Indeed, the graph recovery performance depends
significantly on the number of edges or density and this dependence is different according to the
structure.

Our proposal can be used for other covariance selection methods.

We compared for a real data set the estimated networks using Glasso, CLIME and StepGraph.
Glasso and CLIME estimates more dense graphs than StepGraph. In practice, the researchers’
knowledge of the field to which the statistical methodology is applied is decisive.
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