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ABSTRACT. In this paper we study and define an adapted fuzzy integral, based on the Sugeno integral.
Moreover, we present a numerical integration formula which approximates the value of the adapted fuzzy
integral. Thus, we prove that the Riemann integral and the adapted fuzzy integral are equivalent for power
functions. Next, we apply the formula proposed in the numerical integration, required in the finite element
method, to obtain a numerical solution of a boundary value problem for the one-dimensional Poisson equa-
tion. Finally, we observed better results of the approximate solution obtained in the example with the use of
our formula when compared with the simple trapezoidal rule.
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1 INTRODUCTION

The finite element method (FEM) is a general tool to obtain numerical solutions to differential
equations. This method is used in various fields of knowledge, such as mathematics, physics and
engineering, and in several applications modeled by boundary value problems (BVPs) [11].

The Sugeno integral was introduced in 1974 for functions whose co-domain is the interval [0,1],
that is, it was created to deal with membership functions of fuzzy subsets [12].

However, analytical or numerical integration of functions, that may not represent fuzzy sub-
sets, are required in FEM to solve a BVP. Here, we introduce a numerical approximation for an
adapted fuzzy integration based on the Sugeno integral.

This paper is organized as follows. Section 2 introduces some concepts of fuzzy sets theory.
In Section 3, we briefly present the FEM to solve a BVP (in a classical way). In Section 4,
we define an adapted fuzzy integral based on the Sugeno integral and we propose a numerical
integration formula for monotonic and differentiable functions whose range is [0,k], where k ∈
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R+. In Section 5 we show the approximate resolution of a BVP using our approach and we
compare these results with the ones obtained by employing the well-known trapezoidal rule.
Finally, in Section 6, we conclude with some final remarks.

2 BASIC CONCEPTS OF FUZZY SETS THEORY

Definition 2.1 (Fuzzy subset). [3, 4, 13] A fuzzy subset A of a (classical set or) universal set U
is characterized by its membership function

φA : U→ [0,1]. (2.1)

If the range of the function φA is the set {0,1} in (2.1), then A is said to be a crisp subset.

Definition 2.2 (α-level). Let A be a fuzzy subset of U and α ∈ [0,1]. The α-level of the fuzzy
subset A is the classical subset of U defined by

[A]α = {x ∈ U : φA(x)≥ α} , for α ∈ [0,1].

Unless otherwise stated, we focus on the fuzzy subsets A of R, such that their α-levels are given
by [A]α = [a−α ,a

+
α ], a−α ≤ a+α , or [A]α = ∅ for each α ∈ (0,1]. We use the symbol Rα to denote

the class of these fuzzy subsets.

Definition 2.3 (Fuzzy measure). [1, 8] Let A be a σ -algebra of a (classical) set Ω. A map
µ : A → [0,∞) is called a fuzzy measure when it satisfies:

i) µ(∅) = 0 and

ii) if A,B ∈A and A⊆ B, then µ(A)≤ µ(B).

The definition of fuzzy measure proposed by Sugeno in [12] adds the boundary condition µ(Ω)=

1 in i), that is, a normalization of the fuzzy measure, which implies that µ is a function from A

to [0,1] [1]. For this work, we denote µ̃ to the normalized fuzzy measures.

Definition 2.4 (Usual Lebesgue measure). Let A ∈ Rα and α ∈ [0,1]. The usual Lebesgue
measure µ of the α-level of A is given by

µ([A]α) = a+α −a−α . (2.2)

The usual Lebesgue measure µ is a fuzzy measure [3].

3 GALERKIN FINITE ELEMENT METHOD

Here, let us consider a linear boundary value problem (BVP) with homogeneous Dirichlet
boundary values, in x ∈ [0,1], that describes Poisson’s one-dimensional equation given by [11]:




−d2u

dx2 = f (x), 0 < x < 1,

u(0) = 0, u(1) = 0.
(3.1)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Using the traditional way to find an approximate solution for this BVP by FEM, we multiply
the differential equation by test functions v ∈V 0, where V 0 is a Hilbert space that considers the
boundary values and is defined by [2]

V 0 =

{
v ∈C1[0,1] :

� 1

0
(v(x)2 + v′(x)2)dx < ∞, v(0) = v(1) = 0

}
,

considering the weak derivative for v(x).

In this context, we can find u ∈V 0 such that

−
� 1

0
u′′(x)v(x)dx =

� 1

0
f (x)v(x)dx, ∀v ∈V 0,

and using the equivalent of Riemann’s integration by parts we obtain that

−
� 1

0
u′′(x)v(x)dx =

� 1

0
u′(x)v′(x)dx−

[
u′(x)v(x)

]1
0 =

� 1

0
u′(x)v′(x)dx.

Thus, we obtain the variational formulation [2] for problem (3.1), which consists of determining
u ∈V 0 that satisfies � 1

0
u′(x)v′(x)dx =

� 1

0
f (x)v(x)dx, ∀v ∈V 0. (3.2)

Solving the BVP (3.1) is equivalent to solving a problem in a variational formulation, according
to equation (3.2) [2].

Since u ∈V 0 (and V 0 is an infinite dimensional Hilbert space), we want to build an approximate
solution uh on a finite dimensional subspace V 0

h of Vh [6]. To this end, we consider a partition of
the interval [0,1]:

τh : 0 = x0 < x1 < · · ·< xn < xn+1 = 1,

where h = xi− xi−1, i = 1,2, ...,n+ 1. In this work, we use the finite dimensional vector space
given by:

V 0
h := {vh : vh is a piecewise linear and continuous function on τh, vh(0) = vh(1) = 0}.

Moreover, we consider the hat-functions (see Figure 1) as the piecewise linear basis functions
{ϕi}n

i=1 given by

ϕi(x) =





x− xi−1

h
, xi−1 ≤ x≤ xi,

xi+1− x
h

, xi ≤ x≤ xi+1,

0, otherwise.

(3.3)

Using this finite element formulation (or this discrete variational formulation) [2, 6],
approximating the solution of (3.1) consists in obtaining uh ∈V 0

h , such that
� 1

0
u′h(x)v

′(x)dx =
� 1

0
f (x)v(x)dx, ∀v ∈V 0

h .

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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x0=0 x1 x2 xi−1 xi xi+1 xn−1 xn xn+1=1
0
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0.4

0.6

0.8

1

x∈Ω

ϕ1 ϕi−1 ϕi ϕi+1 ϕn

Figure 1: Piecewise linear basis functions of V 0
h .

Using the basis functions of V 0
h (ϕ j ∈ V 0

h ), uh is given by a linear combination of functions ϕ j

[2, 6], with coefficients ξ j such that

uh(x) =
n

∑
j=1

ξ jϕ j(x) and u′h(x) =
n

∑
j=1

ξ jϕ
′
j(x). (3.4)

Since uh(x) in (3.4) is an approximation to u(x), we have

n

∑
j=1

ξ j

(� 1

0
ϕ
′
j(x)v

′(x)dx
)
=

� 1

0
f (x)v(x)dx, ∀ v ∈V 0

h .

Taking v(x) = ϕi(x), for each i = 1,2, ..,n, we can find ξ j, for j = 1,2, ...,n, by solving the
following system of linear equations

n

∑
j=1

(� 1

0
ϕ
′
j(x)ϕ

′
i (x)dx

)
ξ j =

� 1

0
f (x)ϕi(x)dx, i = 1,2, ... ,n.

Thus, we have a discrete problem represented by a linear system of equations [2, 6], that can be
given in the matrix form as

Aξ = b, (3.5)

where A = [ai j]
n
i, j=1 ∈ Rn×n, with

ai j =

� 1

0
ϕ
′
i (x)ϕ

′
j(x)dx, (3.6)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)



i
i

“A10˙1082” — 2018/5/3 — 15:05 — page 151 — #5 i
i

i
i

i
i
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ξ = [ξ j]
n
j=1 ∈ Rn, and b = [bi]

n
i=1 ∈ Rn, with

bi =

� 1

0
f (x)ϕi(x)dx. (3.7)

If we assume the basis functions (3.3), then {ϕ ′i}n
i=1 are defined, for i = 1,2, ...,n, as follows:

ϕ
′
i (x) =





1
h
, xi−1 ≤ x≤ xi,

−1
h
, xi ≤ x≤ xi+1,

0, otherwise.

Thus, the coefficients of matrix A, described above in (3.6), are given by

aii =

� 1

0
ϕ
′
i (x)ϕ

′
i (x)dx =

� xi

xi−1

(
1
h
· 1

h

)
dx+

� xi+1

xi

(−1
h
· −1

h

)
dx =

2
h
, (3.8)

for i = 1,2, ...,n, and

ai,i−1 =

� 1

0
ϕ
′
i (x)ϕ

′
i−1(x)dx =

� xi

xi−1

(
1
h
· −1

h

)
dx =−1

h
, (3.9)

for i = 2,3, ...,n.

Since A is symmetric, we have that ai−1,i = ai,i−1 and by the definition of the basis we conclude
that ai j = 0 for |i− j|> 1.

Thus, we may obtain vector b in (3.7), by using the simple trapezoidal rule to approximate a
numerical integration:

bi =

� 1

0
f (x)ϕi(x)dx =

� xi

xi−1

f (x)ϕi(x)dx+
� xi+1

xi

f (x)ϕi(x)dx

=

� xi

xi−1

f (x)
x− xi−1

h
dx+

� xi+1

xi

f (x)
xi+1− x

h
dx (3.10)

≈ xi− xi−1

2
f (xi)+

xi+1− xi

2
f (xi) = h f (xi).

Thus, if f (xi) = fi for i = 1,2, ...,n, then the final configuration of system (3.5) is

A =
1
h




2 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 · · · 0 −1 2




, ξ =




ξ1

ξ2
...

ξn−1

ξn




and b = h




f1

f2
...

fn−1

fn



.

Consequently, system (3.5) has an unique solution, because A is a sparse, tridiagonal, symmetric
and positive definite square matrix, and therefore it has an inverse matrix.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Finally, coefficients ξ j are obtained and the approximate solution uh, which depends strongly
on the the function f , is determined. The function uh corresponds to the numerical solution of a
BVP (3.1) by the FEM [2].

4 ADAPTATION OF THE SUGENO INTEGRAL

Definition 4.1 (Sugeno Integral). [9, 12] Let f : Ω→ [0,1] be a function and µ̃ a normalized
fuzzy measure on Ω. The Sugeno integral of f with respect to µ̃ is given by

 
Ω

f d µ̃ = sup
α∈[0,1]

[α ∧ H̃(α)] , (4.1)

where∧ is the minimum operator and H̃(α)= µ̃

(
{x∈Ω : f (x)≥α}

)
is called the level function

of f [3].

Theorem 1. [3, 12] Let f : Ω→ [0,1] be a function (typically a membership function) and µ̃ a
normalized fuzzy measure on Ω. If

H̃(α) = µ̃

(
{x ∈Ω : f (x)≥ α}

)

has a fixed point α , then  
Ω

f d µ̃ = α = H̃(α) .

In [1], a theoretical and applied study in fuzzy measures and integrals is presented. It also states
that the Sugeno integral can be interpreted geometrically as the side of the greatest inscribed
square between the integrated function and the x−axis (see Figure 2b).

For example, we can consider the function f : Ω→ [0,1] defined by f (x) =−4x2 +4x. Thus, f
is a typical membership function of a fuzzy subset F of R whose α-levels are given by

[F ]α = {x ∈ R : −4x2 +4x≥ α}=
[

1−
√

1−α

2
,

1+
√

1−α

2

]
.

If µ is the usual Lebesgue measure (2.2) on Ω = R, then the level function H̃(α) is

H̃(α) = µ ([F ]α) =
1+
√

1−α

2
− 1−

√
1−α

2
=
√

1−α.

Therefore, according to (4.1), the Sugeno integral can be written as:
 

Ω

f d µ̃ = sup
α∈[0,1]

[α ∧
√

1−α] .

Since H̃(α) is a decreasing function, we have
 

Ω

f d µ̃ = α = H̃(α) =
−1+

√
5

2
,

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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since α =
√

1−α =⇒ α = −1+
√

5
2 ≈ 0.61803.

The function f , the level function H̃(α) and the result obtained by the Sugeno integral are shown
in Figure 2a and 2b.

0 0.2 0.4 0.6 0.8 1
0

0,2

0,4

0,6

0,8

1

α

ᾱ = sup[α∧ H̃(α)]

H̃(α)

α∧ H̃(α)

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

ᾱ

f (x )

Figure 2: Sugeno integral: (2a) The fixed point of H̃(α) and (2b) Geometric interpretation of
(4.1).

As mentioned in [7], the Sugeno integral was defined only for functions whose range is con-
tained in [0,1] and for normalized fuzzy measures. As we can note in the previous exam-
ple, the Sugeno integral is considered a good approximation to the Riemann integral (because� 1

0 f dx = 2/3≈ 0.66667). However, in [8], it was mentioned that the use of the Sugeno integral
for functions whose range is contained in [0,k], k > 0. But, when k 6= 1 or the fuzzy measure µ is
not normalized, the Sugeno integral may not be a good approximation to the Riemman integral
(see examples in [10]).

We established an adapted fuzzy integral based on the Sugeno integral and with respect to a finite
fuzzy measure. This integral approximates the Riemann integral for any functions whose range
is in [0,k], with k ∈ R+.

Definition 4.2 (Adapted fuzzy integral). Let f : Ω→ [0,k] be a measurable function such that
k = supx∈Ω f (x). The adapted fuzzy integral of f on Ω, with respect to the finite fuzzy measure
µ : A → [0,∞), that is, µ(Ω)< ∞, is given by

 ̂
Ω

f d µ =

{
k µ(Ω)

�
Ω

f̂ d µ̃ , if k > 0
0 , if k = 0

(4.2)

where f̂ (x) = f (x)
k for all x ∈Ω, and µ̃(B) = µ(B)

µ(Ω) for all B ∈A .

Remark 1. If µ is a normalized fuzzy measure and f a function whose range is [0,1], we have
that µ(Ω) = 1 and k = 1. In these conditions, the adapted fuzzy integral (4.2) coincides with the
(classical) Sugeno integral (4.1).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Next, we establish another representation of (4.2) and we present a numerical integration formula
to calculate it.

First, from (4.2) and (4.1), we have that
 

Ω

f̂ d µ̃ = sup
α∈[0,1]

[
α ∧ ̂̃H (α)

]
, (4.3)

where

̂̃H(α) = µ̃{x ∈Ω : f̂ (x)≥ α} = µ̃{x ∈Ω : f (x)≥ k α}

=
µ{x ∈Ω : f (x)≥ k α}

µ(Ω)
=

H(k α)

µ(Ω)
(4.4)

and H(β ) = µ

(
{x ∈Ω : f (x)≥ β}

)
.

Thus, according to Theorem 1 and Equation (4.4), we have that the value of (4.3) is given by
 

Ω

f̂ d µ̃ = α =
̂̃H(α) =

H(k α)

µ(Ω)
.

Taking β = k α , we have that

α =
β

k
=

H(β )

µ(Ω)
. (4.5)

Therefore, another representation of (4.2), for k > 0, is given as

 ̂
Ω

f d µ = k µ(Ω)α = µ(Ω)β = k H(β ).

Thus, from Equation (4.5), the calculus of the adapted fuzzy integral boils down to solving the
equation β = k

µ(Ω)H(β ).

In what follows we provide a numerical integration formula to approximate the Riemann integral,
over [a,b]⊆ R+, of differentiable and increasing functions.

Let f : Ω→ R+ be a differentiable and increasing function. The Riemann integral of f over
Ω = [a,b] is approximated by

SΩ( f ) = d f (a)+
dc2

c+d f ′(b)
, (4.6)

where c = f (b)− f (a) and d = b−a = µ(Ω).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Note that
� b

a
f (x)dx =

� b

a
f (a)dx+

� b

a
( f (x)− f (a))dx

≈ (b−a) f (a)+
 ̂

Ω

g dµ

= d f (a)+ c µ(Ω)

 
Ω

ĝ d µ̃.

≈ d f (a)+
dc2

c+d f ′(b)
= SΩ( f ).

The value
�̂

Ω
g dµ = d β ≈ dc2

c+d f ′(b) is obtained as follows. From (4.5), we have

β =
c H(β )

µ(Ω)
=

c
d

µ

([
g−1(β ),b

])
=

c
d

(
b−g−1(β )

)

From g(g−1(β )) = g
(

b− dβ

c

)
and using first-order Taylor series about b, we obtain β ≈ g(b)−

dβ

c g′(b) and, therefore,

β ≈ g(b)

1+ d g′(b)
c

=
f (b)− f (a)

c+d f ′(b)
c

=
c2

c+d f ′(b)
.

The next theorem establishes that formula (4.6) coincides with the Riemann integral of certain
power functions.

Theorem 2. Let f : Ω→ R+ be a power function given by f (x) = c1xn + c2 with c1, c2, n ∈ R+,
and let µ be an usual Lebesgue measure in Ω = [0,b]. We have

� b

0
f (x)dx = SΩ( f ).

Proof. On the one hand, we have that

� b

0
f (x)dx =

� b

0
(c1xn + c2)dx =

(
c1

xn+1

n+1
+ c2x

)∣∣∣∣
b

0
= c1

bn+1

n+1
+ c2b.

On the other hand, from (4.6) we get

SΩ( f ) = b f (0)+
b(c1bn)2

c1bn +bnc1bn−1 = bc2 +
b(c1bn)2

c1bn(1+n)
= bc2 + c1

bn+1

1+n
.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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A consequence of Theorem 2 for Ω = [a,b]⊆ R+ is that

� b

a
(c1xn + c2)dx =

� b

0
(c1xn + c2)dx−

� a

0
(c1xn + c2)dx

= S
[0,b]

(c1xn + c2)− S
[0,a]

(c1xn + c2)

= b f (0)+
b( f (b)− f (0))2

( f (b)− f (0))+b f ′(b)

−a f (0)− a( f (a)− f (0))2

( f (a)− f (0))+a f ′(a)
.

5 NUMERICAL APPROACH AND SIMULATIONS

In the following example, we use the numerical integration formula (4.6) to calculate all the
required elements for the matrix system (3.5) and, thus, to approximate the solution of the BVP
(3.1) via FEM using an adapted fuzzy integral (4.2) based on the Sugeno integral.

First, in the elements ai,i of the matrix A, with Ωi = [xi−1,xi], and using equidistant nodes d = h
and c = 0, we have

aii =

� xi

xi−1

1
h2 dx +

� xi+1

xi

1
h2 dx

= SΩi

(
1
h2

)
+SΩi+1

(
1
h2

)
=

1
h
+

1
h

=
2
h
. (5.1)

Thus, we observe that the entries aii of the matrix A given in (3.8) coincide with those obtained
by our proposal in (5.1).

Second, using the adapted fuzzy integral to determine the entries ai,i−1 = ai−1,i of matrix A, we
have d = h, c = 0, and

ai,i−1 = −
� xi

xi−1

1
h2 dx = −SΩi

(
1
h2

)
= −1

h
. (5.2)

One can observe that the coefficients ai,i−1 = ai−1,i obtained via the classical integration in (3.9)
and the our formula (5.2) are equal. By definition of the basis, we have that ai j = 0 for |i− j|> 1
since SΩi(0) = 0.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Finally, the load vector b is obtained using the numerical integration formula (4.6) for increasing
functions f (x) and g(x) = x f (x), for i = 1,2, ...,n:

bi =

� xi

xi−1

f (x)
(

x− xi−1

h

)
dx+

� xi+1

xi

f (x)
(

xi+1− x
h

)
dx

=
1
h

[� xi

xi−1

x f (x)dx− (xi−1)

� xi

xi−1

f (x)dx+(xi+1)

� xi+1

xi

f (x)dx

−
� xi+1

xi

x f (x)dx
]

≈ 1
h

[
SΩi(g)− (xi−1)SΩi( f )+(xi+1)SΩi+1( f )−SΩi+1(g)

]
.

In order to illustrate the good results of formula (4.6), we solve the BVP in (3.1) taking the load
function f (x) = 15x2√x. This yields the exact solution which satisfies the boundary values given
by

u(x) =
(

60
63

)
(x− x9/2) . (5.3)
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Figure 3: Graphs of the analytic solution for the BVP in (3.1) with f (x) = 15x2√x, and the
numerical solutions obtained by FEM using the trapezoidal rule and SΩ( f ).

In Figure 3a and Figure 3b, we can see the analytical solution (5.3) as well as the numerical
solutions obtained by numerical integration based on the trapezoidal rule (3.10) and by applying
the formula (4.6). In this case, for i = 1,2, ...,n, we consider xi = ih to divide the domain [0,1]
for both cases.

Table 1 shows the errors E(xi) =Uaprox(xi)−u(xi), for different values of n, between the numer-
ical solutions Uaprox(xi) and the exact solution u(xi). Here, we consider the infinity norm and the
2-norm [5]:

||E||∞ = max
1≤i≤n

|E(xi)|, and ||E||2 =
√

n

∑
i=1
|E(xi)|2.
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Table 1: Errors between the numerical solutions and the exact solution
of BVP in (3.1), with f (x) = 15x2√x.

Partition Integration ||E||∞ ||E||2

n=3, h=1/4
Trapezoidal 2.5378×10−2 3.6953×10−2

Adap. Fuzzy Int. 1.0396×10−2 1.5092×10−2

n=9, h=1/10
Trapezoidal 4.0441×10−3 9.3259×10−3

Adap. Fuzzy Int. 1.9478×10−3 4.4831×10−3

6 FINAL CONSIDERATIONS

In this paper, we introduced the notion of an adapted fuzzy integral based on the Sugeno integral.
In addition, we propose a numerical integration formula (4.6) for differentiable, increasing,
and non-negative functions whose range is contained in [0,k]. We verified that, under certain
conditions, our proposal yields error equal to zero for power functions, according to Theorem
2. In initial simulations, the numerical solution of a BVP via FEM using our approach obtained
better results than a well-known numerical integration method, namely trapezoidal rule (see
Figure 3 and Table 1).
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RESUMO. Nessa proposta estudamos e definimos uma integral fuzzy adaptada, baseada
na integral de Sugeno. Ademais, apresentamos uma fórmula de integração numérica que
aproxima o valor da integral fuzzy adaptada. Assim, provamos que a integral de Riemann e
a integral fuzzy adaptada são equivalentes para funções potência. Logo, aplicamos a fórmula
proposta na integração numérica, requerida no método de elementos finitos, para obter uma
solução aproximada de um problema de valor de contorno para a equação de Poisson uni-
dimensional. Finalmente, observamos melhores resultados na solução aproximada obtida
com o uso da nossa fórmula quando comparada com a regra simples de trapézio.

Palavras-chave: Medida Fuzzy, Integral de Sugeno, Método de Elementos finitos, Pro-
blema de Valor de Contorno.
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APPENDIX

Table 2 presents some numerical results using the numerical integration SΩ( f ) (formula (4.6)
based on the adapted fuzzy integral) for differentiable and increasing functions in the interval
Ω = [0,1]. The results are compared with others numerical integration rules such as midpoint
IMP( f ), trapezoidal ITra( f ) and Simpson ISim( f ). The reference value was obtained using the
Gauss Quadrature rule IGQ( f )≈

� b
a f (x)dx, which is an optimal numerical approximation which

requires a resolution of a linear system of equations for each integration [2, 5].

Table 2: Absolute errors obtained using several rules of numerical integration, and by (4.6).

f (x) IGQ( f ) ISim( f ) ITra( f ) IMP( f ) SΩ( f )

ex4
1.27129 1.3294 1.8591 1.0645 1.2345

Error - 5.8087×10−2 5.8785×10−1 2.0680×10−1 3.6805×10−2

x5 sin(x) 0.12508 0.15023 0.42074 0.014982 0.12669
Error - 2.5152×10−2 2.9565×10−1 1.1010×10−1 1.6065×10−3

15x2√x 4.2857 4.2678 7.5000 2.6517 4.2857
Error - 1.7947×10−2 3.2143 1.6341 0
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