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ABSTRACT. We investigate the density of convex cones of continuous positive functions in weighted

spaces and present some applications.
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1 INTRODUCTION AND PRELIMINARIES

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact

Hausdorff space. We shall denote by C(X ;R) the space of all continuous real-valued functions
on X and by Cb(X ;R) the space of continuous and bounded real-valued functions on X . The
vector subspace of all functions in C(X ;R) with compact support is denoted by Cc(X ;R).
An upper semicontinuous real-valued function f on X is said to vanish at infinity if, for every
ε > 0, the closed subset {x ∈ X : | f (x)| ≥ ε} is compact.

In what follows, we shall present the concept of weighted spaces as developed by Nachbin in [4].
We introduce a set V of non-negative upper semicontinuous functions on X , whose elements are

called weights. We assume that V is directed, in the sense that, given v1, v2 ∈ V , there exist
λ > 0 and v ∈ V such that v1 ≤ λv and v2 ≤ λv.

Let V be a directed set of weights. The vector subspace of C(X ;R) of all functions f such that
v f vanishes at infinity for each v ∈ V will be denoted by CV∞(X ;R).
When CV∞(X ;R) is equipped with the locally convex topologyωV generated by the seminorms

pv : CV∞(X ;R) → R+

f �→ sup {v(x)| f (x)| : x ∈ X }
for each v ∈ V , we call CV∞(X ;R) a weighted space.

We assume that for each x ∈ X , there is v ∈ V such that v(x) > 0.

In the following we present some examples of weighted spaces.
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188 WEIGHTED APPROXIMATION OF CONTINUOUS POSITIVE FUNCTIONS

(a) If V consists of the constant function 1, defined by 1(x) = 1 for all x ∈ X , then

CV∞(X ;R) is C0(X ;R), the vector subspace of all functions in C(X ;R) that vanish at
infinity. In particular, if X is compact then CV∞(X ;R) = C(X ;R). The corresponding
weighted topology is the topology of uniform convergence on X .

(b) Let V be the set of characteristic functions of all compact subsets of X . Then the weighted
space CV∞(X ;R) is C(X ;R) endowed with the compact-open topology.

(c) If V consists of characteristic functions of all finite subsets of X , then CV∞(X ;R) is
C(X ;R) endowed with the topology of pointwise convergence.

(d) If V = {v ∈ C0(X ;R) : v ≥ 0}, then CV∞(X ;R) is the vector space Cb(X ;R). The
corresponding weighted topology is the strict topology β (see Buck [1]).

For more information on weighted spaces we refer the reader to [4, 5].

We set CV +∞(X ;R) = { f ∈ CV∞(X ;R) : f ≥ 0}.
A subset W ⊂ CV +∞(X ;R) is a convex cone if λW ⊂ W , for each λ ≥ 0 and W + W ⊂ W .

We denote by CV +∞(X ;R)⊗ CV +∞(Y ;R) the subset of CV +∞(X × Y ;R) consisting of all

functions of the form
n∑

i=1

gi(x)hi (y), x ∈ X, y ∈ Y

where gi ∈ CV +∞(X ;R), hi ∈ CV +∞(Y ;R), i = 1, . . . , n, n ∈N .

Let W ⊂ CV +∞(X ;R) be a nonempty subset. A function φ ∈ C(X ;R), 0 ≤ φ ≤ 1, is called a
multiplier of W if φ f + (1 − φ)g ∈ W for every pair f and g of elements of W . The set of all

multipliers of W is denoted by M(W ). The notion of a multiplier of W is due to Feyel and De
La Pradelle [3] and Chao-Lin [2].

For any x ∈ X, [x]M(W ) denotes the equivalence class of x , when one defines the following
equivalence relation on X : x ≡ t (mod M(W )) if, and only if, φ(x) = φ(t) for all φ ∈ M(W ).

A subset A ⊂ C(X ;R) separates the points of X if, given any two distinct points s and t of X ,
there is a function φ ∈ A such that φ(s) 
= φ(t).

Weierstrass’ first theorem states that any real-valued continuous function f defined on the closed
interval [0,1] is the limite of a uniformly convergent sequence of algebraic polynomials. One of

the most elementary proofs of this classic result is that which uses the Bernstein polynomials
of f

(Bn f, x) :=
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1 − x)n−k , x ∈ [0, 1]

for each natural number n. Bernstein’s theorem states that Bn( f ) → f uniformly on [0,1] and,

since each Bn( f ) is a polynomial, we have as a consequence the Weierstrass approximation
theorem. The operator Bn defined on the space C([0, 1]) with values in the vector subspace of

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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all polynomials of degree at most n has the property that Bn( f ) ≥ 0 whenever f ≥ 0. Thus

Bernstein’s theorem also establishes the fact that each positive continuous real-valued function
on [0, 1] is the limit of a uniformly convergent sequence of positive polynomials.

Consider a compact Hausdorff space X and the convex cone

C+(X ;R) = { f ∈ C(X ;R) : f ≥ 0} .
A generalized Bernstein’s theorem would be a theorem stating when a convex cone contained in

C+(X ;R) is dense in it.

Prolla [6] proved the following result of uniform density of convex cones in C+(X ;R).

Theorem 1.1. Let X be a compact Hausdorff space. Let W ⊂ C+(X ;R) be a convex cone
satisfying the following conditions:

(a) given any two distinct points x and y in X, there is a multiplier φ of W such that
φ(x) 
= φ(y);

(b) given any x ∈ X, there is g ∈ W such that g(x) > 0.

Then W is uniformly dense in C+(X ;R).
The purpose of this note is to present an extension of this result to weighted spaces and give some
applications. The main tool is a Stone-Weierstrass-type theorem for subsets of weighted spaces.

2 THE RESULTS

We need the following lemma, whose proof can be found in [7].

Lemma 2.1. Let W be a nonempty subset of CV∞(X ;R). Given any f ∈ CV∞(X ;R), v ∈ V

and ε > 0, the following statements are equivalent:

1. there exists h ∈ W such that v(x)‖ f (x)− h(x)‖ < ε for all x ∈ X;

2. for each x ∈ X, there exists gx ∈ W such that v(t)‖ f (t)− gx (t)‖ < ε for all t ∈ [x]M(W ).

Now we state the main result.

Theorem 2.1. Let W ⊂ CV +∞(X ;R) be a convex cone satisfying the following conditions:

(a) given any two distinct points x and y in X, there exists a multiplier φ of W such that

φ(x) 
= φ(y);

(b) given any x ∈ X, there exists g ∈ W such that g(x) > 0.

Then W is ωV -dense in CV +∞(X ;R).
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Proof. Let x be an arbitrary element of X . Condition (a) implies that [x]M(W ) = {x}. By

condition (b), there exists g ∈ W such that g(x) > 0. Then, for any f ∈ CV +∞(X ;R), v ∈ V
and ε > 0, we have

v(x)

∥∥∥∥ f (x)− f (x)

g(x)
g(x)

∥∥∥∥ = 0 < ε.

Since W is a convex cone, f (x)
g(x) g ∈ W . Then, it follows from Lemma 2.1 that there exists h ∈ W

such that v(t)‖ f (t)− h(t)‖ < ε for all t ∈ X . �

Corollary 2.1. Let X and Y be locally compact Hausdorff spaces. Then

CV +∞(X ;R)
⊗

CV +∞(Y ;R)
is dense in CV +∞(X × Y ;R).

Proof. It follows from Urysohn’s Lemma [8] that for any two distinct elements (s, t) and (u, v)
of X × Y , there exist functions h1 ∈ Cc(X ;R) and h2 ∈ Cc(Y ;R), 0 ≤ h1, h2 ≤ 1, such

that ϕ(x, y) := h1(x)h2(y) is a multiplier of CV +∞(X ;R)⊗ CV +∞(Y ;R) and ϕ(s, t) = 1 and
ϕ(u, v) = 0. Hence, condition (a) of Theorem 2.1 is satisfied.

By using Urysohn’s Lemma again, given (x, y) ∈ X × Y , there exist φ ∈ Cc(X ;R) and
ψ ∈ Cc(Y ;R) such that φ(x) = 1 and ψ(y) = 1 so that φ(x)ψ(y) > 0,

φψ ∈ CV +∞(X ;R)
⊗

CV +∞(Y ;R).
Then, condition (b) of Theorem 2.1 is satisfied. Hence, the assertion follows by Theorem 2.1. �

Example 2.1. Consider CV +∞(R;R), where V is the set of characteristic functions of all com-
pact subsets of R. Let ψ ∈ C(R;R), 0 ≤ ψ ≤ 1, be a one-to-one function. Let W be the set of
all functions g of the form

g(x) =
∑

i+ j≤n

bi jψ(x)
i (1 −ψ(x)) j , x ∈ R

where each bi j is a non-negative real number and i, j, n are non-negative integers numbers. Note
that W ⊂ CV +∞(R;R) is a convex cone.

Since ψ ∈ M(W ) and W contains positive constant functions, it follows from Theorem 2.1 that
W is dense in CV +∞(R;R).

Example 2.2. Let a be a fixed positive real number. Let W be the set of all functions of the form

f (x)e−ax , x ∈ [0,∞), f ∈ C+
b ([0,∞);R).

Clearly, W is a convex cone contained in C+
0 ([0,∞);R). The function e−ax , x ∈ [0,∞),

belongs to W and is a multiplier of W that separates the points of X . Hence, by Theorem 2.1 W
is dense in C+

0 ([0,∞);R).
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RESUMO. Investigamos a densidade de cones convexos de funções contı́nuas positivas em

espaços ponderados e apresentamos algumas aplicações.

Palavras-chave: cone convexo, espaço ponderado, Teorema de Bernstein.
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