
i
i

“A9-1202-6619-1-LE” — 2019/5/10 — 8:43 — page 149 — #1 i
i

i
i

i
i

Tema
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ABSTRACT. In this paper, a parametrization methodology based on the Genetic Algorithm meta-heuristic
is proposed for the Chen and Rincón-Mora model parameter estimation, this model is utilized for the mathe-
matical modeling of the Lithium-ion Polymer batteries lifetime used on mobile devices. The model is also
parameterized using the conventional procedure, which is based on the visual analysis of pulsed discharge
curves, as presented in the literature. For both parametrization procedures, and for the model validation,
experimental data obtained from a platform test are used. The simulations results show that the proposed
Genetic Algorithm is able to parametrize the model with better efficacy, presenting lower mean error, and
it is also a more agile process than the conventional one, been less subject to subjective aspects.

Keywords: parameter estimation, genetic algorithm meta-heuristic, mathematical modeling.

1 INTRODUCTION

The constant evolution of rechargeable batteries is extremely relevant for the development of
more efficient mobile devices and for use of sustainable energy technologies, such as, electric and
hybrid vehicles. The energy efficiency of these electrical systems is directly related to the nominal
capacity of their batteries. Over the years, many advances have been made, mainly, in terms
of battery capacity and energy density. An example is the Lithium-ion Polymer (LiPo) battery,
which has a high energy density and power, being lighter and more compact than the Lithium-
ion (Li-ion) battery [22]. On the other hand, it presents functional instability when subjected to
overload and full discharge conditions, in addition to having a limited number of life cycles,
which results in its more frequent substitution [21, 10]. Therefore, battery resources need to be
managed efficiently and new solutions/strategies are required to improve important factors such
as safety, reliability and durability.
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150 MATHEMATICAL MODELING AND PARAMETER ESTIMATION OF BATTERY LIFETIME

In this context, many researches have investigated the prediction of the battery lifetime using
mathematical models [8, 34, 6, 24, 26, 2, 5, 14, 29]. The battery lifetime is here understood to
be the time during which the battery can supply energy to the system before a new recharge is
made necessary [3]. Two main nonlinear effects present in the discharge process, the recovery
and the capacity rate, have a significant influence on the battery lifetime [4]. In addition, some
unavoidable phenomena can limit the battery lifetime, such as charging and discharging, aging
cycles, and the thermal and power management system [21, 30]. These approaches generally
require reliable mathematical models that are able to accurately describe the dynamic behavior
of the battery under different conditions of use. Also, for many applications, it is important to
find a balance between the complexity and the model accuracy, so that it can be embedded in
microprocessors and provide accurate real-time results [25, 9]. The class of electrical models has
been used in a wide range of applications, considering different types of batteries [5, 11, 28, 19].
These models provide important information such as current, voltage, and state of charge (SOC),
and may also incorporate some nonlinear effects of the problem, maintaining a relatively low
complexity [14].

The class of electrical models can be divided into six subclasses, which are: Simple models
[11, 33], Thévenin-based models [17, 12], Impedance-based models [16], Runtime-based mod-
els [23], Combined models [5, 37] and Generic models [36]. Simple models use an ideal voltage
source and an internal resistance to represent the battery, and they do not capture the nonlinear
effects that occur during the discharge process [11], one example of Simple model is the Re-
sistance model [9, 33]. Thévenin subclass models provide the transient responses of the battery
using Resistor-Capacitor (RC) networks [17], these models are usually able to capture two time
dependent effects, the depletion and the recovery [33]. A review of different Thévenin-based
models is presented in [1]. Impedance-based models are developed using the Electrochemical
Impedance Spectroscopy (EIS) method, where each component of the circuits is related to an
electrochemical process of the battery, and thus can provide a good description of its internal be-
havior [9, 16]. One of the first Impedance-based models is proposed by Randles in 1947 [1, 27].
The Runtime-based models can simulate the battery lifetime and voltage during the continuous
current discharge process with reasonable accuracy, but they cannot present good results when
simulating variable current discharges due to their low precision modeling of the transient battery
characteristics [5, 23]. The subclass of Combined models consists of the combination of differ-
ent electrical models in order to combine the best attributes of each model, such as the correct
prediction of the battery lifetime, the steady-state and transient responses, and the accurate esti-
mation of the SOC [5, 37]. One important Combined model is the Chen and Rincón-Mora model
[5], which is applied in this paper for the mathematical modeling of LiPo battery lifetime used
in mobile devices. This model is capable of capturing the electrical and dynamic characteristics
of the battery, such as open circuit voltage (Voc), usable capacity and transient response [5].
Generic models can be used to model batteries of different technologies under different charging
and discharging conditions [3, 36].
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An important factor in the modeling of the battery lifetime is the estimation of the its empirical
parameters. Usually, the parameters of electrical models are estimated through extensive exper-
imentation, which requires a lot of time and experience/care in obtaining the data [20, 15]. An
example is the Chen and Rincón-Mora model, which has 21 parameters usually obtained from
the curve fitting method, requiring a set of data obtained from the visual analysis at specific
points of battery discharge pulsed curves [5]. An alternative to overcome this problem is the use
of meta-heuristic optimization techniques due to its flexibility, derivation-free mechanism and
local optimal avoidance [31]. Genetic Algorithms (GAs) [13] are computational models inspired
by the natural evolution mechanisms [7] applied for the solution of different classes of optimiza-
tion problems. This heuristic method has shown good results due to its wide applicability in the
mathematical modeling of various battery types.

In [2], a multi-objective GA is employed in the parameter estimation of an equivalent circuit
model that is compared with curves of battery catalogs and with charge and discharge exper-
iments. Different types of batteries used in electric vehicles are tested, and several test cases
demonstrate that the multi-objective GA can serve as a robust and reliable tool for extracting
the battery performance parameters of the electric vehicles. In [20], a GA is also employed for
parameter estimation of two equivalent circuit models, one linear and other nonlinear, conside-
ring different types of industrial batteries used in electric vehicles, the results demonstrate that
both linear and nonlinear equivalent circuit models can predict with accuracy the performance of
various batteries of different sizes, characteristics, capacities, and materials. A similar approach
is adopted in [35], where an electric circuit-based battery and a capacity fade model suitable
for electric vehicles in vehicle-to-grid applications are used. The circuit parameters of the bat-
tery model are extracted using a method of GA based optimization, and the obtained battery
characteristics are in close agreement with the measured characteristics (manufacturers catalog).

It is emphasized that a GA meta-heuristic depends on several characteristics specific of the prob-
lem investigated, its development needs to consider the search space, the problem optimization
functional, and the selection and reproduction strategies best suited to the specific problem in
question. In this context, unlike other works of literature, this paper proposes a methodology
based on GA for the parameter estimation of the Chen and Rincón-Mora model, applied to the
mathematical modeling of LiPo batteries lifetime used in mobile devices. The proposed GA and
the mathematical model are implemented in the Matlab computational tool (student license).
The validation of the methodologies used for model parametrization and Chen and Rincón-Mora
model are performed by means of a comparative analysis between the simulated results and the
experimental data collected on a platform test. The parameter estimation by GA methodology is
compared to the conventional methodology, which uses the visual analysis of discharge curves.
In this paper, the use of a single pulsed discharge curve, or multiple pulsed discharge curves, in
the parameter estimation is also investigated.

The rest of the paper is organized as follows. Section 2 presents the Chen and Rincón-Mora
model. Section 3 presents the experimental data used for the parameter estimation and model
validation. In Section 4 the methodologies used for parameter estimation are described. Section
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5 presents the computational simulation results and discussions. In Section 6 the conclusions are
drawn.

2 CHEN AND RINCÓN-MORA MODEL

A combined electrical model, capable of predicting battery runtime and I-V characteristics, is
the Chen and Rincón-Mora model [5], which is shown in Figure 1. The Runtime-based model
(circuit on the left) is composed of a self-discharge resistance Ra, a capacitor C3 and a controlled
current source i(t). It models the capacity, the SOC and the battery lifetime. The Thévenin-based
model (circuit on the right) models the transient response using a resistance R0, two parallel RC
networks, and a controlled voltage source Voc(VSOC). This combined model has been applied on
the modeling of batteries of different technologies, presenting good accuracy [5].

Figure 1: Chen and Rincón-Mora model equivalent circuit [1].

In order to model the transient response, two time constants, one of short and other of long
duration are used, and they are defined by the t0 < t < tr time interval. During the t0 < t < td
time interval, the battery is discharged with a constant current (i(t) > 0). During the td < t < tr
time interval, the battery is idle (i(t) = 0), in which td is the end discharge time. The resistances
and capacitances R1, C1, R2 and C2 represent the short and long transient responses, respectively.
When in steady-state, C1 and C2 offer a high resistance to the continuous current, performing the
open circuit role, but in transient state, this capacitors behave as a short circuit until fully charged
[5].

The battery usable capacity is found from the relation among C3, Ra, R0, R1 and R2 components.
The value of C3 is given by

C3 = 3600Capacity f1(Cycle) f2(Temp), (2.1)

where: Capacity is the nominal capacity, f1(Cycle) is the number of cycles correction factor,
f2(Temp) is the temperature correction factor [5].

The variation of the usable capacity is caused by the intensity of the discharge current applied
to the battery, being neglected other aspects that could affect it, such as the number of cycles,
temperature and storage time. Therefore, the value of Ra is not taken into consideration, and both
correction factors are equal to 1. Different currents applied to C3 result in voltage drops in the
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equivalent resistor, which corresponds to the sum of resistances R0, R1 e R2. This results in a set
of different SOC values, according to the voltage drop, gradually reducing the usable capacity of
the battery during its discharge [5]. The output voltage Vs(t) is then expressed as

Vs(t) =Voc(VSOC)−R0i(t)−VTransient(t), (2.2)

where: VTransient(t) is the transient voltage calculated from

VTransient(t) =V1 +V2, (2.3)

where: V1 is the short duration transient voltage, and V2 is the long duration transient voltage,
both given by the equations (2.4) and (2.5) respectively,

V1 =


R1i(t)

[
1− e−

(t−t0)
τ1

]
, t0 < t < td

V1(td)e
− (t−td )

τ1 , td < t < tr

(2.4)

V2 =


R2i(t)

[
1− e−

(t−t0)
τ2

]
, t0 < t < td

V2(td)e
− (t−td )

τ2 , td < t < tr

(2.5)

where: V1(td) is the short duration transient voltage at the final discharge time, τ1 = R1C1, V2(td)
is the long duration transient voltage at the final discharge time, and τ2 = R2C2 [15].

The elements Voc and R0 from equation (2.2), and also R1, C1, R2 and C2, that model the transient
voltage response, are functions of SOC, as described by the following equations

Voc(SOC) = a0e−a1SOC +a2 +a3SOC−a4SOC2 +a5SOC3, (2.6)

R0(SOC) = b0e−b1SOC +b2, (2.7)
R1(SOC) = c0e−c1SOC + c2,

C1(SOC) = d0e−d1SOC +d2,

R2(SOC) = e0e−e1SOC + e2,

C2(SOC) = f0e− f1SOC + f2.

(2.8)

It is observed that the methodology usually adopted in the literature for the estimation of the 21
empirical parameters of equations (2.6), (2.7) and (2.8) is based on curve fitting techniques using
4 pulsed battery discharge curves as described in [5].

3 EXPERIMENTAL DATA

For Chen and Rincón-Mora model parametrization and validation, experimental data are used.
They refer to new LiPo batteries, model PL383562−2C, used in mobile devices, collected from
a testbed developed by the Industrial Automation and Control Group (GAIC), of the Regional
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University of Northwest of Rio Grande do Sul State (Unijuı́). The experimental data collection
is a rigorous procedure, so a single standard is adopted in all experimental tests. Initially, the
batteries are connected to an external power source and are subject to a full charge process with
an applied current corresponding to 20% of the rated battery capacity [18], which is equivalent
to 160 mA. The charge process is considered complete when battery voltage reaches 4.2 V . For
the discharge process, the batteries are disconnected from the charging station and connected to
the testbed [3].

The experimental tests performed to estimate the model empirical parameters are based on the
procedure adopted by [5], which considers that each discharge curve contains from 6 to 10 pulses.
Thus, following the methodology presented in [5], 4 pulsed discharge curves are used, whose
discharge current in mA, pulse periods and pulse duration both in min, are presented in the Table
1. The periods are repeated until the batteries reach the cutoff voltage corresponding to 3 V . The
parametrization performed in this paper uses first the visual analysis process of the pulsed curves
according to [5], and later using GA.

Table 1: Pulsed discharge curves used for parameter
estimation of the model.

Discharge current Pulse period Pulse duration
80 68.34 58.34

160 40.00 30.00
320 25.00 15.00
640 17.50 7.50

The parametrization process is also analysed when only one discharge curve is used. For this
purpose, a pulsed discharge intermediate current curve of 400 mA, with pulse period of 21.67 min
is selected, in which the first 11.67 min is applied to the discharge current (pulse duration), and
in the next 10 min the battery remains idle. This sequence is repeated until the battery reaches the
voltage of 3 V . The model validation considers a constant discharge profiles set, which contains
low, medium and high currents, according the capacity of 800 mA. Thus, 31 profiles are defined
in the range from 50 mA to 800 mA, equally divided into intervals of 25 mA. For each profiles
8 experiments are performed, obtaining the average experimental lifetime (Lea) that is used as
metric for calculating the model error.

A statistical analysis of the experimental data using One-Way ANOVA and Tukey test is per-
formed, and 11 statistically different profiles are selected from 31 profiles measured. Table 2
shows 11 statistically different profiles chosen, in which Lei represents battery lifetime measured
for each sample, in min with 1 ≤ i ≤ 8, and Lea represents the average experimental lifetime, in
min. Next section, the two methodologies adopted for the estimation of Chen and Rincón-Mora
model empirical parameters are described.
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Table 2: Experimental data used for the Chen and Rincón-Mora model validation.

Profiles Le1 Le2 Le3 Le4 Le5 Le6 Le7 Le8 Lea

50 964.07 980.42 860.43 922.15 920.43 993.96 931.38 950.08 940.36
75 593.06 607.28 626.98 599.75 586.9 652.15 582.58 606.78 606.93

100 464.71 474.42 460.45 466.3 470.75 459.03 445.53 486.62 465.97
125 388.48 392.93 375.03 367.4 380.9 393.65 381.55 398.17 384.76
150 283.02 311.72 302.97 307.58 345.03 297.62 279.48 305.38 304.1
175 280.85 274.5 271.33 285.07 297.07 253.5 246.43 269.1 272.23
200 232.2 219.18 213.95 236.18 218.83 235.7 239.72 228.12 227.98
250 191.23 173.47 167.72 188.93 182.78 190.15 193.12 184.65 184.01
325 141.57 145.68 149.53 143.47 148.45 129.85 126.4 145.33 141.28
400 115.55 117.75 121.52 115.78 118.8 107.9 101.9 117.5 114.58
525 88.57 91.3 93.15 85.28 92.63 78.67 74.11 85.85 86.19

4 METHODOLOGIES FOR PARAMETER ESTIMATION

This section presents the parameter estimation of the Chen and Rincón-Mora model carried
out from two different methodologies. The Methodology 1 is based on the curve fitting tech-
nique adopted by [5], and the Methodology 2 corresponds to the proposed GA methodology.
Both methodologies determine the laws of functions Voc, R0, R1, C1, R2 and C2 presented in
equations(2.6)-(2.8), which contains the 21 parameters that need to be estimated.

4.1 Methodology 1: Curve Fitting

This methodology is based on the curve fitting technique and follows the procedure described
in [5]. For each one of the functions mentioned above, four experimental curves are generated,
corresponding to 4 profiles of pulsed discharge currents of 80 mA, 160 mA, 320 mA and 640 mA.
Each curve contains a characteristic points set that is obtained from the discharge current pulses.
In this context, the curve fitting consists in finding a law of the function that passes through all
these points, and therefore, the respective parameters.

Thus, to determine the function Voc in equation (2.6), it is necessary to measure the open circuit
voltage at different points in the SOC, which correspond to the steady state open-circuit voltage
at each pulse of discharge [5]. The function R0, in equation (2.7), is determined from the R0

resistance calculation in each pulse of the discharge currents. This resistance is responsible for
the instantaneous voltage drop in the pulse, considering the initial and final voltages at the instant
the discharge current is applied, as shown in [32]. In order to obtain the laws of functions R1 and
C1, in equation (2.8), the values R1 and C1 are calculated considering the first seconds of each
pulse of the discharge currents. As described in [32], the voltage difference in the corresponding
interval is required for the calculation of R1, and for the calculation of C1, the time difference is
needed, which is obtained tracing a line tangent to the point corresponding to the initial voltage of
the interval. Finally, the functions R2 and C2, in equation (2.8), depend on the values R2 and C2,
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which are calculated considering the remaining seconds of each pulse of the discharge currents,
similarly to the short duration constants [32].

All measurements are made from the visual analysis at the specific points of the discharge cur-
rents pulses applied to the batteries. After that, the Nonlinear Least Squares method implemented
in Matlab software is used to curve fitting, thus obtaining the equation that represents each
function of the Chen and Rincón-Mora model with the respective empirical parameters.

4.2 Methodology 2: Genetic Algorithm

By an analogy between the natural selection process and the problem of model parametrization,
it is possible to consider the interaction between the experimental data and the results simulated
by the model as being the environment. The genetic code of each individual corresponds to
the 21 model parameters that need to be estimated, presented in the equations (2.6)-(2.8). Each
parameter is a chromosome, initially with genotypical representation discretized in four decimal
digits, which are the genes. The aptitude of each parameter is directly related to the objective
function F , which is the maximum mean voltage difference between the model curve and the
experimental data when a set of different discharge curves are jointly considered,

F = maxi

∫ Le
0 |Vsi−Vei|dt

Le
, (4.1)

where: Vsi is the voltage simulated by the model for the discharge curve i, and Vei is the experi-
mental voltage for the discharge curve i, so that a set of different discharge currents can be used
in conjunction for the parametrization problem. The parametrization problem can be expressed
as the minimization problem of the functional given by

argmin
a0..5,b0..2,c0..2,d0..2,e0..2, f0..2

F(a0..5,b0..2,c0..2,d0..2,e0..2, f0..2) (4.2)

where: a0..5,b0..2,c0..2,d0..2,e0..2, f0..2 correspond to the 21 parameters that minimize the error
between the model and the experimental data.

The fitness function is based on the Power Scale mapping method, being obtained from the in-
verse of F (equation (4.1)), that is, F−1. This means that the lower the value of F is, the greater
is the aptitude of the parameters for the case analyzed. Thus, the GA provides the values of the
21 parameters of the Chen and Rincón-Mora model optimized, when reaching the stopping cri-
terion. The configuration of the GA is done empirically by performing several tests, considering
fundamental aspects such as stability, convergence, responses quality and limits imposed by the
computational cost of the algorithm.

In this way, the GA is implemented in Matlab software and initialized with a random population.
The genetic code of the individual is composed of 84 decimal digits, using 4 digits to represent
each of the 21 model parameters. Therefore, there are ten thousand different possible combina-
tions, ranging from 0000 to 9999 for each parameter. All manipulation operations of the genetic
code in the algorithm (i.e., crossing and mutation), are made considering this genotypic represen-
tation. In order to calculate the fitness, it is necessary to transform the genotypic representation
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into its corresponding phenotypic form, that is, the parameter value to be used in the battery si-
mulation model. Table 3 presents the minimum and maximum values of each parameter defined
by the authors and based on Metodology 1. The phenotypic form of the parameter is obtained
from the genotype according to equation

P = vmin +(
C

9999
)(vmax− vmin) (4.3)

where: P is the parameter value (phenotype), C is the genetic code (genotype), and vmin and vmax

are the minimum and maximum values of the parameter according to Table 3.

Table 3: Parameters minimum and maximum ranges.

Parameter vmin vmax

a0 −1.4094 −0.8456
a1 3.0706 23.0706
a2 2.9696 4.9493
a3 −1.3849 −0.8309
a4 −2.5334 −1.5200
a5 −0.8185 −0.4911
b0 2.3018 3.8364
b1 48.1261 80.2101
b2 0.2375 0.3959
c0 13.6187 22.6978
c1 113.3475 188.9125
c2 0.0406 0.1006
d0 −667.7264 −400.6358
d1 4.3313 14.3313
d2 381.0251 635.0419
e0 0.9902 1.9902
e1 9.3493 49.3493
e2 0.0671 0.1271
f0 −1818.3673 −1091.0204
f1 3.5250 13.5250
f2 980.6167 1634.3611

Multiple points are used for the crossover procedure, according to the number of model param-
eters. They are represented in the genetic code, so that the individual generated could inherit
parameters from the mother or the father, each parameter is passed in its integral form, being
perturbed only by mutation. The GA uses non-uniform mutation rates, according to the position
of the digit in the parameter representation, ranging from 0.5% to 2%, with the least significant
digit having the highest mutation rate.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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At each iteration of the GA, the values of the optimized parameters are informed to the model
and it is executed, providing the simulated curves that describe the voltage decay as a function of
time until the cutoff level is reached. First, a set of four pulsed discharge curves corresponding to
80 mA, 160 mA, 320 mA, and 640 mA is used, according to the procedure adopted in [5]. After,
a new analysis is done using only a pulsed discharge curve of 400 mA. Afterwards obtaining the
parameters, the estimation of the model empirical parameters and the Chen and Rincón-Mora
model are validated. This procedure is performed in order to validate the methodology proposed
for the parameter estimation, as well as to verify the model accuracy to simulate the lifetime of
LiPo batteries.

Considering the probabilistic nature of the GA, the whole procedure is repeated 10 times in
order to analyse the mean results. The simulations results for the standard deviations also are
found, and as will be presented in the next section, they are low, therefore, more independent
realizations are not deemed necessary. The algorithm uses a population size of 100 individuals
with a 10% selection rate, and for each independent realization, 100 generations are computed.
The population size and number of generations are severely limited by the computational cost of
the fitness function, but the configuration used is sufficient to consistently obtain good results.
Given the relatively small population and number of generations, the truncation selection method
is employed, in order to obtain a faster convergence. As the results will show, local maxima
stagnation did not affect the algorithm performance.

5 RESULTS AND DISCUSSIONS

In this section, the simulations results of the Chen and Rincón-Mora model are presented, ac-
cording to the two methodologies adopted in this paper. Initially, the validation of the parameter
estimation and the parameters values for each methodology are presented, followed by the model
validation, considering 11 discharge profiles of constant current. The results analysis takes into
consideration the difference between the simulated and experimental lifetimes, and these diffe-
rences are presented as relative error percentages. Ten independent realizations of the GA are
performed for the single curve parametrization, and for the four curves parametrization cases.
The mean errors and standard deviations are presented, considering all GA realizations for the
parametrization validation and the model validation. In the results also is presented the best pa-
rameters set for each parametrization case, which is the set of parameters from the independent
GA realization that presents the lowest model validation error.

5.1 Validation of parameter estimation

For the validation of the parameter estimation, the discharge profiles used for the parameter
estimation are applied to the Chen and Rincón-Mora model, and the simulations results are com-
pared. Initially, the simulations for Methodology 1, which is based on the visual analysis of the
pulsed discharge curves of 80 mA, 160 mA, 320 mA and 640 mA, are performed. Following, the
validation of parameter estimation for Methodology 2 is performed, which is based on the pro-
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posed GA, using the same pulsed discharge profiles used in Methodology 1, and it is referred
here as Methodology 2 (4 curves). The experimental lifetimes (Le) for each profile, and the sim-
ulated lifetimes (Ls) for Methodology 1 with respective errors are presented in Table 4; and the
simulated lifetimes with respective errors for the Methodology 2 (4 curves), considering the best
parameter set (Ls), and the average results for 10 independent GA realizations (Lsa), are presented
in Table 5.

Table 4: Validation of parameter estimation from
Methodology 1.

Profiles (mA) Le (min)
Methodology 1

Ls (min) Error (%)
80 655.50 672.67 2.62

160 379.60 379.00 0.16
320 227.84 232.67 2.12
640 160.50 160.17 0.20

Mean error 1.28

Table 5: Validation of parameter estimation from Methodology 2 (4 curves).

Profiles (mA) Le (min)
Methodology 2 (4 curves)

Ls (min) Error (%) Lsa (min) Error (%)
80 655.50 672.20 2.55 671.25 2.40
160 379.60 378.34 0.33 378.71 0.39
320 227.84 232.62 2.10 232.73 2.14
640 160.50 160.47 0.02 160.26 0.27

Mean error 1.25 1.30

According to the simulations results presented for the validation of the parameter estimation, the
model obtained a mean error of 1.28% for Methodology 1, and of 1.25% for Methodology 2
(4 curves) for the best parameter set, and an average error of 1.30% Methodology 2 (4 curves)
for 10 independent GA realizations, with a standard deviation of 0.10%. The obtained errors are
considerably low for the class of electrical models. The simulation curves of the model consi-
dering both methodologies, and the experimental data curves for each of the discharge profiles
used in the parametrization procedure, can be seen in Figures 2, 3, 4 and 5, where the simulation
curves for the GA method are generated based on the best parameter set. The simulation curves
show a behavior close to the experimental data during most of the discharge interval, with a slight
difference for the 320 mA profile (Figure 4), and at the end of the discharge time for the 80 mA
(Figure 2) and 320 mA (Figure 4) profiles, where the simulation curves take more time to reach
cutoff level.
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Figure 2: Comparison between experimental data and
simulations for Methodology 1 and Methodology 2 (4
curves), for 80 mA discharge profile.

Time (min)
0 50 100 150 200 250 300 350

V
ol

ta
ge

 (
V

)

3

3.2

3.4

3.6

3.8

4

4.2 Experimental data
Methodology 1
Methodology 2 (4 curves)

Figure 3: Comparison between experimental data and
simulations for Methodology 1 and Methodology 2 (4
curves), for 160 mA discharge profile.
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Figure 4: Comparison between experimental data and
simulations for Methodology 1 and Methodology 2 (4
curves), for 320 mA discharge profile.
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Figure 5: Comparison between experimental data and
simulations for Methodology 1 and Methodology 2 (4
curves), for 640 mA discharge profile.
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Figure 6: Comparison between experimental data and
Methodology 2 (1 curve), for 400 mA discharge profile.

The Methodology 2 is also used applying just one pulsed discharge curve, whose periods are
shown in Section 3, and is referred as Methodology 2 (1 curve). In Figure 6, the pulsed 400 mA
discharge curve and the model simulation curve are presented, also considering the best parame-
ter set from 10 independent GA realizations. It is possible to see that the simulation curve behav-
ior is close to the experimental data, and presents a very low error for the discharge time, of only
0.85%. When all 10 independent GA realizations are considered, the average parametrization
error is 0.59%, with a standard deviation of 0.12%. It is important to note that the best parame-
ters set is chosen according to the model validation error, presented in the next subsection, and
not the parametrization error, presented here. This is the reason why the best parameter set is
not necessarily the one that presents the best fitting for one specific parametrization curve, what
highlights the importance of using several curves for the parametrization procedure, capturing
a broader spectrum of the battery behavior. This low error for the parametrization procedure is
expected, since only one curve must be taken into account by the GA optimization procedure,
but nevertheless, this result shows the efficacy of the proposed GA.
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The results demonstrate that both methodologies can be reliably applied for the Chen and
Rincón-Mora model parametrization, and the parameters values are shown in Table 6. The next
subsection presents the model validation according to each parametrization methodology. For
Methodology 2, the best parameters sets from 10 independent realizations are shown.

Table 6: Parameters estimated using Methodology 1 and Methodology 2.

Parameter Methodology 1 Methodology 2 (4 curves) Methodology 2 (1 curve)
a0 −1.1275 −1.1473 −1.1359
a1 13.0706 15.4206 16.9806
a2 3.9594 3.9443 3.9582
a3 −1.1079 −1.1236 −1.1021
a4 −2.0267 −2.0438 −2.0498
a5 −0.6548 −0.6514 −0.6748
b0 3.0691 3.0747 3.0753
b1 64.1681 59.6201 65.9941
b2 0.3167 0.2685 0.3172
c0 18.1582 18.1493 18.1331
c1 151.13 143.2540 146.73
c2 0.0706 0.0436 0.0750
d0 −534.1811 −543.3651 −518.9451
d1 9.3313 6.5143 5.9483
d2 508.0335 494.3895 514.2895
e0 1.4902 1.7458 1.2526
e1 29.3493 13.5013 9.8573
e2 0.0971 0.0722 0.0744
f0 −1454.6938 −1425.2 −1452.6
f1 8.5250 9.4160 13.375
f2 1307.4889 1365.3 1399.9

5.2 Model validation

For the validation procedure, the model is subjected to 11 different discharge profiles of constant
currents, which are not used during the parametrization process. The simulations are performed
using the parameters obtained by Methodology 1, Methodology 2 (4 curves) and Methodology 2
(1 curve). The errors corresponding to each discharge profile and parametrization methodology
are presented in Figure 7. For Methodology 2, the parameters obtained from the 10 indepen-
dent GA realizations are used, and the mean results of the battery lifetime errors are computed.
The Methodology 2 (4 curves) and (1 curve) - best parameter set error presents the errors cor-
responding to each of the 11 discharge profile for the parameters set of the 10 independent GA
realizations that obtained the lowest mean error. Methodology 2 (4 curves) and (1 curve) - mean
error presents the mean error for each of the 11 validation profiles considering 10 independent
GA realization. It should be noted that the results for the best parameter set error consider the
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average error of all 11 validation profiles, so it is possible that some specific profiles present an
error greater than the average of the 10 independent GA realizations, such as in the profiles of
125 mA and 175 mA.

Profile (mA)

50 75 100 125 150 175 200 250 325 400 525

E
rr

o
r 

(%
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Methodology 1

Methodology 2 (4 curves) - best parameter set error

Methodology 2 (4 curves) - mean error

Methodology 2 (1 curve) - best parameter set error

Methodology 2 (1 curve) - mean error

Figure 7: Error percentages for different discharge currents and different
parametrization methodologies.

The overall results considering all discharge profiles are the following. For Methodology 1, the
resulting mean error is of 1.79%. For Methodology 2 (4 curves), the best parameters set presents
the mean error of 1.47%, and considering the 10 independent GA realizations, its average error
is of 1.76%, with the standard deviation of 0.25%. For Methodology 2 (1 curve), the best param-
eters set presents the mean error of 1.73%, and considering the 10 independent GA realizations,
its average error is of 2.06%, with the standard deviation of 0.13%. Even though the Methodo-
logy 2 (1 curve) presented the lowest error during the parametrization procedure, it presented the
highest error for the validation of the model, because it failed to capture the model behaviour for
different currents of discharge. The best results are obtained by Methodology 2 (4 curves).

In addition to more precise results, it is important to note that the methodology using the proposed
GA is much less subjective and also much more agile. For the results presented in this paper, 12
hours are used for the parametrization using the visual curve analysis methodology, while the
proposed GA obtained good results in 20 generations, using about 15 minutes of processing time
in a conventional laptop with an I5 Intel processor and 4GB of main memory. Using 4 different
curves for parametrization, and 100 generations, the processing time for each GA realization is
5 hours, as presented in Figure 8.
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Figure 8: Mean voltage difference during 100 GA generations.

6 CONCLUSION

In this paper, the mathematical modeling of the lifetime of LiPo batteries is presented, using
the Chen and Rincón-Mora model. The parametrization of the model is further investigated,
and a parametrization procedure based on GA is proposed. The proposed GA is compared to
the conventional parametrization procedure which is based on the visual analysis of pulsed dis-
charge curves. As is the case for the conventional procedure, 4 different discharge curves are
jointly taken into account by the GA optimization method. The results show that the GA based
method can achieve better results than the conventional parametrization procedure, as demons-
trated by the model validation, that used 11 different discharge profiles to analyse the efficacy
of the parametrization methods. The results also show that using more than one discharge curve
of the experimental data during the parametrization process, covering different current profiles,
greatly improves the model accuracy.
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RESUMO. Neste artigo é proposta uma metodologia baseada na meta-heurı́stica Algo-
ritmo Genético para estimar os parâmetros no modelo Chen e Rincón-Mora, sendo este
aplicado na modelagem matemática do tempo de vida de baterias de Lı́tio-ı́on Polı́mero.
O modelo também é parametrizado a partir da metodologia convencional, que necessita de
dados obtidos por meio da análise visual de curvas de descargas pulsadas, conforme apre-
sentada na literatura. Para ambos os processos, parametrização e validação do modelo, são
utilizados dados experimentais obtidos em uma plataforma de testes. Os resultados mostram
que o Algoritmo Genético proposto parametriza de forma mais eficaz o modelo, apresen-
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tando erro médio menor, além de ser um processo mais rápido e menos subjetivo que o
procedimento convencional.

Palavras-chave: estimação de parâmetros, meta-heurı́stica algoritmo genético, modelagem
matemática.
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