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ABSTRACT. In this paper, we give some applications of Nachbin’s Theorem [4] to approximation and
interpolation in the the space of all k times continuously differentiable real functions on any open subset of
the Euclidean space.
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1 INTRODUCTION

Let Q be an open subset of %” and let k be a nonnegative integer. We denote by C¥(Q; %) the
algebra of all k times continuously differentiable real functions on  and consider the compact
open topology of order k ¥, that is, the topology of uniform convergence for the functions and
all their partial derivatives up to the order k on compact subsets of Q.

For a multi-index & = (0, -+, 0,) € A" of non-negative integers, let [ct| := ot +--- + @, be
the order of a, a! := a!---e,!, and for |a| < p let D% := 8‘“‘/8}51)” -~-8xg" represents the
corresponding linear partial differential operator acting on Ck(Q;%’).

The topology Tff is generated by the semi-norms o - given by

orr(f) = Z %supﬂ(Do‘f)(x)\ :xel} for all f € CX(Q;.%),

o<k ™
where I" runs over all compact subsets of Q. By Proposition 3, p. 8 [5], C¥(Q; %) is a topological
vector space with respect to this topology.

In 1949 Nachbin [4] established the following interesting characterization of dense subalgebras
of the space CK(Q;%).
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Theorem 1. (Nachbin) Let Q be an open subset of %P and L be a subalgebra of C*(Q; %). Then
L is dense in CX(Q; %) if and only if the following conditions are satisfied:

(a) given x,y € Q with x #y, there exists f € L such that f(x) # f(y);

(b) given x € Q, there exists f € L such that f(x) # 0;

(¢) given x € Q and u € %P with u # 0, there exists f € L such that % (x) #0.

The proof of this result can be found in [3] and [4].

Our aim is to use Nachbin’s theorem to give a proof of a density theorem and a simultaneous
interpolation and approximation theorem in the space C¥(Q;%).

2 THE RESULTS

The Urysohn’s Lemma ([2] p. 281) for differentiable functions is the main tool we employed in
the next lemma.

Lemma 1. Let Q be an open subset of P, wi, . .., wy, distinct points in Q, and y1, . ..,V distinct
real numbers. If L is a dense vector subspace of Ck(Q;% ), then there exists a function h € L such
that h(wj) =y, j=1,...,m

Proof. Let L be a dense linear subspace of C¥(Q; %) and S = {wy,...,wn} be a subset of Q.
Consider the following linear mapping
T:CNQu2z) — %"
o= (), f(wm)).
Notice that 7' is continuous.

For each w; € S consider an open neighborhood U; C © of w; such that w; ¢ U;, forall j #1i, j €
{1,...,m}. It follows from the Urysohn’s Lemma for differentiable functions that there exists an
infinitely differentiable function ®; : Z™ — R, 0 < ®; < 1, such that ®;(w;) = 1 and ®;(x) =0,
if x ¢ U;, in particular, ®;(w;) =0, j # i. Let ¢; = ®;|q the restriction of the function ®; to the
subset Q and e; € #™ the vector whose i coordinate is equal to 1 and the others are equal to 0.

The linear mapping 7T is surjective since for any (ci,...,cn) € Z™, we have

Cla Cm chel Zci(‘pi(WI) 7¢z Wm th (Pz = (ici¢i>a
i=1 i=1

where Y7, ¢;¢; € CX(Q;%). Moreover, T(L) is closed because it is a linear subspace of %™.
Then by density of L and continuity of 7', it follows that

R" =T(CHQuZ)=T(@L)CT(L)=T(L). 2.1
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Therefore, for any (y1,...,ym) € Z™ there exists h € L such that T'(h) = (yi,...,ym), that is,
(/’I(Wl),...,h(wm)) = (y]a' .. ,ym)-
We give a proof of the following density result.

Theorem 2. Let V be an open subset of %P, L a dense subalgebra of CX(V; %), and vy,...,v,
distinct points in V. Consider the open subset of %P,

Q=V\{vi,...,v}

and the subalgebra

M= {fla:feLfn)=...= f(u) =0},
Then, M is dense in Ck(Q;%’).

Proof. Clearly M is a subalgebra of C¥(Q;Z%). Let x,y be any distinct points in Q. Consider the
following subset

S={xvi,...,Vn}

of V. By Lemma 1 there exists 4 € L such that h(x) =1, h(y) = —1 and h(v;) =0for j=1,...,n
Then, h|g € M and satisfies Conditions (a) and (b) of Theorem 1.

Now let z € Q and u € Z?, u # 0. It follows from Lemma 1 that there exists g € L such that
g(z) =1 and g(v;) =0 for j =1,...,n. Hence, glo € M. If %(z) # 0 the Condition (c) of
Theorem 1 is satisfied. Otherwise, notice that L is not a subset of

p={recwim: o=},

since L is a dense subalgebra of C"(V ) and B is a proper closed subalgebra of CK(V;%).
Thus, there exists ¢ € L such that 22 ( ) #0. Then, ¢g € L and ¢pg(v;) =0 for j=1,...,n, that
is, ¢glo € M. Moreover,

28 0= 2 050+ 00 Z () = 22 eta) = 22 9 200

Thus, by Theorem 1, M is dense in Ck(Q;%).

For each positive integer I, 2! (%", %) denotes the linear subspace of CX(%7;%) generated by
the set of all functions of the form

p(x) = [W(x)]l7 xeR,

where W € (%P)*, the dual space of %”. The elements of P!(%P, %) are called the I-
homogeneous continuous polynomials of finite type from %’ into %. The subspace of
C*(%#P; %) consisting of all functions of the form
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1
p(x)=po+ Y. pj(x), xe#’
=1

where py € Z, pj € P/ (RP,R), j=1,...,1,1 € N, is denoted by P (%", %). Its elements
are called real continuous polynomials of finite type. The polarization formula shows that
P (RP,R) is a subalgebra of C¥(%#P; ). Indeed, given y; and v, in (#7)*,

1
Vi) wa(x) = 2 [(wi () + ¥2(x))? = (¥1(x) = y2(x))?]
shows that Yy, € P%(%P,R), since Wi + v, and y; — v, belong to (%7)*.

Corollary 3. Let vy, ..., v, be distinct points in °. Consider the open subset of %7,

Q=% \{vi,...,vn}

and the subalgebra

M={fla:fe P (A" %).f(v)=...= f(va) =0}.
Then, M is dense in C*(Q; %).

Proof. First of all, we verify that the subalgebra P(#7;%) is dense in Ck(%p;%’). Given
x,y € P with x # y, it follows from Hahn-Banach Theorem that there exists y € (%?)* such that
v(x) # w(y). Since (#P)* = P'(#P; %) C P(%"; %), the Condition (a) of Theorem 1 is satis-
fied. By definition, P(Z#”; %) contains all the constant functions. Now, let 0 # u = (uy,...,u,) €
2P . Then, there exists 0 # u; € Z, j € {1,...,p}. Let I1; : P — Z defined by IT;(x) = x;,
x € ZP. Since %—?J’(x) =1and %—zll’(x) =0 for i # j, it follows that

dIl; L oIl

—au] (x) = Zui—ax; (x)=u;#0.

i=1

Therefore, by Theorem 1, P(%7;%) is dense in CK(%”; %) and the assertion follows from
Theorem 2.

Motivated by an extended Stone-Weierstrass theorem (see Corollary 1.1 [1]), we give a proof of
a result concerning simultaneous interpolation and approximation in C¥(Q;%). The tools are the
Nachbin’s Theorem and the following result due to Deutsch.

Theorem 4. (Deutsch) Let Y be a dense vector subspace of the topological vector space Z and
let Ty, ..., T, be continuous linear functionals on Z. Then for each f € Z and each neighborhood
U of f thereisy €Y suchthaty € U and T;(y) = T;(f), i= 1, ...,n.

Theorem 5. Let Q be an open subset of %", x1, ..., X, distinct elements of Q and L a subalgebra
of CK(Q; Z) that satisfies the following conditions,
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(a) given x,y € Q with x # y, there exists f € L such that f(x) # f();

(b) given x € Q, there exists f € L such that f(x) # 0;

(c) givenx € Q and u € Z#P with u # 0, there exists f € L such that %(x) #0.

Then, for each f € CK(Q; %), and each neighborhood U of f there exists g € LNU such that
fxi)=gx) fori=1,...,n.

Proof. It follows from Theorem 1 that L is a dense subalgebra of the topological vector space
CHQ;%). Let S = {x1,...,x,} C Q. Notice that

Y}:Ck(Q;%’) - %
o= flx)

is a continuous linear functional for each i = 1,--- ,n. Setting Z = Ck(Q;%) and Y = L, the
conclusion follows from Theorem 4.
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RESUMO. Em 1949, Leopoldo Nachbin estabeleceu uma versdo do Teorema de Stone-
Weierstrass para funcdes diferencidveis de classe CK em abertos do espaco euclidiano. Neste
trabalho, apresentamos algumas aplicacdes desse teorema relacionadas com aproximagio e
interpolagdo no espaco das fungdes de classe C¥ munido da topologia compacto-aberta.

Palavras-chave: Teorema de Nachbin, aproximacdo de fungdes diferencidveis, Teorema

de Stone-Weierstrass, interpolagao.
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