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ABSTRACT. In this paper, one presents how to use a new interval arithmetic framework based on free
algebra construction, called pseudo-intervals, which is associative and distributive and permits to build
well-defined inclusion function for interval semi-group and for its associated vector space. One introduces
the ψ-algorithm (Probabilist Set Inversion), which performs set inversion of functions and exhibits some
numerical examples.
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1 SET INVERSION

One of the most recurrent problem arising in sciences and engineering is to perform adjustments
of a system in order to get the desired performances. For example, how to set-up a car engine so
that some polluting gases ratio are less than a certain amount, or how to settle a robot to make

it moving toward a desired target. Such kind of problem are dealing with the inversion of the
relation between adjustments and desired performances.

Let us noteR ⊂ R
n the set of feasible adjustments, and P ⊂ R

p the set of desired performance
of a system. The mathematical modelling of the problem consists of the computation of S =
f −1(P) ∩R, as shown on Figure (1), where f : Rn → R

p is the function giving performances
from adjustments. Since real number sets can be written as union of intervals, one has to perform
this set inversion within the interval semi-group IR [1]. Some powerful set inversion methods are

have been developed those last years, such as SIvIA [18] (Set Inversion via Interval Arithmetic)
which is based on interval arithmetic [2, 6, 7, 8, 9, 10, 11, 12, 32, 33, 34, 35, 36].

The first mathematician who has used intervals was the famous Archimedes from Syracuse (287-
212 b.C). He has proposed a two-sides bounding of π : 3 + 10

71 < π < 3 + 1
7 using polygons and

a systematic method to improve it. In the beginning of the twentieth century, the mathematician
and physicist Wiener, published two papers [3, 4], and used intervals to give an interpretation
to the position and the time of a system. More papers on the subject were written [5, 6, 7, 36]
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98 PROBABILIST SET INVERSION USING PSEUDO-INTERVALS ARITHMETIC

Figure 1: R ⊂ R
n is the set of feasible adjustments, and P ⊂ R

p the set of desired performance of a

system. Set inversion computes S = f −1(P)∩R.

only after Second World War. Nowadays, we consider R.E. Moore [8, 9, 10, 11, 12] as the first
mathematician who has proposed a framework for interval arithmetic and analysis. The interval

arithmetic, or interval analysis has been introduced to compute very quickly range bounds (for
example if a data is given up to an incertitude). Now interval arithmetic is a computing system
which permits to perform error analysis by computing mathematics bounds. The extensions of

the areas of applications are important: non linear problems, PDE, inverse problems. It finds a
large place of applications in controllability, automatism, robotics, embedded systems, biomedi-
cal, haptic interfaces, form optimization, analysis of architecture plans, ...

Interval calculations are used nowadays as a powerful tool for global optimization and set in-

version [8, 9, 10, 11, 13, 18, 36]. Several groups have developed some software and libraries to
perform those new approaches such as INTLAB [19], INTOPT90 and GLOBSOL [20], Numer-
ica [21]. But their Achille’s heel is the construction of the inclusion function from the natural

one due to the lack of distributivity. Some approaches have developed methods to circumvent it
with using boolean inclusion tests, series or limited expansions of the natural function where the
derivatives are computed at a certain point of the intervals. Nevertheless, those transfers from real
functions to functions defined on intervals are not systematic and not given by a formal process.

This yields to the fact that the inclusion function definition has to be adapted to each problem
with the risk to miss the primitive scope. Moreover, differential calculus and linear algebra need
to be performed in the framework of vector space theory and not within semi-group one.

This article reminds first the definition and characteristics of the intervals semi-group IR and

the construction of its associated vector space IR. After that it is explained how to get an asso-
ciative and distributive arithmetic of intervals, called pseudo-intervals arithmetic, by embedding
the vector space into a free algebra [2]. After that, one proposes a clear and simple scheme to

build inclusion functions from the natural one for the semi-group and the vector space.

This permits to present a set inversion scheme, the ψ-algorithm (Probabilist Set Inversion),
which is a SIvIA inspired scheme, and using probability calculations. One ends with numerical
applications examples for set inversion in order to show how the pseudo-interval arithmetic

efficient is.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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2 AN ALGEBRAIC APPROACH FOR INTERVALS

An interval X is defined as a non-empty, closed and connected set of real numbers. One writes
real numbers as intervals with same bounds, ∀a ∈ R , a ≡ [a, a]. We denote by IR = P1

the set of intervals of R. The arithmetic operations on intervals, called Minkowski or classical
operations, are defined such that the result of the corresponding operation on elements belong-
ing to operand intervals belongs to the resulting interval. That is, if � denotes one of the usual
operations +,−, ∗, /, we have, if X and Y are closed intervals of R,

X � Y = {x � y / x ∈ X, y ∈ Y }, (2.1)

Although, IR is provided with a pseudo-inverse operation, it does not satisfy X − X = 0, and
hence a subtraction in the usual sense cannot be obtained. In many problems using interval arith-
metic, that is the set IR with the Minkowski operations, there exists an informal transfers prin-
ciple which permits, to associate with a real function f a function define on the set of intervals
IR which coincides with f on the interval reduced to a point. But this transferred function is not
unique. For example, if we consider the real function f (x) = x2 + x = x(x + 1), we associate
naturally the functions f̃1, f̃2 : IR −→ IR given by f̃1(X) = X (X + 1) and f̃2(X) = X 2 + X .
These two functions do not coincide. Usually this problem is removed considering the most
interesting transfers. But the qualitative “interesting” depends of the studied model and it is not
given by a formal process.

In this section, we determine a natural extension IR of IR provided with a vector space struc-
ture. The vectorial subtraction X �Y does not correspond to the semantic difference of intervals
and the interval �X has no real interpretation. But these “negative” intervals have a computa-
tional role.

An algebraic extension of the classical interval arithmetic, called generalized interval arith-
metic [13, 36] has been proposed first by M. Warmus [6, 7]. It has been followed in the seventies
by H.-J. Ortolf & E. Kaucher [37, 42, 43, 44, 45]. In this former interval arithmetic, the intervals
form a group with respect to addition and a complete lattice with respect to inclusion. In order
to adapt it to semantic problems, Gardenes et al. have developed an approach called modal in-
terval arithmetic [46, 47, 48, 49, 50, 51]. S. Markov and others investigate the relation between
generalized intervals operations and Minkowski operations for classic intervals and propose the
so-called directed interval arithmetic, in which Kaucher’s generalized intervals can be viewed
as classic intervals plus direction, hence the name directed interval arithmetic [32, 33]. In this
arithmetic framework, proper and improper intervals are considered as intervals with sign [34].
Interesting relations and developments for proper and improper intervals arithmetic and for ap-
plications can be found in literature [38, 39, 40].

Our approach [2], that we remind below in this article, is similar to the previous ones in the
sense that intervals are extended to generalized intervals; intervals and anti-intervals correspond
respectively to the proper and improper ones. However we use a construction which is more
canonical and based on the semi-group completion into a group, which permits then to build the
associated real vector space, and to get an analogy with directed intervals.

In this section we present the set of intervals as a normed vector space with a Banach structure.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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2.1 Interval semi-group

Let IR be the set of intervals. It is in one to one correspondence and can be represented as a
point in the half-plane of R2, P1 = {(a, b) ∈ R2, a ≤ b}. The set P2 = {(a, b) ∈ R2, a ≥ b}
is the set of anti-intervals. IR is closed for the addition and endowed with a regular semi-group
structure. The subtraction on IR, which is not the symmetric operation of +, corresponds to the
following operation on P1:

(a, b)− (c, d) = (a, b)+ s� ◦ s0(c, d),

where s0 is the symmetry with respect to 0, and s� with respect to�. The multiplication ∗ is not

globally defined. Consider the following subset of P1:⎧⎪⎨⎪⎩
P1,1 = {(a, b) ∈ P1, a ≥ 0, b ≥ 0},
P1,2 = {(a, b) ∈ P1, a ≤ 0, b ≥ 0},
P1,3 = {(a, b) ∈ P1, a ≤ 0, b ≤ 0}.

a

b
[a, b] ≡ ([a, b], 0)

P11

P12

P13

(P1)

(P2)

e1
e2

e3

e4
(0, 0)

([a, b], [c, d]) = ([a, b], 0) \ ([c, d], 0)

[c, d] ≡ ([c, d], 0) = \([−c,−d], 0) = \(0, [c, d])

c

d

Figure 2: Representation of intervals in the half plane of R2.

We have the following cases:

1. If (a, b), (c, d) ∈ P1,1 the product is written (a, b) ∗ (c, d) = (ac, bd). The vectors
e1 = (1, 1) and e2 = (0, 1) generate P1,1 that is any (x, y) in P1,1, can be decomposed as

(x, y) = xe1 + (y − x)e2, with x > 0 and y − x > 0.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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The multiplication corresponds in this case to the following associative commutative

algebra: {
e1e1 = e1,

e1e2 = e2e1 = e2e2 = e2.

2. Assume that (a, b) ∈ P1,1 and (c, d) ∈ P1,2 so c ≤ 0 and d ≥ 0. Thus we obtain
(a, b) ∗ (c, d) = (bc, bd) and this product does not depend of a. Then we obtain the same
result for any a < b. The product (a, b) ∗ (c, d) = (bc, bd) corresponds to{

e1e1 = e2e1 = e1

e1e2 = e2e2 = e2

This algebra is not commutative and it is different from the previous.

3. If (a, b) ∈ P1,1 and (c, d) ∈ P1,3 then a ≥ 0, b ≥ 0 and c ≤ 0, d ≤ 0 and we have
(a, b) ∗ (c, d) = (bc, ad). Let e1 = (1, 1), e2 = (0, 1). This product corresponds to the

following associative algebra: ⎧⎪⎨⎪⎩
e1e1 = e1,

e1e2 = e2,

e2e1 = e1 − e2.

This algebra is not associative because (e2e1)e1 
= e2(e1e1). We have similar results for
the cases (P1,2,P1,2), (P1,2,P1,3) and (P1,3,P1,3).

An objective of this paper is to present an associative algebra which contains all these results.

2.2 The real vector space IR

We recall briefly the construction proposed by Markov [14] to define a structure of abelian
group. As (IR,+) is a commutative and regular semi-group, the quotient set, denoted by IR,

associated with the equivalence relations:

(A, B) ∼ (C, D) ⇐⇒ A + D = B + C,

for all A, B,C, D ∈ IR, is provided with a structure of abelian group for the natural addition:

(A, B) + (C, D) = (A + C, B + D)

where (A, B) is the equivalence class of (A, B). We denote by �(A, B) the inverse of (A, B)
for the interval addition.

We have �(A, B) = (B, A). If X = [a, a], a ∈ R, then (X, 0) = (0,−X) where −X =
[−a,−a], and �(X, 0) = (0, X). In this case, we identify X = [a, a] with a and we denote
always by R the subset of intervals of type [a, a].

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Naturally, the group IR is isomorphic to the additive group R
2 by the isomorphism

(([a, b], [c, d]) → (a − c, b − d) (Fig. 2). We find the notion of generalized interval and this
yields immediately to the resulting result:

Proposition 1. Let X = (X, Y ) be in IR. Thus

(1) If l(Y ) < l(X), there is an unique A ∈ IR � R such thatX = (A, 0),

(2) If l(Y ) > l(X), there is an unique A ∈ IR � R such thatX = (0, A) = �(A, 0),

(3) If l(Y ) = l(X), there is an unique A = α ∈ R such thatX = (α, 0) = (0,−α).

Any element X = (A, 0) with A ∈ IR− R is said positive and we write X > 0. Any element
X = (0, A) with A ∈ IR −R is said negative and we write X < 0. We write X ≥ X ′ if
X �X ′ ≥ 0. For example if X and X ′ are positive, X ≥ X ′ ⇐⇒ l(X) ≥ l(X ′). The elements

(α, 0) with α ∈ R∗ are neither positive nor negative.

In [14], one defines on the abelian group IR, a structure of quasi linear space. Our approach is a
little bit different. We propose to construct a real vector space structure. We consider the external
multiplication:

· : R× IR −→ IR

defined, for all A ∈ IR, by {
α · (A, 0) = (αA, 0),

α · (0, A) = (0, αA),

for all α > 0. If α < 0 we put β = −α. So we put:{
α · (A, 0) = (0, βA),

α · (0, A) = (βA, 0).

We denote αX instead of α ·X . This operation satisfies

1. For any α ∈ R and X ∈ IR we have:{
α(�X) = �(αX),
(−α)X = �(αX).

2. For all α, β ∈ R, and for all X,X ′ ∈ IR, we have⎧⎪⎨⎪⎩
(α + β)X = αX + βX,
α(X +X ′) = αX + αX ′,
(αβ)X = α(βX).

Theorem 1. The triplet (IR,+, ·) is a real vector space and the vectors X1 = ([0, 1], 0)
and X2 = ([1, 1], 0) of IR determine a basis of IR. So dimR IR = 2.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Proof. We have the following decompositions:{
([a, b], 0) = (b − a)X1 + aX2,

(0, [c, d]) = (c − d)X1 − cX2.

The linear map
ϕ : IR −→ R

2

defined by {
ϕ( ([a, b], 0) ) = (b − a, a),
ϕ( (0, [c, d]) ) = (c − d,−c)

is a linear isomorphism and IR is canonically isomorphic to R2. The following map

||.|| : IR −→ R
+ (2.2)

(X, 0) �→ l(X) + |c(X)| (2.3)

or (2.4)

(0, X) �→ l(X) + |c(X)| (2.5)

with respectively l(X) and c(X) the width and the center of the interval X , is obviously a norm.

Since IR is isomorphic to R2 which is complete, this yields to the fact that this norm endows IR
with a Banach space structure. Thus, it is possible to perform differential calculus in IR [22].

3 A 4-dimensional free algebra associated with IR

We define in this section a four-dimensional associative and distributive free algebra in which
the real vector space is embedded.

3.1 Definition of A4

In introduction, we have observed that the semi-group IR is identified to P1,1 ∪ P1,2 ∪ P1,3. Let
us consider the following vectors of R2:⎧⎪⎪⎪⎨⎪⎪⎪⎩

e1 = (1, 1),
e2 = (0, 1),
e3 = (−1, 0),

e4 = (−1,−1).

They correspond to the intervals [1, 1], [0, 1], [−1, 0], and [−1,−1]. Any point of P1,1 ∪P1,2 ∪
P1,3 admits the decomposition

(a, b) = α1e1 + α2e2 + α3e3 + α4e4

with αi ≥ 0. The dependence relations between the vectors ei are{
e2 = e3 + e1

e4 = −e1.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Thus there exists a unique decomposition of (a, b) in a chosen basis such that the coefficients are

non negative. These basis are {e1,e2} for P1,1, {e2, e3} for P1,2, {e3, e4} for P1,3. Let us consider
the free algebra of basis {e1, e2, e3, e4} whose products correspond to the Minkowski products.
The multiplication table is

e1 e2 e3 e4

e1 e1 e2 e3 e4

e2 e2 e2 e3 e3

e3 e3 e3 e2 e2

e4 e4 e3 e2 e1

This algebra is associative and its elements are called pseudo-intervals.

3.2 Pseudo-intervals product

Let ϕ : IR → A4 the natural injective embedding, ψ the canonical embedding from A4 to
A4/F and ϕ′ = ψ ◦ ϕ. If we identify an interval with its image inA4, one has:

The application ϕ is not bijective. Its image on the elements X = (X, 0) = ([a, b], 0) is:⎧⎪⎨⎪⎩
X = [a, b] ∈ P1,1, ϕ(X) = ae1 + (b − a)e2 (a ≥ 0, b − a ≥ 0)

X = [a, b] ∈ P1,2, ϕ(X) = −ae3 + be2 (−a ≥ 0, b ≥ 0)
X = [a, b] ∈ P1,3, ϕ(X) = −be4 + (b − a)e3 (−b ≥ 0, b − a ≥ 0).

Consider inA4 the linear subspace F generated by the vectors e1 − e2 + e3, e1 + e4. As

(e1 + e4)(e1 + e4) = 2(e1 + e4)

(e1 + e4)(e1 − e2 + e3) = e1 + e4

(e1 − e2 + e3)(e1 − e2 + e3) = e1,

F is not a sub-algebra of A4. Let us consider the map

ϕ : IR →A4/F

defined from ϕ and the canonical projection on the quotient vector space A4/F . A vector X =∑
αi ei ∈A4 is equivalent to a vector of A4 with positive components if and only if

α2 + α3 ≥ 0.

In this case, all the vectors equivalent to x = ∑
αi ei with α2 +α3 ≥ 0 correspond to the interval

[α1 −α3 −α4, α1 +α2 −α4] of IR. Thus we have for any equivalent classes ofA4/F associated
with

∑
αi ei with α2 + α3 ≥ 0 a pre-image in IR. The map ϕ is injective. In fact, two intervals

belonging to pieces P1,i ,P1, j with i 
= j , have distinguish images. Now if (a, b) and (c, d)
belong to the same piece, for example P1,1, thus

ϕ(a, b) = {(a + λ+ μ, b − a − λ, λ, μ), λ, μ ∈ R.}

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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If ϕ(c, d) = ϕ(a, b), there are λ, μ ∈ R such that (c, d) = (a + λ + μ, b − a − λ, λ, μ). This

gives a = c, b = d . We have the same results for all the other pieces. Thus ϕ : IR→A4/F is
bijective on its image, that is the hyperplane of A4/F corresponding to α2 + α3 ≥ 0.

Practically the multiplication of two intervals will so be made: let X, Y ∈ R. Thus X =∑
αi ei , Y = ∑

βi ei with αi , β j ≥ 0 and we have the product

X • Y = ϕ−1(ϕ′(X).ϕ′(Y ))

this product is well defined because ϕ′(X).ϕ′(Y ) ∈ Imϕ. This product is distributive because

X • (Y + Z ) = ϕ−1(ϕ′(X).ϕ′(Y + Z ))

= ϕ−1(ϕ′(X).(ϕ′(Y )+ ϕ′(Z ))
= ϕ−1(ϕ′(X).ϕ′(Y )+ ϕ′(X).ϕ′(Z ))
= X • Y + X • Z

Remark. We have

ϕ−1(ϕ′(X).ϕ′(Y + Z )) 
= ϕ−1(ϕ′(X)).ϕ−1(ϕ′(Y + Z ))).

We shall be careful not to return in IR during the calculations as long as the result is not found.

Otherwise we find the semantic problems of the distributivity.

We extend naturally the map ϕ : IR→A4 to IR by{
ϕ(A, 0) = ϕ(A)
ϕ(0, A) = −ϕ(A)

for every A ∈ IR.

Theorem 2. The multiplication

X • Y = ϕ−1(ϕ′(X).ϕ′(Y))

is distributive with respect the addition.

Proof. This is a direct consequence of the previous computations.

3.3 Pseudo-intervals division

Division between intervals can also be defined with solving X · Y = (1, 0, 0, 0) in A4 or in a
isomorphic algebra. In A4 we consider the change of basis⎧⎪⎨⎪⎩

e′
1 = e1 − e2

e′
i = ei , i = 2, 3

e′
4 = e4 − e3.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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This change of basis shows that A4 is isomorphic to A′
4

e′
1 e′

2 e′
3 e′

4

e′
1 e′

1 0 0 e′
4

e′
2 0 e′

2 e′
3 0

e′
3 0 e′

3 e′
2 0

e′
4 e′

4 0 0 e′
1

.

The unit of A′
4 is the vector e′

1 + e′
2. This algebra is a direct sum of two ideals: A′

4 = I1 + I2

where I1 is generated by e′
1 and e′

4 and I2 is generated by e′
2 and e′

3. It is not an integral domain,
that is, we have divisors of 0. For example e′

1 · e′
2 = 0.

Proposition 2. The multiplicative group A∗
4 of invertible elements of A4 is the set of elements

x = (x1, x2, x3, x4) such that {
x4 
= ±x1,

x3 
= ±x2.

This means that the invertible intervals do not contain 0. If x ∈A∗
4 we have:

x−1 =
(

x1

x2
1 − x2

4

,
x2

x2
2 − x2

3

,
x3

x2
2 − x2

3

,
x4

x2
1 − x2

4

)
.

3.4 Monotony property

Let us compute the product of intervals using the product in A4 and compare it with the

Minkowski product. Let X = [a, b] and Y = [c, d] two intervals.

Lemma 1. If X and Y are not in the same piece P1,i , then X • Y corresponds to the Minkowski
product.

Proof. i) If X ∈ P1,1 and Y ∈ P1,2 then ϕ(X) = (a, b − a, 0, 0) and ϕ(Y ) = (0, d,−c, 0).
Thus

ϕ(X)ϕ(Y ) = (ae1 + (b − a)e2)(de2 − ce3)

= bde2 − cbe3

= (0, bd,−cb, 0)
= ϕ([cb, bd]).

ii) If X ∈ P1,1 and Y ∈ P1,3 then ϕ(X) = (a, b − a, 0, 0) and ϕ(Y ) = (0, 0, d − c,−d). Thus

ϕ(X)ϕ(Y ) = (ae1 + (b − a)e2)((d − c)e3 − de4)

= (ad − bc)e3 − ade4

= (0, 0, ad − cb,−ad)
= ϕ([bc, ad]).

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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iii) If X ∈ P1,2 and Y ∈ P1,3 then ϕ(X) = (0, b,−a, 0) and ϕ(Y ) = (0, 0, d − c,−d). Thus

ϕ(X)ϕ(Y ) = (be2 − ae3)((d − c)e3 − de4)

= ace2 − bce3

= (0, ac,−cb, 0)

= ϕ([bc, ad]).

Lemma 2. If X an Y are both in the same piece P1,1 or P1,3 , then the product X •Y corresponds
to the Minkowski product. The proof is analogous to the previous.

Let us assume that X = [a, b] and Y = [c, d] belong to P1,2. Thus ϕ(X) = (0, b,−a, 0) and
ϕ(Y ) = (0, d,−c, 0). We obtain

XY = (be2 − ae3)(de2 − ce3) = (bd + ac)e2 + (−bc − ad)e3.

Thus

[a, b][c, d] = [bc + ad, bd + ac].
This result is greater that all the possible results associated with the Minkowski product. How-
ever, we have the following property:

Proposition 3. Monotony property: Let X1,X2 ∈ IR. Then{
X1 ⊂ X2 =⇒ X1 • Z ⊂ X2 • Z for all Z ∈ IR.
ϕ(X1) ≤ ϕ(X2) =⇒ ϕ(X1 • Z) ≤ ϕ(X2 • Z)

The order relation on A4 that ones uses here is⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(x1, x2, 0, 0) ≤ (y1, y2, 0, 0)⇐⇒ y1 ≤ x1 and x2 ≤ y2,

(x1, x2, 0, 0) ≤ (0, y2, y3, 0)⇐⇒ x2 ≤ y2,

(0, x2, x3, 0) ≤ (0, y2, y3, 0)⇐⇒ x3 ≤ y3 and x2 ≤ y2,

(0, 0, x3, x4) ≤ (0, y2, y3, 0)⇐⇒ x3 ≤ y3,

(0, 0, x3, x4) ≤ (0, 0, y3, y4) ⇐⇒ x3 ≤ y3 and y4 ≤ x4.

Proof. Let us note that the second property is equivalent to the first. It is its translation in
A4. We can suppose that X1 and X2 are intervals belonging moreover to P1,2: ϕ(X1) =
(0, b,−a, 0), ϕ(X2) = (0, d,−c, 0). If ϕ(Z) = (z1, z2, z3, z4), then{

ϕ(X1 • Z) = (0, bz1 + bz2 − az3 − az4,−az1 + bz3 − az2 + bz4, 0),
ϕ(X2 • Z) = (0, dz1 + dz2 − cz3 − cz4,−cz1 + dz3 − cz2 + dz4, 0).

Thus

ϕ(X1 • Z) ≤ ϕ(X2 • Z) ⇐⇒
{

(b − d)(z1 + z2)− (a − c)(z3 − z4) ≤ 0,
−(a − c)(z1 + z2)+ (b − d)(z3 = z4) ≤ 0.

But (b − d), −(a − c) ≤ 0 and z2, z3 ≥ 0. This implies ϕ(X1 • Z) ≤ ϕ(X2 • Z).

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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4 THE ALGEBRASAn AND AN BETTER RESULT OF THE PRODUCT

We can refine our result of the product to come closer to the result of Minkowski. Consider the
one dimensional extension A4 ⊕ Re5 = A5, where e5 is a vector corresponding to the interval
[−1, 1] of P1,2. The multiplication table of A5 is

e1 e2 e3 e4 e5

e1 e1 e2 e3 e4 e5

e2 e2 e2 e3 e3 e5

e3 e3 e3 e2 e2 e5

e4 e4 e3 e2 e1 e5

e5 e5 e5 e5 e5 e5

The piece P1,2 is written P1,2 = P1,2,1 ∪ P1,2,1 where P1,2,1 = {[a, b],−a ≤ b} and P1,2,2 =
{[a, b],−a ≥ b}. If X = [a, b] ∈ P1,2,1 and Y = [c, d] ∈ P1,2,2, thus

ϕ(X).ϕ(Y ) = (0, b+a, 0, 0,−a).(0, 0,−c−d, 0, d)= (0,−(a+b)(c+d), 0, 0, a(c+d)+bd).

Thus we have
X • Y = [−bd − ac − ad,−bc].

Example. Let X = [−2, 3] and Y = [−4, 2]. We have X ∈ P1,2,1 and Y ∈ P1,2,2. The
product inA4 gives

X • Y = [−16, 14].
The product in A5 gives

X • Y = [−12, 10].
The Minkowski product is

[−2, 3].[−4, 2] = [−12, 8].
Thus the product in A5 is better.

Conclusion. Considering a partition of P1,2, we can define an extension ofA4 of dimension n,
the choice of n depends on the approach wanted of the Minkowski product. For example, let us
consider the vector e6 corresponding to the interval [−1, 1

2 ]. Thus the Minkowsky product gives
e6 · e6 = e7 where e7 corresponds to [−1

2 , 1]. This yields to the fact thatA6 is not an associative
algebra but it is the case for A7 whose table of multiplication is

e1 e2 e3 e4 e5 e6 e7

e1 e1 e2 e3 e4 e5 e6 e7

e2 e2 e2 e3 e3 e5 e6 e7

e3 e3 e3 e2 e2 e5 e7 e6

e4 e4 e3 e2 e1 e5 e7 e6

e5 e5 e5 e5 e5 e5 e5 e5

e6 e6 e6 e7 e7 e5 e7 e6

e7 e7 e7 e6 e6 e5 e6 e7
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Example. Let X = [−2, 3] and Y = [−4, 2]. The decomposition on the basis {e1, · · · , e7}
with positive coefficients writes

X = e5 + 2e7, Y = 2e6.

X • Y = (e5 + 2e7)(4e6) = 4e5 + 8e6 = [−12, 8].

We obtain now the Minkowski product.

5 INCLUSION FUNCTIONS

It is necessary for some problems to extend the definition of a function defined for real numbers
f : R → R to function defined for intervals [ f ] : IR → IR such as [ f ]([a, a]) = f (a) for any
a ∈ R. It will be convenient to have the same formal expression for f and [ f ]. Usually the lack of

distributivity in Minkowski arithmetic doesn’t give the possibility to get the same formal expres-
sions. But with the pseudo-intervals arithmetic we have presented, there is no data dependency
any more and one can define easily inclusion functions from the natural one. For example, let’s

extend to intervals the real functions f0(x) = x2−2x+1, f1(x) = (x−1)2, f2(x) = x(x−2)+1.
Usually, with the Minkwoski operations, the three expressions of this same function for the
interval X = [3, 4] are [ f ]0(X) = [2, 11], [ f ]1(X) = [4, 9] and [ f ]2(X) = [6, 12]. Data de-
pendency occurs when the variable appears more than once in the function expression. The deep

reason of that is the lack of distributivity in Minkowski arithmetic. But within the arithmetic
developed in A4 or higher dimension free algebras [2], this problem vanishes. For example:
with X = [3, 4] and since X ∈ P11,

ϕ(X) = (3, 4 − 3, 0, 0) = (3, 1, 0, 0)= 3e1 + e2. (5.1)

Since e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0) and with means of product table, one has

ϕ([ f ]0(X)) = (3e1 + e2)
2 − 2(3e1 + e2)+ 1

= 9e2
1 + 2 · 3e1e2 + e2

2 − 2 · 3e1 − 2e2 + 1

= 9e1 + 6e2 + e2 − 6e1 − 2e2 + e1 = 4e1 + 5e2

= ϕ([4, 9]), (5.2)

ϕ([ f ]1(X)) = (3e1 + e2 − 1)2

= (2e1 + e2)
2

= 4e2
1 + 4e1e2 + e2

2

= 4e1 + 4e2 + e2

= 4e1 + 5e2

= ϕ([4, 9]), (5.3)
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and

ϕ([ f ]2(X)) = (3e1 + e2) · (3e1 + e2 − 2)+ 1

= 9e1 + 3e1e2 − 6e1 + 3e1e2 + e2
2 − 2e2 + e1

= 4e1 + 3e2 + 3e2 + e2 − 2e2

= 4e1 + 5e2

= ϕ([4, 9]). (5.4)

Thus, [ f ]0(X) = [ f ]1(X) = [ f ]2(X) = [4, 9] and the inclusion function is defined univocally
regardless the way to write the original one.

On the other hand, the construction of the inclusion function depends on the type of problem one

deals with. If one aims to perform set inversion for example, it has to be done in the semi-group
IR. But, the subtraction is not defined in IR. This problem can be circumvented by replacing
it with an addition and a multiplication with the interval e4 = [−1,−1]. This maintains the

associativity and distributivity of arithmetic and permits to introduce a pseudo-subtraction. For
example: if f (x) = x2 − x = x(x −1) for real numbers, one defines [ f ](X) = X 2 + e4 · X . One
reminds the product [−1,−1] · [a, b] is equal to [−b,−a]. Due to the fact that the arithmetic

is now associative and distributive, one doesn’t have data dependency anymore and [ f ](X) =
X 2 + e4 · X = X · (X + e4). The last term corresponds to the transfer of x(x − 1). Division can
be transferred to the semi-group in the same way by replacing 1

x = x−1 with X e4 .

Taylor polynomial expansions, differential calculus and linear algebra operations are defined

only in a vector space. Therefore the transfer for the vector space is done directly. This permits
to get infinitesimal intervals with the subtraction and to compute derivatives. This is of course
not allowed and not possible into the semi-group. From IR to the vector space IR, f : x �→ −x
is transferred to [ f ] : X ≡ (X, 0) �→ \(X, 0) ≡ \X . This means that [a, b] subtraction is the

anti-interval [−a,−b] addition. One of the most important consequence is that it is possible to
transfer some functions directly to the pseudo-intervals. For example, it is easy to prove analyti-
cally in IR that [exp](([a, b], 0)) = ([exp(a), exp(b)], 0) with means of Taylor expansion.

6 PROBABILIST SET INVERSION: ψ-algorithm

6.1 Flowchart

One presents an efficient set inversion method whose flowchart is very simple. One of the pow-
erful application of interval calculus is the set inversion of a real-valued function defined on real
numbers. As mentioned in the first section, the mathematical modelling of this problem is the

following as shown on Figure 1: let’s note f : Rn �→ R
p a function for a physical system,

which is required to be surjective only, R ⊂ R
n the set of adjustments, and P ⊂ R

p the set
of performance of a system. Set inversion consists of the computation of S = f −1(P) ∩ R,
and one has to perform it within the semi-group IR. Some interesting and powerful methods us-

ing intervals have been developed those last years, especially SIVIA [18], Set Inversion Via

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Interval Analysis. But the inclusion function being not well defined in the semi-group with

the Minkowski arithmetic, SIVIA uses boolean inclusion tests and finds accepted, rejected and
“uncertain” domains.

With the algebraic arithmetic, one doesn’t need boolean tests since the inclusion functions
are well-defined. Thus, we propose the ψ-algorithm (Probabilist Set Inversion) inspired from

SIVIA but without boolean tests and with a conditional probability calculation and domain bi-
sections. This yields to accepted or rejected domains only. We are interested to compute the
following conditional probability

p(X) = p([ f ](X) ⊂ P | f (x) ∈ [ f ](X), ∀x ∈ X)
= mes([ f ](X) ∩ P)

mes([ f ](X))
= mes(Y ∩ P)

mes(Y) = mes(I)
mes(Y) (6.1)

where mes is the Lebesgue measure in Rp (length, surface, ...). If this probability equals 1 then

the set is added to the list of solutions. If it is zero the set is rejected and removed from the
list of interval candidates. If the probability is such as p(X) ∈]0, 1[, then X is bisected and
ψ-algorithm applies the same procedure recursively for the resulting intervals until the size is
lower than a fixed size resolution of the intervals or until the sets are accepted or rejected. Since

ψ-algorithm creates sequences of decreasing intervals which are compact sets, it is obvious that
ψ-algorithm converges to fixed points probabilities which are simply 0 and 1. In fact, we consider
a sequence of compact sets {Kn}n∈N satisfying d(Kn) > d(Kn+1) where d is the diameter of

the compact set. If Kn ∩ Km = ∅, for any n 
= m, the sequence is convergent and the limit is
the empty set. Then, one has just to consider the sequence of bisected sets.
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Figure 3: ψ-algorithm for f1.
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Figure 4: ψ-algorithm for f2.

6.2 Numerical applications

We have developed a numerical library for python environment [27] called yet typhon. It is a pure
numerical implementation performing the basic arithmetic presented above [2]. This library aims

to give simple and optimized routines to perform interval calculations based on the algebraic
arithmetic. One gives in this section some numerical application examples of ψ-algorithm in
order to illustrate how it can treat usual inversion problems and build well-defined inclusion

functions.

Let’s define the non-linear functions fi : R2 → R
2, i = 1, 2, with respectively adjustments and

performances setsRi , Pi :

f1(x, y) = (x2 + y2, x + y), R1 = [−1, 2]2, P1 = [1, 2] × [1, 4]
f2(x, y) = (x2 − y2,

y

1 + x
), R2 = [0, 6] × [−10, 10], P2 = [0, 5] × [−4, 4]. (6.2)

Those examples have been chosen to give examples of addition, subtraction, product and division

transfers from R to IR, and to exhibit the difference between the usual Minkowski arithmetic
and the algebraic one [2]. The calculations with theψ-algorithm are shown on Figures 3, 4 and 5.
The convergence to 0 or 1 probabilities only, shows that inclusion functions are well constructed

and that the pseudo-interval arithmetic is robust. The following example

f3(x, y) = (x2 − y2 · exp(x) + x · exp(y), x · (x + y)− y2), R3 = P3 = [−5, 5]2 (6.3)

presented on Figure 5 shows clearly that the ψ-algorithm implemented in the algebraic arith-

metic we use is not data dependant. The variables appear more than once in the formal expres-
sion of the function f3. The CPU time for this inversion is about 255 seconds on a simple 1.67
Ghz Intel processor for a spatial surface resolution of 10−4.
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There is no limitation for the dimensions of the adjustments and performances sets as shown on

Figure 6 for the function f4 : R3 −→ R
4.

-4

-2

 0

 2

 4

-4 -2  0  2  4

Ad
ju

st
em

en
t y

 a
xi

s

Adjustement x axis

Performance preimage set

Figure 5: ψ-algorithm for f3.

Figure 6: ψ-algorithm for f4(x, y, z) = (x, y, z, x2 −y2 +z2)withR4 = [−5, 5]3 andP4 = [−10, 10]4.

Due to the bisection, the algorithm computational complexity is exponential according to the
iterations N , and it is not improved compared to SIVIA one. In our scheme, computational time
is defined as

Tcomp = O(N) = k · 2N . (6.4)

However, if the native function is differentiable on Rn , it is possible to define an adaptive mesh,
with bisection spanned only in the space directions where the derivative magnitude is larger than

a certain fixed value, because it is not useful to bisect in flat directions. This will obviously
decrease the computational complexity constant k. It is possible to decrease the computational
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time constant with mean of paralleling using domain decomposition [18]. The adjustment set

is divided on the first axis, and each processor performs the ψ-algorithm on one of those sub-
domains. The master processor collects all the results at the end of the calculations.

7 CONCLUSION

A new algebraic approach for interval arithmetic, called pseudo-interval arithmetic has been
proposed. It is based on free algebra build from Minkowski products of basis intervals and with
dimension higher or equal to 4. One has identified intervals with the elements of this associative

algebra and showed that their product is distributive with respect to their addition. Increasing the
dimension will give pseudo-intervals product closer to Minkowski one’s.

One has presented also a heuristic way to transfer real functions to inclusion ones depending
on the space needed (semi-group or vector space). This permits to define a simple but very ef-

ficient algorithm for set inversion, the ψ-algorithm, which uses pseudo-intervals arithmetic and
probability calculations. The convergence of this algorithm is guaranteed, and it offers several
possibilities of applications, such as solving algebraic equations, differential equations, proba-

bility law of random variables calculations (discrete or continuous), topological analysis, numer-
ical Lebesgue integrals computations, data analysis such as principal components analysis, and
parameters identification.
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RESUMO. Neste artigo, apresenta-se como usar um novo arcabouço de aritmética intervalar

com base na construção de álgebra livre, chamado pseudo intervalos, que é associativa e dis-

tributiva e permite a construção da inclusão de função bem definida para semi-grupo intervalar

e para seu espaço vetorial associado. Apresenta-se o ψ-algoritmo (Inversão Probabilı́stica de

Conjuntos), que realiza a inversão de funções e exibe-se alguns exemplos numéricos.

Palavras-chave: Álgebra livre, Pseudo-intervalos e aritmética intervalar, conjunto de in-

versão, probabilidade.
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