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ABSTRACT. The incidence of neoplastic diseases shows that the search for more effective cancer treat-
ments is still necessary. In addition to standard treatments such as chemo- and radiotherapy, new treatment
modalities have been focused in recent advances in immunology. Since little has been discussed about the
biological implications of chemotherapy with respect to its impact on the immune system and on the other
normal, “healthy” cells, we devote the present mathematical modeling work to do so. First, we prove the
invariance of the region where all state variables remain positive (i.e., the number of cancer cells, normal
cells and immune cells, and also the amount of chemotherapy). Afterward, we analyze the model in terms
of the linear stability of the system and establish a necessary and sufficient condition for the local stability
of the cure equilibrium point. Moreover, we simulate some scenarios involving both the immune system
and chemotherapy, showing that a reasonable treatment strategy occurs when these are combined suitably.

Keywords: cancer, immune system, chemotherapy, mathematical modeling, ordinary differential
equations.

1 INTRODUCTION

In the near future, cancer has the potential to become the leading cause of premature death, over-
shadowing cardiovascular diseases [15]. Classical treatments for cancer include chemotherapy,
radiotherapy, and surgery. More recently, immunotherapy has been also an alternative to fight
against cancer growth. Although there is a consistent understanding of the immunological re-
sponses to various pathogens, many aspects of the tumor-immune interaction remain unknown
not only from the biological point of view but also quantitatively.
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344 A MATHEMATICAL MODEL ON THE IMMUNE SYSTEM ROLE

Mathematical models of tumor growth under the influence of the immune system have been
addressed in several papers by de Pillis and collaborators (e.g., [4, 5]). In the latter, the authors
make use of estimated parameters through experimental data to propose different ways of tumor-
immune interaction and tumor dynamics models, which are further validated. With respect to
tumor-immune interaction with chemotherapy, the search for better strategies of treatment is also
addressed by de Pillis et al. in [2,3], where the authors report tests with different optimal control
strategies for chemotherapy.

In the present paper, based on [2, 6, 8] we propose a mathematical model that involves the influ-
ence of the immune system and chemotherapy on tumor cells, but also the normal cells and the
unavoidable effect of chemotherapy on these. First, we show that the region of practical interest
is invariant (once state variables are set positive they remain positive). Afterward, we analyze
the model in terms of the linear stability of the system and establish a necessary and sufficient
condition for the local stability of the cure equilibrium point. We also address some scenarios in-
volving both the immune system and chemotherapy, showing that a reasonable treatment strategy
occurs when these are combined suitably.

2 MODEL

Based on [6], [2] and [11], let us consider N1 the number of tumor cells, N2 the number of normal
cells, I the number of cells of the immune system, and Q the amount of chemotherapeutic drug.
Our proposed model is given by:

dN1

dt
= r1N1

(
1− N1

k1
− α12 N2

k1

)
− c1 I N1−

µ N1 Q
a+Q

dN2

dt
= r2−α21N2 N1−

ν N2 Q
b+Q

dI
dt

= s − mI +
ρ N1 I
γ +N1

− c2 N1 I− δ I Q
c+Q

dQ
dt

= q(t)−λ Q

(2.1)

Although there are different mathematical models that are used to describe tumor growth, we
consider the logistic model (see [14]), where r1 is the intrinsic growth rate, with the tumor cells
carrying capacity given by k1. The coefficients of competition between the populations N1 and
N2 are given by αi j, which measure the effects of population j on the population i (i, j = 1,2).
The parameter r2 represents the total constant reproduction of normal cells (see [6]).

The dynamics in the immune cell population is activated by the tumor population at a rate
ρ , γ being the half-saturation constant of the Michaelis-Menten functional response given by
ρIN1/(γ +N1) (see [2]), and also there is a natural death rate of immune cells given by m. As
we know that some immune cells can directly eliminate tumor cells (see [2]), two more terms
are in order, −c1IN1 and −c2IN1, the latter representing the inactivation of immune cells acting

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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on tumor cells and the former is due to the death of tumor cells due to the action of the immune
system. The term s describes a natural source of immune cells (see [8]).

In order to model the amount of chemotherapy injected in the system, the function q = q(t)
models the infusion of the drug into the system and λ is the drug washout rate. As in [12], the
response of each cell population to the chemotherapy is considered to be of a Michaelis-Menten
form, with half-saturation parameters a, b and c; µ is the treatment rate of the tumor cells; ν is
the mortality rate of normal cells due to treatment; and δ represents the mortality rate of immune
cells due to the chemotherapeutic drug (see also [13]).

Throughout the paper, the drug administration q(t) takes two different forms:

1. Continuous administration

q(t) = q > 0, and the drug infusion is at a constant rate.

2. Administration in cycles

Following [9], q(t) is a periodic function defined as

q(t) =


qp > 0, n < t ≤ n+ τ

0, n+ τ < t ≤ n+T

where T is the time between drug infusions, n= 0,T,2T,3T, · · · ,mT represents the instants
of administration, and τ is the time taken for infusion.

3 RESULTS

We analyze the stability of the system firstly considering that there is no chemotherapy and then
we address the chemotherapeutic case.

3.1 Stability analysis without chemotherapy

As the model represents the time evolution of non-negative state variables, it is desirable that
these variables remain with this property. But even for a positive initial condition, there is no
apparent reason for the solutions not to converge to an equilibrium with one or more negative
coordinates. However, from this point on we will prove that this cannot occur given the dynamics
on the planes N1, N2 and I.

• On the plane N2 = 0 the model is given by:



dN1

dt
= r1N1

(
1− N1

k1

)
− c1 I N1

dN2

dt
= r2

dI
dt

= s − mI +
ρ N1 I
γ +N1

− c2 N1 I

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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346 A MATHEMATICAL MODEL ON THE IMMUNE SYSTEM ROLE

As dN2/dt = r2 > 0 the normal cell population is strictly increasing, that is, the trajectories will
follow the direction from N2 < 0 to N2 > 0. Then, if the initial condition comprises N2(0) ≥ 0,
then the values of N2(t), with t > 0, will always be positive (see Figure 1).

• On the plane I = 0 the system is written as:

dN1

dt
= r1N1

(
1− N1

k1
− α12 N2

k1

)
dN2

dt
= r2−α21N2 N1

dI
dt

= s

As dI/dt = s > 0 the immune cells increase, that is, any trajectory will follow the direction from
I < 0 to I > 0 (see Figure 2).

Figure 1: Vector field on the plane N2 = 0.

Figure 2: Vector field on the plane I = 0.

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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•When N1 = 0 one gets the following system:

dN1

dt
= 0

dN2

dt
= r2

dI
dt

= s − mI = f (I)

(3.1)

Note that this plane is an invariant subspace, since dN1/dt = 0. As a consequence, given an initial
condition in which N1(0) = 0, the cancer population will always be zero. Moreover, solving the
equations on this plane with initial condition (0,N20, I0) one gets:

N1(t) = 0

N2(t) = r2t +N20

I(t) = I0e−mt +
s
m
(1− e−mt)

Considering the immune cells variation given by the third equation in (3.1), one sees that the
straight line H(t) = (N1(t),N2(t), I(t)) = (0,r2t +N2(0),s/m) is an invariant set inside the plane
N1 = 0. Moreover, since ∂ f/∂ I = −m < 0, where f (I) = s−mI, we conclude that H(t) is an
attractor, which means that for a large value of t > 0 the population I converges to s/m and the
population N2 goes to infinity (see Figure 3). These subspaces are very illustrative because they
are related to the elimination of cancer cells.

Figure 3: Phase portrait on the plane N1 = 0, with
parameters listed in Table 1.

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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348 A MATHEMATICAL MODEL ON THE IMMUNE SYSTEM ROLE

Table 1: List of parameters for numerical solutions of the model (2.1).

Parameters Values Unity
r1 10−2 day-1

k1 1012 cells
α12 9×10−5 -
c1 5×10−11 cells-1 day-1

µ 8 day-1

a 2×103 mg
r2 107 cells day-1

α21 9×10−16 cells day-1

ν 8 day-1

b 5×106 mg
s 3×105 cells day-1

m 10−3 day-1

ρ 10−12 day-1

γ 102 cells
c2 10−13 cells-1 day-1

δ 104 day-1

c 5×106 mg
λ 4.16 day-1

3.2 Stability analysis with chemotherapy

Now we add chemotherapy in our analysis, in order to study the full model (2.1). We have the
same behavior in the subspaces N2 = 0 and I = 0, as the situation without chemotherapy. Let
N1 = 0 and q(t) = q (constant) results in the following system:

dN1

dt
= 0

dN2

dt
= r2−

ν N2 Q
b+Q

dI
dt

= s − mI − δ I Q
c+Q

dQ
dt

= q−λ Q = h(Q)

The subspace is still invariant, since to the initial condition (N1,N2, I,Q) = (0,N20, I0,Q0) one
gets

Q(t) = Q0 e−λ t +
q
λ

(
1− e−λ t

)
Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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Since N1 = 0 is the solution to the cancer cells population, then we write g(t) and f (t) as the
solutions to the normal and immune cells populations, respectively. Let us consider the solution
of the system of equations given by Y (t) = (N1(t),N2(t), I(t),Q(t)) and W , the subspace where
N1 = 0. For an initial condition P = (0,N2(0), I(0),Q(0)) ∈W , the solution is given by

Y (t) =
(

0,g(t), f (t),Q(0)e−λ t +
q
λ
(1− e−λ t)

)
∈W

Then, if the solution is in this subspace, it will remain there, resulting that W is invariant.
Consequently, we can discard N1 < 0.

The equilibrium point of the chemotherapeutic equation is given by Q(t) = q/λ and it is stable,
since ∂h/∂Q =−λ , where h(Q) = q−λQ. We have another invariant subspace W3 ⊂W , given
by N1 = 0 and Q = q/λ . It is invariant because to P = (0,N2(0), I(0),q/λ ) ∈W3, the solution
given by Y (t) = (0,g(t), f (t),q/λ ) ∈W3. When q = 0 and Q(0) = 0, we conclude that W3 has
a similar behavior as the invariant plane without chemotherapy, where the solutions are getting
closer to the invariant line I = s/m and N2 → ∞. As q increases, q > 0, there is an equilibrium
point on the invariant line with coordinates

Pinf = (N2, I,Q) =

(
(bλ +q)r2

qν
,

s(q+ cλ )

mq+qδ + cmλ
,

q
λ

)
on the subspace with N1 = 0. As N1 does not change on the invariant subspace W in 3D, we
analyze the stability on this subspace. The Jacobian matrix is:

J1 =



− νQ
b+Q

0
νN2Q

(b+Q)2 −
νN2

b+Q

0 −m− δQ
c+Q

δ IQ
(c+Q)2 −

δ I
c+Q

0 0 λ


Evaluating the Jacobian matrix on Pinf it follows:

J1(Pinf) =



− νq
bλ +q

0 − br2λ 2

q2 +bqλ

0 −m− δq
cλ +q

− csδλ 2

(q+ cλ )(q(m+δ )+ cmλ )

0 0 λ


(3.2)

The eigenvalues of (3.2) are given by

ξ1 =−λ < 0,

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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ξ2 =−
(

qν

bλ +q

)
< 0,

and

ξ3 =−
(

mcλ +mq+qδ

cλ +q

)
< 0,

implying that the equilibrium point is stable on this subspace. This point, Pinf, occurs due to the
killing of normal cells by the chemotherapeutic drug.

Now we study the cancer model in the full domain. The system (2.1) has five equilibrium points
for q > 0; four of them have the following structure

P∗ =
(

N∗1 ,N
∗
2 , I
∗,

q
λ

)
and the other is

Pinf =

(
0,

r2(q+bλ )

qν
,

qs+ csλ

mq+qδ + cmλ
,

q
λ

)
The point Pinf represents the extinction of cancer cells, and it was analyzed in the subspace W ,
with Q = q/λ > 0. The Jacobian matrix is

J2 =



Ā −α12 N1r1

k1
−c1N1

µN1Q
(a+Q)2 −

µN1

a+Q

−α21N2 −α21N1−
νQ

b+Q
0

νN2Q
(b+Q)2 −

νN2

b+Q

B̄ 0 C̄
δ IQ

(c+Q)2 −
δ I

c+Q

0 0 0 λ


where

Ā =−c1I− N1r1

k1
+ r1

(
1− N1

k1
− α12 N2

k1

)
− µQ

a+Q
,

B̄ =−c2I− IN1ρ

(N1 + γ)2 +
Iρ

(N1 + γ)
,

and

C̄ =−m− c2N1−
δQ

c+Q
+

N1ρ

(N1 + γ)

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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Consequently, J2(Pinf) takes the form:

J2(Pinf) =



D̄ 0 0 0

−α21r2(q+bλ )

qν
− νq

b+bλ
0 − br2λ 2

q2 +bqλ

− s(q+ cλ )(c2γ−ρ)

γ(qδ +m)(q+ cλ )
0 −mq+qδ + cmλ

q+ cλ
Ē

0 0 0 λ


where

D̄ =− c1s(q+ cλ )

qδ +m(q+ cλ )
− qµ

q+aλ
+ r1−

r1α12r2(q+bλ )

k1qν

and

Ē =− csδλ 2

(q+ cλ )(qδ +m(q+ cλ ))

The eigenvalues of this matrix are
χ1 =−λ ,

χ2 =−
(

qν

q+bλ

)
,

χ3 =−
(

mq+qδ + cmλ

q+ cλ

)
,

and

χ4 = r1−
c1s(cλ +q)

mcλ +mq+δq
− µq

aλ +q
− αr2(b+q)

νq

The first three eigenvalues are negative since the parameters are positive. The fourth one will be
negative under the following condition:

r1 <
c1s(cλ +q)

mcλ +mq+δq
+

µq
aλ +q

+
αr2(b+q)

νq

3.3 Numerical simulations: chemotherapy in cycles

To set the chemotherapeutic schedule, we define the function q based on a drug regimen al-
ready used in practice. In the specific case of chronic lymphocytic leukemia (CLL), one pos-
sible choice is a drug combination with pentostatin, cyclophosphamide and rituximab, usually
known as PCR protocol [7]. In our numerical simulations, however, we only consider the use of
cyclophosphamide [1].

The chemotherapeutic regimen consists of a 21-day, 5- or 6-cycle schedule of 600 mg of cy-
clophosphamide per m2 of body surface per infusion. For a hypothetical human patient of height
1.70m and weight 65 kg, resulting in a body surface of 1.75m2 [10], the dose per infusion is

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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600× 1.75 = 1050 mg. We consider a drug infusion time of 3 hours or 1/8 day, resulting in
qp = 600 × 1.75/(1/8) = 8400 mg/day. The other parameters are listed in Table 1.

Then

q(t) =


8400,n≤ t < n+1/8

0,n+1/8≤ t < n+21

with n = 0,21,42,63,84 for 5 infusions or n = 0,21,42,63,84,105 for 6 infusions.

We have simulated two situations, shown in Figure 4, one with s = 3× 105 and another with
s = 7× 105. We observe how important is the value of s (how efficient the immune system is),
resulting in the cure or disease relapse.

I, s = 7× 105
N2, s = 7× 105
N1, s = 7× 105
I, s = 3× 105
N2, s = 3× 105
N1, s = 3× 105

t

25002000150010005000

1012

1010

1008

1006

1004

1002

1000

Zoom

140120100806040200

1011

1010

1009

1008

1007

1006

Figure 4: Tumoral dynamics with s= 3×105 and s= 7×105. Initial condition: N1(0) = 2×1010,
N2(0) = 1012, I(0) = 107 and Q = 0.

In Figure 5 we have taken s = 4×105 and the number of infusions 5 or 6. We observe that one
more infusion results in a change of the equilibrium point attained, from the failure of treatment
(5 infusions) to cure (6 infusions).

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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I, ninf = 6
N2, ninf = 6
N1, ninf = 6
I, ninf = 5
N2, ninf = 5
N1, ninf = 5

t

500040003000200010000

1012

1010
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1006

1004

1002

1000

Zoom

140120100806040200

1011

1010

1009

1008

1007

1006

Figure 5: Tumoral dynamics with s = 4× 105 and 5 or 6 infusions. Initial condition: N1(0) =
2×1010, N2(0) = 1012, I(0) = 107 and Q(0) = 0.

I
N2

N1

t

300025002000150010005000

1012

1010

1008

1006

1004

1002

1000

Zoom

140120100806040200

1012

1010

1008

1006

1004

1002

1000

Figure 6: Cells population dynamics with s = 4× 105, δ = 106 and ν = 103. Initial condition:
N1(0) = 2×1010, N2(0) = 1012, I(0) = 107 and Q(0) = 0.

Figure 6 illustrates the cytotoxic effects of the chemotherapeutic drug on the cells population.
We have set new values for the parameters δ and ν : δ = 106 and ν = 103. We note that the cure
is not anymore possible and the number of normal cells decreases. The action of the immune
system is limited by chemotherapy.

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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We have increased the value of ρ , which is the rate of production of immune cells stimulated by
the cancer cells. Keeping s = 4×105 and with 5 or 6 infusions, the number of cancer cells does
not go to zero as it can be seen in Figure 7. In this situation, the cancer growth is postponed, but
not avoided (see Figure 8).

I, ninf = 6
N2, ninf = 6
N1, ninf = 6
I, ninf = 5
N2, ninf = 5
N1, ninf = 5

t

500040003000200010000

1012

1010

1008

1006

1004

1002

1000

Zoom

140120100806040200

1011

1010

1009

1008

1007

1006

Figure 7: Tumor and immune cells dynamics with ρ = 4× 104 and 5 or 6 infusions. Initial
condition: N1(0) = 2×1010, N2(0) = 1012, I(0) = 107 and Q(0) = 0.

ρ = 8× 10−04
ρ = 4× 10−04
ρ = 1× 10−12

t

300025002000150010005000

1012

1010

1008

1006

1004

1002

1000

Zoom

140120100806040200

1011

1010

1009

1008

Figure 8: Tumor dynamics to three different values of ρ . Initial condition: N1(0) = 2× 1010,
N2(0) = 1012, I(0) = 107 and Q(0) = 0.

Tend. Mat. Apl. Comput., 20, N. 2 (2019)
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To show the importance of the immune system, we have fixed ρ as ρ = 4× 104 and chosen
s = 4× 105, with 5 infusions of the drug. The cancer cells go to zero, even with 5 infusions of
the chemotherapeutic drug, as seen in Figure 9. This is a crucial situation since we are achieving
the cure administrating a lesser amount of chemotherapy.

I
N2

N1

t
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Figure 9: Cells population dynamics with ρ = 4×104 and s = 4×105. Initial condition: N1(0) =
2×1010, N2(0) = 1012, I(0) = 107 and Q(0) = 0.

4 CONCLUSIONS

We developed an ODE mathematical model for tumor growth under the action of the immune
system and chemotherapy. We established the positivity of the dependent variables of the model.
As a result, we presented the stability analysis of the referred system, revealing the condition
that must hold for the cure equilibrium to be attained. From the numerical simulations, we have
shown both immune system and chemotherapy are important to the decreasing of tumor popu-
lation, but a very strong immune system combined with chemotherapy is much more crucial to
reducing the number of tumor cells to a low level. According to our results, it is also crucial to
allow the immune system to recover from the chemotherapy before considering more eventual
applications of oncological therapies. As a final remark, as it is shown in Figures 8 and 9, let us
note that the success of chemotherapy critically depends on the intensity in which the tumor cells
stimulate the immune cell production. In the near future, this could be explored in detail in some
immunotherapeutic strategy.
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RESUMO. A incidência de doenças neoplásicas mostra que a busca por tratamentos
mais eficazes contra o câncer ainda é necessária. Além dos tratamentos padrão, como
quimioterapia e radioterapia, novas modalidades de tratamento têm sido focadas nos re-
centes avanços na imunologia. Como pouco tem sido discutido sobre as implicações
biológicas da quimioterapia em relação ao seu impacto tanto no sistema imunológico como
em outras células normais e “saudáveis”, dedicamos o presente trabalho de modelagem
matemática a fazê-lo. Primeiro, provamos a invariância da região na qual todas as variáveis
de estado permanecem positivas (ou seja, o número de células cancerosas, células normais e
células imunes, e também a quantidade de quimioterapia). Em seguida, analisamos o mod-
elo em termos de estabilidade linear do sistema e estabelecemos uma condição necessária
e suficiente para a estabilidade local do ponto de equilı́brio de cura. Além disso, simu-
lamos alguns cenários envolvendo tanto o sistema imunológico quanto a quimioterapia,
mostrando que uma estratégia de tratamento razoável ocorre quando estes são combinados
adequadamente.

Palavras-chave: câncer, sistema imune, quimioterapia, modelagem matemática, equações
diferenciais ordinárias.
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