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ABSTRACT. We investigate the density of convex cones of continuous positive functions in weighted

spaces and present some applications.
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1 INTRODUCTION AND PRELIMINARIES

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact
Hausdorff space. We shall denote by C(X; R) the space of all continuous real-valued functions
on X and by C,(X; R) the space of continuous and bounded real-valued functions on X. The
vector subspace of all functions in C(X; R) with compact support is denoted by C.(X; R).

An upper semicontinuous real-valued function f on X is said to vanish at infinity if, for every
& > 0, the closed subset {x € X : | f(x)| > ¢} is compact.

In what follows, we shall present the concept of weighted spaces as developed by Nachbin in [4].
We introduce a set V of non-negative upper semicontinuous functions on X, whose elements are
called weights. We assume that V is directed, in the sense that, given vy, vo € V, there exist
A > 0and v € V such that vy < Avand vy < Av.

Let V be a directed set of weights. The vector subspace of C(X; R) of all functions f such that
vf vanishes at infinity for each v € V will be denoted by CV (X; R).

When CV (X; R) is equipped with the locally convex topology wy generated by the seminorms
pv:CVoo(X;R) — RT
[ sup {v(x)| f(x)] 1 x € X}
for each v € V, we call CVy(X; R) aweighted space.
We assume that for each x € X, there is v € V such that v(x) > 0.

In the following we present some examples of weighted spaces.
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(a) If V consists of the constant function 1, defined by 1(x) = 1 for all x € X, then
CVso(X; R) is Co(X; R), the vector subspace of all functions in C(X; R) that vanish at
infinity. In particular, if X is compact then CV (X; R) = C(X; R). The corresponding
weighted topology is the topology of uniform convergence on X.

(b) Let V be the set of characteristic functions of all compact subsets of X. Then the weighted
space CVxo (X; R) is C(X; R) endowed with the compact-open topology.

(c) If V consists of characteristic functions of all finite subsets of X, then CV,,(X; R) is
C(X; R) endowed with the topology of pointwise convergence.

(d IfV ={v e Co(X;R) : v =0}, then CV(X; R) is the vector space Cp(X; R). The
corresponding weighted topology is the strict topology B (see Buck [1]).

For more information on weighted spaces we refer the reader to [4, 5].

We set CVE(X; R) ={f € CV(X; R) : f >0}

A subset W C CV;(X; R) is a convex cone if \W C W,foreachA >0and W + W C W.
We denote by CVE(X; R)Q CVE(Y; R) the subset of CVI(X x Y; R) consisting of all

functions of the form
n
> gi@hi (), xeX, yeY
i=1
where g; € CVI(X;R), hy e CVE(Y;R),i=1,...,n,n € N.
Let W C CVOJg(X; R) be a nonempty subset. A function¢ € C(X;R),0 < ¢ < 1,iscalled a
multiplier of W if ¢f + (1 — ¢)g € W for every pair f and g of elements of W. The set of all

multipliers of W is denoted by M (W). The notion of a multiplier of W is due to Feyel and De
La Pradelle [3] and Chao-Lin [2].

For any x € X, [x]pm(w) denotes the equivalence class of x, when one defines the following
equivalence relation on X: x = ¢t (mod M (W)) if, and only if, ¢ (x) = ¢ (¢) for all p € M(W).

A subset A C C(X; R) separates the points of X if, given any two distinct points s and 7 of X,
there is a function ¢ € A such that ¢ (s) # ¢ (7).

Weierstrass’ first theorem states that any real-valued continuous function f defined on the closed
interval [0,1] is the limite of a uniformly convergent sequence of algebraic polynomials. One of
the most elementary proofs of this classic result is that which uses the Bernstein polynomials

of f
~ /n k
(B f. x) :=Z( )f(—)x"(l — )"k, x €0,1]
k n
k=0
for each natural number n. Bernstein’s theorem states that B, (f) — f uniformly on [0,1] and,
since each B, (f) is a polynomial, we have as a consequence the Weierstrass approximation
theorem. The operator B, defined on the space C([0, 1]) with values in the vector subspace of
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all polynomials of degree at most n has the property that B,(f) > 0 whenever f > 0. Thus
Bernstein’s theorem also establishes the fact that each positive continuous real-valued function
on [0, 1] is the limit of a uniformly convergent sequence of positive polynomials.

Consider a compact Hausdorff space X and the convex cone
CTX;R) ={feCX;R): f=0}.

A generalized Bernstein’s theorem would be a theorem stating when a convex cone contained in
Ct(X; R) is dense in it.

Prolla [6] proved the following result of uniform density of convex cones in C*(X; R).

Theorem 1.1. Let X be a compact Hausdorff space. Let W C Ct(X; R) be a convex cone
satisfying the following conditions:

(a) given any two distinct points x and y in X, there is a multiplier ¢ of W such that

¢ (x) # d(y);

(b) given any x € X, there is g € W such that g(x) > 0.

Then W is uniformly dense in CT(X; R).

The purpose of this note is to present an extension of this result to weighted spaces and give some
applications. The main tool is a Stone-Weierstrass-type theorem for subsets of weighted spaces.

2 THE RESULTS
We need the following lemma, whose proof can be found in [7].

Lemma 2.1. Let W be a nonempty subset of CVo(X; R). Given any f € CVyo(X;R), v €V

and ¢ > 0, the following statements are equivalent:

1. there exists h € W such that v(x)|| f(x) — h(x)|| < eforallx € X;

2. foreach x € X, there exists g € W such that v(t)|| f(t) —gx ()|l < e forallt € [xIpw).
Now we state the main result.

Theorem 2.1. Let W C CV}(X; R) be a convex cone satisfying the following conditions:

(a) given any two distinct points x and y in X, there exists a multiplier ¢ of W such that

¢ (x) # ()

(b) given any x € X, there exists g € W such that g(x) > 0.
Then W is wy -dense in CVO'g (X; R).
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Proof. Let x be an arbitrary element of X. Condition (a) implies that [x]sp(w) = {x}. By
condition (b), there exists g € W such that g(x) > 0. Then, for any f € CV;(X; R),veV
and ¢ > 0, we have

J(x)
v(x) ‘f(x) ———g(x)| =0<e.
g(x)
Since W is a convex cone, ~£ ((j)) g € W. Then, it follows from Lemma 2.1 that there exists h € W

such that v(#)|| f(#) — h(¢)|| < e forall t € X. Il

Corollary 2.1. Let X and Y be locally compact Hausdor{f spaces. Then
CVEX: R Q) CVE (Y R)

is dense in CVO'g(X x Y; R).

Proof. It follows from Urysohn’s Lemma [8] that for any two distinct elements (s, ¢) and (u, v)
of X x Y, there exist functions 71 € C.(X;R) and hp € C.(Y;R), 0 < hy,hy < 1, such
that ¢(x, y) := h1(x)h2(y) is a multiplier of CVOJg(X; R CVOJg(Y; R) and ¢(s,t) = 1 and
¢(u, v) = 0. Hence, condition (a) of Theorem 2.1 is satisfied.

By using Urysohn’s Lemma again, given (x,y) € X x Y, there exist ¢ € C.(X;R) and
Y € Ce(Y; R) such that ¢ (x) = 1 and ¥ (y) = 1 so that ¢ (x)y(y) > O,

Py € CVEX: R) Q) CVE(Y: R).

Then, condition (b) of Theorem 2.1 is satisfied. Hence, the assertion follows by Theorem 2.1. [

Example 2.1. Consider C Vng (R; R), where V is the set of characteristic functions of all com-
pact subsets of R. Let ¢ € C(R; R), 0 < < 1, be a one-to-one function. Let W be the set of
all functions g of the form

g = Y by (1 —y), xeR
i+j<n
where each b;; is a non-negative real number and i, j, n are non-negative integers numbers. Note
that W C CV; (R; R) is a convex cone.

Since v € M(W) and W contains positive constant functions, it follows from Theorem 2.1 that
W is dense in CVE(R; R).

Example 2.2. Let a be a fixed positive real number. Let W be the set of all functions of the form
f)e ™, x €[0,00), f € C)([0,00); R).

Clearly, W is a convex cone contained in C;' ([0, 00); R). The function e~**, x € [0, c0),
belongs to W and is a multiplier of W that separates the points of X. Hence, by Theorem 2.1 W
is dense in C ([0, 00); R).
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RESUMO. Investigamos a densidade de cones convexos de fungdes continuas positivas em

espagos ponderados e apresentamos algumas aplicacdes.

Palavras-chave: cone convexo, espaco ponderado, Teorema de Bernstein.
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