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ABSTRACT. The characterization of inverses of symmetric tridiagonal and block tridiagonal matrices
and the development of algorithms for finding the inverse of any general non-singular tridiagonal matrix
are subjects that have been studied by many authors. The results of these research usually depend on the
existence of the LU factorization of a non-sigular matrix A, such that A = LU . Besides, the conditions that
ensure the nonsingularity of A and its LU factorization are not promptly obtained. Then, we are going to
present in this work two extremely simple sufficient conditions for existence of the LU factorization of a
Toeplitz symmetric tridiagonal matrix A. We take into consideration the roots of the modified Chebyshev
polynomial, and we also present an analysis based on the parameters of the Crout’s method.

Keywords: Toeplitz tridiagonal matrix, Crout’s method, tridiagonal and diagonally dominant matrix.

1 INTRODUCTION

The development of algorithms for finding the inverse of any general non-singular tridiagonal or
pentadiagonal matrix, [9], [20], [14], and [1] (see also the references in these papers), and the
characterization of inverses of symmetric tridiagonal and block tridiagonal matrices are subjects
that have been studied by many authors. Meurant’s paper [16], from 1992, presents a good re-
view on these research. According to this author, closed form explicit formulas for elements of
the inverses can only be given for special matrices, e.g., Toeplitz tridiagonal matrices [10] corre-
sponding, for instance, to constant coefficients 1D elliptic partial differential equations (pde), or
for block matrices arising from separable 2D elliptic pde [2].

The results of these research usually depend on the existence of the LU factorization of a non-
sigular matrix A, such that A = LU . Besides, in the most of the papers, or it is assumed that the
matrix is invertible [2, 6, 10, 16] or the conditions that ensure the nonsingularity of A and its LU
factorization are not promptly obtained [7, 8].
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178 TOEPLITZ SYMMETRIC TRIDIAGONAL MATRICES

For example, in Meurant’s paper [16] some results concerning the characterization of inverses of
symmetric tridiagonal and block tridiagonal matrices were obtained by relating the elements of
inverses to elements of the Cholesky decompositions of these matrices. Elmikkawy in his paper
from 2002 [8] presented conditions for a symmetric tridiagonal matrix to be positive definite and
to have a Cholesky decomposition. These conditions were based on the parameters of the Crout’s
method.

Recent research continues to highlight the importance of studying Topelitz matrices, such as
[3, 12, 13, 19].

Yaru Fu et al. [12], in 2020, presented in their paper some properties for a class of perturbed
Toeplitz periodic tridiagonal (PTPT) matrices, including the determinant, and the inverse matrix.
Specifically, the determinant of the PTPT matrix can be explicitly expressed using the well-
known Fibonacci numbers. This technique is different from that used in our work.

Another technique which is also different from that used in our work was presented in the paper of
Yunlan Wei et al. [19], in 2019. In that paper, the authors derived the formulas on representation
of the determinants and inverses of the periodic tridiagonal Toeplitz matrices with perturbed
corners of type I in the form of products of Fermat numbers and some initial values.

Zhongyun Liu et al. [13], in 2020, developed in their paper fast solvers for tridiagonal Toeplitz
linear systems. However, the authors did not present sufficient conditions for existence of the LU
factorization of Toeplitz tridiagonal matrices. In 2021, Skander Belhaj et al. [3] also developed
in their paper a fast algorithm for solving diagonally dominant symmetric quasi-pentadiagonal
Toeplitz linear systems. Numerical experiments were given in order to illustrate the validity
and efciency of the algorithm. However, in the same way as before, the authors did not present
sufficient conditions for existence of the LU factorization of Toeplitz matrices.

In our work we are going to consider two extremely simple sufficient conditions for existence of
the LU factorization of a Toeplitz symmetric tridiagonal matrix A. We will show that if 0 < |d|<
2|a|, |d| ≠ |a|, and |d|/|a| is a rational number, then A has an LU decomposition and det(A) ̸= 0,
where d is the element that belongs to the main diagonal of A, and a is the element that belongs
to the first diagonal above the main diagonal. Besides, we will show that if |d| ≥ 2|a| > 0, then
A is non-singular and has an LU decomposition. This last result is a consequence of the theorem
(presented in our work) that considers a tridiagonal diagonally dominant matrix A (not strictly
diagonally dominant matrix).

The condition presented in the first above case extends the work of Fischer and Usmani [10]
that had only considered −d/a > 0, and not presented conditions assuring that det(A) ̸= 0, when
0 < −d/a < 2. We take into consideration, in our work, the analysis of the roots of the same
modified Chebyshev polynomial that was used in the Bank’s paper [2]. With respect to the second
condition, we have also presented an analysis based on the parameters of the Crout’s method. We
considered a tridiagonal diagonally dominant matrix A (not strictly diagonally dominant matrix)
and obtained a very simple criterion for detecting when such matrix A is non-singular and has an
LU decomposition.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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There are multiple studies involving tridiagonal matrices and, specially, diagonally dominant
matrices. For instance, Peter Z. Revesz, in his article [18], “Cubic spline interpolation by solving
a recurrence equation instead of a tridiagonal matrix”, described a method that can be used in
a wide variety of applications which require interpolation of a function of one variable. In his
words, for example, interpolation of measurement data can generate constraint databases that
can be efficiently queried using constraint query languages (see reference [17]).

According to McNally [14], “Banded Toeplitz systems of linear equations arise in many appli-
cation areas and have been well studied in the past. Recently, significant advancement has been
made in algorithm development of fast parallel scalable methods to solve tridiagonal Toeplitz
problems”. That paper presented a new algorithm for solving symmetric pentadiagonal Toeplitz
systems of linear equations based on a technique used in [15] for tridiagonal Toeplitz systems. “A
common example which arises in natural quintic spline problems has been used to demonstrate
the algorithm’s effectiveness”.

We have developed a theoretical study, tanking into consideration the previous presentation, that
culminated in a low-cost test for detecting in a simple way when a Toeplitz symmetric tridiagonal
matrix is non-singular and has an LU decomposition.

The test is introduced in Theorem 3.3 from Section 3. One part of this test is based on Crout’s
method (see Equation (2.2)) and uses a criterion that is presented in Theorem 2.1 from Section
2. The other part of the test uses a criterion based on calculations of the principal minors from a
Toeplitz symmetric tridiagonal matrix, and theory of polynomials.

Finally, the paper is organized as follows:

• Section 2: some definitions will be presented as well as preliminary results for tridiagonal
matrices.

• Section 3: we will show, in this section, preliminary results for symmetic tridiagonal
Toeplitz matrices and we will prove the main result of our work.

• Section 4: this final section will present the conclusions of the work.

2 DEFINITIONS AND PRELIMINARY RESULTS FOR TRIDIAGONAL MATRICES

In this work, a tridiagonal matrix A, with real elements, will be given by:

A =



d1 a1 0 . . . 0

b2 d2 a2
...

0 b3 d3 a3
. . . . . . . . .

...
bn−1 dn−1 an−1

0 . . . bn dn


. (2.1)

Trends Comput. Appl. Math., 24, N. 1 (2023)
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180 TOEPLITZ SYMMETRIC TRIDIAGONAL MATRICES

In this case, we consider b1 = 0 = an.

We will say that A is diagonally dominant matrix if, and only if, for all i, 1 ≤ i ≤ n, |di| ≥
|bi|+ |ai|. Besides, if |di|> |bi|+ |ai|, for all i, 1 ≤ i ≤ n, then A is a strictly diagonally dominant
matrix.

There is a way to prove a matrix A has LU decomposition wich consists of demonstrating that
its principal minors are not null (see, for example, [11]). The principal minor of order m from a
matrix A of order n, 1 ≤ m ≤ n, is the determinant of the submatrix composed by the first m rows
and m columns of the matrix A.

Remark: An important result (see, for example, [4]) states that every strictly diagonally dominant
matrix is non-singular and has LU decomposition.

Let A be a tridiagonal matrix as shown in Equation (2.1). According to [9, 20], we know that if
A = LU , then L and U are tridiagonal matrices given by:

L =



α1 0 0 . . . 0

b2 α2 0
...

0 b3 α3
. . . . . . . . .

... bn−1 αn−1 0
0 . . . bn αn


,U =



1
a1

α1
0 . . . 0

0 1
a2

α2

...

0 1
a3

α3
. . . . . . . . . 0

... 0 1
an−1

αn−1
0 . . . 0 1


, (2.2)

where α1 = d1, γ1 =
a1

α1
and αi = di −biγi−1 = di −bi

ai−1

αi−1
, 2 ≤ i ≤ n.

The previous decomposition (2.2), considering Uii = 1, 1 ≤ i ≤ n, is known as Crout’s decom-
position (see [9, 20]). This decomposition is always possible whenever αi ̸= 0, 1 ≤ i ≤ n. In this
case, we obtain that det(A) ̸= 0. The first theorem below presents a case where αi ̸= 0, 1 ≤ i ≤ n.

Theorem 2.1. Let A be a tridiagonal diagonally dominant matrix as shown in Equation (2.1).
Suppose there is an integer k, 1 < k ≤ n, such that αi ̸= 0 and |γi| ≤ 1, 1 ≤ i ≤ k− 1, |dk−1| >
|bk−1|+ |ak−1|, |di| ≥ |bi|+ |ai|, i ∈ {k, . . . ,n}, and bk+ j ̸= 0, 0 ≤ j ≤ n− k. Thus, αi ̸= 0, 1 ≤
i ≤ n. Therefore, A = LU and det(A) ̸= 0.

Proof. It will be shown that αi ̸= 0, 1 ≤ i ≤ n.

If k = 2, then |α1| = |d1| > |a1| ≥ 0. Thus, α1 ̸= 0 and |γ1| < 1. In this way, since b2 ̸= 0, we
have that |α2|= |d2 −b2γ1| ≥ |d2|− |γ1||b2|> |d2|− |b2| ≥ |a2| ≥ 0. Hence, α2 ̸= 0 and |γ2|< 1.
If k > 2, then |αk−1|= |dk−1 −bk−1γk−2| ≥ |dk−1|− |γk−2||bk−1| ≥ |dk−1|− |bk−1|> |ak−1| ≥ 0.
Thus, αk−1 ̸= 0 and |γk−1| < 1. In this way, since bk ̸= 0, we obtain that |αk| = |dk − bkγk−1| ≥
|dk|− |γk−1||bk|> |dk|− |bk| ≥ |ak| ≥ 0. Hence, αk ̸= 0 and |γk|< 1.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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In order to prove by induction, suppose that |γk+ j|< 1, αk+ j ̸= 0, ∀ j,0 ≤ j ≤ m. Thus, for M =

k +m+ 1 we have that bM ̸= 0, γM−1 < 1 and |αM| = |dM − bMγM−1| ≥ |dM| − |γM−1||bM| >
|dM|− |bM| ≥ |aM| ≥ 0. Hence, αM ̸= 0 and |γM|< 1.

Therefore, by mathematical induction, it is possible to conclude that αi ̸= 0, 1 ≤ i ≤ n. □

3 SYMMETRIC TRIDIAGONAL TOEPLITZ MATRICES - MAIN THEOREM

In this section, we will study a particular set of symmetric tridiagonal matrices. It will be shown
that the matrices belonging to this set are invertible and have LU decomposition. To show a ma-
trix has an LU decomposition, we will prove that its principal minors are not null. This technique
is different from one used in the previous section, that was based on parameters from Crout’s
decomposition given by Equation (2.2).

The matrix A that we will study in this section is a symmetric tridiagonal matrix of order n,
whose elements belonging to the main diagonal are equal to d (Aii = d ̸= 0), and all elements
belonging to the lower and upper diagonals are equal to a ̸= 0. We want to prove that, under
certain conditions, the principal minors of A are not null, regardless of the matrix order.

The notation Mk indicates the value of the principal minor of the matrix A mentioned before.
Note that M1 = d and M2 = d2 −a2. We will show that Mk = Mk(d) is a polynomial of degree k.
Furthermore, if 0 < |d|< 2 |a| and |d|

|a| ∈Q, with |d| ̸= |a|, then Mk(d) ̸= 0,∀k, 1 ≤ k ≤ n.

Using Laplace Expansion it is easy to show that

Mk = d Mk−1 −a2 Mk−2,∀k > 2. (3.1)

Next, we show that Mk = Mk(d) is a monic polynomial of degree k, M2k−1(d) is an odd function,
and M2k(d) is an even function.

Proposition 3.1. For all k ∈ N, (i) Mk = Mk(d) is a monic polynomial of degree k, i.e., the
coefficient of dk is equal to 1; (ii) M2k−1(−d) =−M2k−1(d) and M2k(−d) = M2k(d).

Proof. The demonstration is based on mathematical induction. Firstly, note that M1(d) = d and
M2(d) = d2−a2 are monic polynomial of degrees 1 and 2, respectively. Additionally, M1(−d) =
−d = −M1(d) and M2(−d) = (−d)2 − a2 = M2(d). Therefore, M1(d) is an odd polynomial
function and M2(d) is an even polynomial function. Suppose that Mm(d) is a monic polynomial
of order m, for every m, with 2 < m < k. In this way, considering m = k and Equation (3.1),
we have that Mk(d) = d Mk−1(d)− a2 Mk−2(d). Hence, Mk(d) is a monic polynomial of degree
k. Now, suppose that M2m−1 is an odd polynomial function and M2m is an even polynomial
function, for every m, 1 ≤ m < k. If m = k, then M2k−1(−d) =−d M2k−2(−d)−a2 M2k−3(−d) =
−(d M2k−2(d) − a2 M2k−3(d)) =−M2k−1(d). Hence,

M2k(−d) =−d M2k−1(−d) − a2 M2k−2(−d) =

d M2k−1(d)−a2 M2(k−1)(d) = M2k(d).

□

Trends Comput. Appl. Math., 24, N. 1 (2023)
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The first property of the polynomial Mk(d) follows easily from Proposition 3.1, as we see in the
next corollary.

Corollary 3.1. If the polynomial Mk(d) has a real root r, then −r is also a real root of this
polynomial. Additionally, if k is an odd number, then Mk(0) = 0.

Proof. Based on Proposition 3.1, if k = 2m, then Mk(−r) = M2m(−r) = M2m(r) = Mk(r) = 0. If
k = 2m−1, then Mk(−r) = M2m−1(−r) =−M2m−1(r) =−Mk(r) = 0. Besides, since M2m−1(d)
is a continuous odd function, it follows that

lim
d→0

M2m−1(−d) =− lim
d→0

M2m−1(d) =−M2m−1(0)

and
lim
d→0

M2m−1(−d) = M2m−1(− lim
d→0

d) = M2m−1(0).

Therefore, M2m−1(0) = 0. □

In the next result we are supposing that the polynomial Mk(d) may have complex roots, z= c+bi
and z̄ = c− bi. In this case, Q(d) = (d − z)(d − z̄) will be a positive quadratic factor of that
polynomial.

Based on Proposition 3.1 and Corollary 3.1, we can obtain a particular factorization of the monic
polynomial Mk(d). This is shown in the next corollary.

Corollary 3.1. Let r1, r2, · · · , rl be the positive real roots of the polynomial Mk(d), with the
quadratic factors represented by Q1(d), Q2(d), · · · , Qp(d), and 2(l + p) = k, if k is an even
number, and 2(l+ p)+1 = k, if k is an odd number. Therefore, that polynomial has the following
factorization:

(i) Mk(d) = (d2 − r2
1) · · ·(d2 − r2

l )Q1(d) · · ·Qp(d), if k is an even number;

(ii) Mk(d) = d (d2 − r2
1) · · ·(d2 − r2

l )Q1(d) · · ·Qp(d), if k is an odd number.

Proof. According to the Fundamental Theorem of Algebra, Mk(d) = (d − u1)(d − u2) · · · (d −
uk), where ui, 1 ≤ i ≤ k, are the roots of the polynomial Mk(d). By Corollary 3.1, if there is
I,1 ≤ I ≤ k, such that uI > 0, then uI and −uI are roots of Mk(d). In this way, the product
(d −uI)(d +uI) = (d2 −u2

I ) appears in the factorization of Mk(d) into linear factors. Moreover,
if there is J,1 ≤ J ≤ k, such that uJ is a complex root, then the positive quadratic factor QJ =

(d − uJ)(d − uJ) appears in the factorization of Mk(d). Finally, if k is an odd number, then, by
Corollary 3.1, 0 is a root of Mk(d) and, therefore, d is one of the factors of this polynomial. □

The Proposition 3.2 and Proposition 3.3 are going to be useful to prove important properties on
the modified Chebyshev polynomial (see the Remark after the Propositon 3.3). These properties
are presented in Proposition 3.4, Proposition 3.5, and Corollary 3.1.

Proposition 3.2. For every k ∈ N, we have that:

Trends Comput. Appl. Math., 24, N. 1 (2023)
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(i) M2k(0) = (−1)k |a|2k;

(ii)
[

1
d

M2k+1(d)
]
|d=0

= (−1)k |a|2k(k+1).

Proof. (i) Note that M2(d) = d2 − a2. Hence, M2(0) = −a2 = (−1)1 |a|2. Using mathematical
induction, suppose that M2m(0) = (−1)m |a|2m, ∀m,1 ≤ m < k. According to Equation (3.1), if
m = k, we have that

M2k(d) = d M2k−1(d) − a2 M2k−2(d).

In this way, M2k(0) =−|a|2 (−1)k−1 |a|2k−2 = (−1)k |a|2k.

(ii) Note that M1(d) = d and M3(d) = d M2(d)−a2M1(d) = d (M2(d)−a2). Therefore,

1
d

M3(d) = M2(d)−a2. Thus,
[

1
d

M3(d)
]
|d=0

= (−1)1|a|2 −|a|2 = (−1)1 2 |a|2.

By induction, suppose that

[
1
d

M2m+1(d)
]
|d=0

= (−1)m |a|2m(m+1),∀m,1 ≤ m < k.

In this way, if m = k, we have that M2k+1(d) = d M2k(d) − a2 M2k−1(d). Hence,[
1
d

M2k+1(d)
]
|d=0

= M2k(0)−|a|2
[

1
d

M2k−1(d)
]
|d=0

.

Thus,

[
1
d

M2k+1(d)
]
|d=0

= (−1)k|a|2k −|a|2(−1)k−1|a|2(k−1)(k−1+1) = (−1)k|a|2k (k+1).

□

Proposition 3.3. Every root of the polynomial Mk(d) can be represented as |a|x, for some x ∈C.

Proof. For k = 1, note that M1(d) = 0 ⇐⇒ d = 0. Thus, the root of this polynomial is u1 = 0 =

|a|.0. For k = 2, note that M2(d) = 0 ⇐⇒ d2 −|a|2 = 0. Hence, the roots of this polynomial are
u1 = |a|.(1) and u2 = |a|.(−1). Suppose that Mk−1 has roots given by |a|ui, 1 ≤ i ≤ k−1 and that
Mk−2 has roots given by |a|v j, 1 ≤ j ≤ k−2. Thus, Mk(d) = 0 ⇐⇒ d Mk−1(d) − a2 Mk−2(d) =
0. Therefore, Mk(|a|x) = 0 if, and only if, x is root of the following polynomial of degree k:
pk(x) = x(x−u1)(x−u2) · · ·(x−uk−1) − (x− v1)(x− v2) · · ·(x− vk−2). □

Remark: The last polynomial can be defined as pk(x) = 1
|a|k Mk(|a|x). If we consider p0(x) = 1

and p1(x) = x, then pk(x) is the modified Chebyshev polynomial that was used in the Bank’s
paper [2]. Next, we are going to prove some of its properties.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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Proposition 3.4. pk(x) is a monic polynomial and has integer coefficients. Additionally, pk(x) =
x pk−1(x) − pk−2(x),∀k,k > 2.

Proof. Note that p1(x) =
1
|a|

M1(|a|x) = x and p2(x) =
1
|a|2

M2(|a|x) = x2 −1. Thus,

pk(x) is a monic polynomial of degree k, k ∈ {1, 2}, with integer coefficients. Consider Equation
(3.1) and Proposition 3.1, and suppose that pm(x) is a monic polynomial of order m with integer
coefficients, for every m, 1 ≤ m < k, where k > 2. If m = k, then pk(x) = x pk−1(x) − pk−2(x),
because

Mk(|a|x) = |a|xMk−1(|a|x) − a2 Mk−2(|a|x), ∀k > 2.

Therefore, pk(x) is also a monic polynomial with integer coefficients. □

Proposition 3.5. For every k ∈ N, we have that:

(i) p2k(0) = (−1)k;

(ii)
[

1
x

p2k+1(x)
]
|x=0

= (−1)k (k+1).

Proof. We are going to use Proposition 3.2 and the definition of the polynomial pk(x). Note that:

(i) p2k(x) =
1

|a|2k M2k(|a|x) → p2k(0) =
1

|a|2k M2k(0);

(ii)
1
x

p2k+1(x) =
1
x

1
|a|2k+1 M2k+1(|a|x) =

1
|a|2k

[
1

|a|x
M2k+1(|a|x)

]
→[

1
x

p2k+1(x)
]
|x=0

=
1

|a|2k

[
1
d

M2k+1(d)
]
|d=0

, where d = |a|x. □

The next result is a corollary of Proposition 3.5.

Corollary 3.1. The positive rational roots of the polynomials p2k, if they exist, are equal to 1 and
the positive rational roots of the polynomials p2k+1, if they exist, must be divisors of k+1.

Proof. If m/q is a rational root of a monic polynomial of degree n, Pn(x) = θn xn +θn−1 xn−1 +

· · ·+ θ1 x + θ0, where θi ∈ Z,0 ≤ i ≤ n and mdc(m,q) = 1, then m|θ0 and q|θn. Since θn =

1, because the polynomial is monic, it follows that |q| = 1. According to Proposition 3.5, the
coefficient θ0 of a polynomial p2k(x) is equal to (−1)k and the coefficient θ0 of a polynomial
x−1 p2k+1(x) is equal to (−1)k (k+1) (observe that p2k+1(0) = 0, by Corollary 3.1). Therefore,
the only possible positive rational root of p2k is 1 and the only possible positive rational roots of
p2k+1 must be divisors of k+1. □

Next, we will show that the roots of the polynomial pk(x) = |a|−k Mk(|a|x) are real numbers.
Additionally, the positive roots belong to the interval (0, 2). Before the presentation of the result,
the following two propositions will be demonstrated.

The first propositon below is going to guarantee that pk(2)> 0,∀k ∈N,k > 1. This property will
be employed in Theorem 3.2, where it will be shown that the polynomial pk has only real roots.
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Proposition 3.6. For every k ∈ N,k > 1, Mk(2 |a|) = (2k−1) |a|k.

Proof. Since M2(d) = d2 − a2, it follows that M2(2 |a|) = 4 |a|2 − |a|2 = 3 |a|2. Now, suppose
that Mm(2 |a|) = (2m− 1) |a|m,∀m,2 ≤ m < k. According to Equation (3.1), if m = k, we have
that Mk(d) = d Mk−1(d) − a2 Mk−2(d). Thus, by induction hypothesis,

Mk(2 |a|) = 2|a| [(2k−3) |a|k−1] − |a|2 [(2k−5) |a|k−2] = (2k−1) |a|k.

□

Remark: According to Proposition 3.6, pk(2) = |a|−k Mk(2 |a|) = (2k− 1) > 0, if k ∈ N, and
k > 1.

The next proposition presents a particular factorization of the polynomial pk(x). This
factorization is based on Corollary 3.1 and Proposition 3.3.

Proposition 3.7. Suppose that x1, x2, · · · , xl are positive roots of the polynomial pk(x) and 2 l = k,
if k is an even number, and 2 l +1 = k, if k is an odd number. Therefore, this polynomial has the
following factorization

(i) pk(x) = (x2 − x2
1) · · ·(x2 − x2

l ), if k is an even number;

(ii) pk(x) = x(x2 − x2
1) · · ·(x2 − x2

l ), if k is an odd number.

Proof. We just use the definition of the polynomial, pk(x) = |a|−k Mk(|a|x), and the results were
presented in Corollary 3.1 and Proposition 3.3. □

The notation for positive roots of the polynomial pk(x) is presented in the next definition, and it
will be employed in Theorem 3.2.

Definition 3.1. If the polynomial p2k(x) (or p2k+1(x)) has k positive roots in ascending order
belonging to the interval (0, 2), then they are denoted by x( j)

2k , 1 ≤ j ≤ k (or x(i)2k+1, 1 ≤ i ≤ k). We

consider by convention x(0)1 = 0.

The next theorem states that all of the roots of the polynomial pk(x) are real numbers.

Theorem 3.2. The polynomials p2m(x) and p2m+1(x) have exactly m positive roots belonging to
the interval (0, 2), for every m ∈ N, m ≥ 1. Furthermore,

x(1)2m ∈ (0, x(1)2m−1), x(i)2m ∈ (x(i−1)
2m−1,x

(i)
2m−1), 2 ≤ i ≤ m−1,

x(m)
2m ∈ (x(m−1)

2m−1 , 2), ∀m, m ≥ 2;

x( j)
2m+1 ∈ (x( j)

2m, x( j+1)
2m ), 1 ≤ j ≤ m−1, x(m)

2m+1 ∈ (x(m)
2m , 2), ∀m, m ≥ 1.
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Proof. Note that p2(x) = x2 − 1, p3(x) = x(x2 − 2), p4(x) = x4 − 3x2 + 1 and p5(x) = x(x4 −
4x2 +3). In this way,

x(1)2 = 1; x(1)3 =
√

2; x(1)4 =

√
3−

√
5

2
and x(2)4 =

√
3+

√
5

2
;

x(1)5 = 1 and x(2)5 =
√

3.

Therefore, all of the positive roots of these polynomials belong to the interval (0, 2).
Additionally,

x(1)3 ∈ (x(1)2 , 2); x(1)4 ∈ (0, x(1)3 ) and x(2)4 ∈ (x(1)3 , 2);

x(1)5 ∈ (x(1)4 , x(2)4 ) and x(2)5 ∈ (x(2)4 , 2).

Suppose that the theorem is valid for every m ∈ N, 2 ≤ m < k. We will show that the theorem is
still valid for m = k. We are going to use the Proposition 3.4 referring to the equality pk(x) =
x pk−1(x) − pk−2(x), and the Intermediate Value Theorem (IVT) to prove the results. Firstly, it
will be proved that:

(I) x(1)2k ∈ (0, x(1)2k−1), (II) x(i)2k ∈ (x(i−1)
2k−1 , x(i)2k−1), 2 ≤ i ≤ k−1,

(III) x(k)2k ∈ (x(k−1)
2k−1 , 2). Then, it will be proved that

(IV) x( j)
2k+1 ∈ (x( j)

2k , x( j+1)
2k ), 1 ≤ j ≤ k−1, and (V) x(k)2k+1 ∈ (x(k)2k , 2).

Proof of the item I. Considering Proposition 3.5 (item i), we have that p2k(0) = (−1)k. Moreover,

p2k(x
(1)
2k−1) =− p2k−2(x

(1)
2k−1),

because x(1)2k−1 is a root of p2k−1(x). Note that, by the hypothesis of induction, x(1)2k−2 < x(1)2k−1 <

x(2)2k−2. Thus, according to Proposition 3.7 (item i), the sign of p2k(x
(1)
2k−1) is determined by

sgn(p2k(x
(1)
2k−1)) =−(−1)k−2 = (−1)k−1.

In this way, sgn(p2k(0) p2k(x
(1)
2k−1)) = (−1)k (−1)k−1 =−1. Therefore,

p2k(0) p2k(x
(1)
2k−1)< 0.

According to IVT, there is a root of the polynomial p2k(x) which belongs to the interval
(0, x(1)2k−1), and it will be denoted by x(1)2k .
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Proof of the item II. Note that

p2k(x
(i−1)
2k−1 ) =− p2k−2(x

(i−1)
2k−1 ), p2k(x

(i)
2k−1) =− p2k−2(x

(i)
2k−1).

Using the hypothesis of induction,

x(i−1)
2k−1 ∈ (x(i−1)

2k−2 , x(i)2k−2), 2 ≤ i ≤ k−1, x(i)2k−1 ∈ (x(i)2k−2, x(i+1)
2k−2 ), 1 ≤ i ≤ k−2.

Thus, according to Proposition 3.7 (item i),

sgn(p2k(x
(i−1)
2k−1 )) =−(−1)k−i = (−1)k−i+1,

sgn(p2k(x
(i)
2k−1)) =−(−1)k−i−1 = (−1)k−i.

In this way,

sgn(p2k(x
(i−1)
2k−1 ) p2k(x

(i)
2k−1)) = (−1)k−i+1 (−1)k−i = (−1)2(k−i)+1 =−1.

Thus, p2k(x
(i−1)
2k−1 ) p2k(x

(i)
2k−1) < 0. Therefore, according to the IVT, there is a root of polynomial

p2k(x) in each interval (x(i−1)
2k−1 , x(i)2k−1). These roots will be denoted by x(i)2k , 2 ≤ i ≤ k−1.

Proof of the item III. Note that

p2k(x
(k−1)
2k−1 ) =− p2k−2(x

(k−1)
2k−1 ),

and p2k(2) = 4k−1 > 0, according to the remark after Proposition 3.6. Using the hypothesis of
induction, we have that x(k−1)

2k−1 > x(k−1)
2k−2 . Hence, by Proposition 3.7 (item i), sgn(p2k(x

(k−1)
2k−1 )) =

−1 < 0. Therefore, according to the IVT, there is a root of polynomial p2k(x), belonging to
interval (x(k−1)

2k−1 , 2). This root will be denoted by x(k)2k .

Proof of the item IV. Note that

p2k+1(x
( j)
2k ) =− p2k−1(x

( j)
2k ) and p2k+1(x

( j+1)
2k ) =− p2k−1(x

( j+1)
2k ).

According to item II,
x( j)

2k ∈ (x( j−1)
2k−1 , x( j)

2k−1), 2 ≤ j ≤ k−1,

x( j+1)
2k ∈ (x( j)

2k−1, x( j+1)
2k−1 ), 1 ≤ j ≤ k−2.

Thus, using Proposition 3.7 (item ii),

sgn(p2k+1(x
( j)
2k )) =−(−1)k− j = (−1)k− j+1,

sgn(p2k+1(x
( j+1)
2k )) =−(−1)k− j−1 = (−1)k− j.

In this way,

sgn(p2k+1(x
( j)
2k ) p2k+1(x

( j+1)
2k )) = (−1)k− j+1 (−1)k− j = (−1)2(k− j)+1 =−1.
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Hence, p2k+1(x
( j)
2k ) p2k+1(x

( j+1)
2k ) < 0. Therefore, according to the IVT, there is a root of poly-

nomial p2k+1(x) in each interval (x( j)
2k , x( j+1)

2k ). These roots will be denoted by x( j)
2k+1, 1 ≤ j ≤

k−1.

Proof of the item V. Note that

p2k+1(x
(k)
2k ) =− p2k−1(x

(k)
2k ),

and p2k+1(2)> 0, according to the remark after Proposition 3.6. Based on item III, x(k)2k > x(k−1)
2k−1 .

Thus, according to Proposition 3.7 (item ii),

sgn(p2k+1(x
(k)
2k )) =−1 < 0.

Therefore, according to the IVT, there is a root of polynomial p2k+1(x) which belongs to the
interval (x(k)2k , 2). This root will be denoted by x(k)2k+1. □

Now we are ready to present our main theorem. Theorem 3.3 yields a simple criterion to identify
when a Toeplitz symmetric tridiagonal matrix A is non-singular and has an LU decomposition.

Theorem 3.3. Let A be a tridiagonal matrix as shown in Equation (2.1). Suppose that A is a
Toeplitz symmetric tridiagonal matrix with di = d ̸= 0, ai = a ̸= 0, for all i, 1 ≤ i ≤ n, and
|d| ̸= |a|. In this way, if |d|

|a| ∈ (0, 2) and |d|
|a| is a rational number, or if |d| ≥ 2|a|, then A is a

non-singular matrix and has an LU decomposition.

Proof. We are going to prove the first case, where |d|
|a| ∈ (0, 2) and |d|

|a| is a rational number.
Thus, taking into consideration Corollary 3.1, Proposition 3.3, and Corollary 3.1, we know that
any root of the polynomial Mk(d) can be expressed as |a|x, where x is the root of the polynomial
pk(x)= |a|−k Mk(|a|x). Furthermore, the only possible positive rational roots of pk(x) are positive
integers x ≥ 1. Hence, if x = |d|

|a| ∈ (0, 2) is a rational number different from 1, then pk(x) ̸= 0.
Hence, Mk(d) ̸= 0,∀k, 1 ≤ k ≤ n, where |d| = |a|x. Therefore, the principal minors of A and
det(A) are not null, regardless of the matrix order.

In the second case, if |d| > 2|a|, then A is a strictly diagonally dominant matrix. Hence, A has
an LU decomposition and det(A) ̸= 0 (see, for example, [4]). Besides, if |d| = 2|a|, then, by
Theorem 2.1, A is a non-singular matrix and has an LU decomposition. □

4 CONCLUSION

In this work, we have developed new criteria to identify when a Toeplitz symmetric tridiagonal
matrix A is non-singular and has an LU decomposition (see Theorem 3.3). These criteria are
simple and easy to implement.The main result is the following: “if 0 < |d| < 2|a|, |d| ≠ |a| and
|d|/|a| is a rational number, then A has an LU decomposition and det(A) ̸= 0”, where d is the
element that belongs to the main diagonal of A, and a is the element that belongs to both the first
diagonal above the main diagonal and the first diagonal below the main diagonal of A. The proof
of this result is based on the principle of finite induction and the theory of polynomials. Note that
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if |d| > 2|a|, then A is a strictly diagonally dominant matrix. Hence, by a well-known result, A
has an LU decomposition and det(A) ̸= 0. Besides, if |d|= 2|a|, then, according to Theorem 2.1,
A is a non-singular matrix and has an LU decomposition.

We highlight that Toeplitz systems arise in a variety of applications in different fields of mathe-
matics, scientific computing, and engineering (see the Chan and Jin’s book [5], from 2007, “An
Introduction to Iterative Toeplitz Solvers”, the SIAM series on Fundamentals of Algorithms):

• Numerical partial and ordinary differential equations;

• Numerical solution of convolution-type integral equations;

• Statistics—stationary autoregressive time series;

• Signal processing—system identification and recursive filtering;

• Image processing—image restoration;

• Padé approximation—computation of coefficients;

• Control theory—minimal realization and minimal design problems;

• Networks—stochastic automata and neutral networks.

In a future work we are going to present new criteria to identify non-singular tridiagonal and
pentadiagonal matrices that admit an LU decomposition. These criteria are simple, easy to
implement, and they consider diagonally dominant matrices.
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