Acessibilidade / Reportar erro

Selective consumption of rodents by the Variable hawk Geranoaetus polyosoma (Accipitriformes: Accipitridae) in the Atacama Desert, northern Chile

ABSTRACT

Geranoaetus polyosoma (Quoy & Gaimard, 1824) is a diurnal raptor widely distributed in South America. Although the trophic ecology of this bird has been more studied in the southern extreme of its range, little information is available on its dietary response to prey supply in desert environments. In the present study, we report on the trophic ecology of G. polyosoma in a sub-urban desert zone in northern Chile, with the following objectives: (1) to quantitatively describe its diet and (2) to determine its dietary selectivity in response to prey supply in the study area. The diet of G. polyosoma consisted mainly of rodents (97.2%). A greater preference (p < 0.05) was observed for the following large prey items (> 19.5 g): two native rodent species, Phyllotis xanthopygus (Waterhouse, 1837) and Eligmodontia puerulus (Philippi, 1896); and two introduced rodent species: Rattus rattus (Linnaeus, 1769) and R. norvegicus (Berkenhout, 1769).

KEY WORDS:
Diet; predation; Red-backed hawk; trophic ecology

INTRODUCTION

The diurnal raptor Variable hawk, Geranoaetus polyosoma (Quoy & Gaimard, 1824), is widely distributed in South America, from the central Andes of Colombia to Patagonia and Tierra del Fuego, including the Falkland Islands (Thiollay 1994Thiollay JM (1994) Family Accipitridae (Hawks and Eagles). In: del Hoyo J, Elliott A, Sargatal J (Eds) Handbook of the birds of the world. Lynx Edicions, Barcelona, 52-205., Ferguson-Lees and Christie 2001Ferguson-Lees J, Christie DA (2001) Raptors of the world. Christopher Helm, London, 320 pp.). The common subspecies in mainland Chile is Geranoaetus polyosoma polyosoma, present in many environments (e.g. arid and sub-humid zones, low-lying land, mountain shrubland, temperate forests, meadow shrubland and agroecosystems), from sea level to 4500 m in elevation; it also frequents sub-urban zones, entering through mountain chains (Pavez 2004Pavez E (2004) Descripción de las rapaces chilenas. In: Muñoz-Pedreros A, Rau J, Yáñez J (Eds) Aves Rapaces de Chile. CEA Ediciones, Valdivia , 29-106.).

In Chile and Argentina, the diet of the Variable hawk has been studied for only a few eco-regions (sensu Dinerstein et al. 1995Dinerstein E, Olson DM, Webster AL, Primm SA, Brookbinder MP, Ledec G (1995) A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean. The World Bank, Washington, DC, 129 pp.). Consequently, information on the trophic ecology of this raptor bird is scarce, especially in arid environments (Ponce et al. 2018Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
https://doi.org/10.1080/03014223.2017.13...
). The information available in the literature documents a diet based mainly on rodents, birds, reptiles, amphibians and invertebrates (Schlatter et al. 1980Schlatter R, Yáñez J, Jaksic F (1980) Food-niche relationships between Chilean Eagles and Red-backed Buzzard in Central Chile. Auk 97: 897-898. https://doi.org/10.1093/auk/97.4.897
https://doi.org/10.1093/auk/97.4.897...
, Jiménez 1995Jiménez JE (1995) Historia natural del aguilucho común Buteo polyosoma: una revisión. El Hornero 14: 1-8., Figueroa et al. 2003Figueroa RA, Corales SE, Alvarado S (2003) Diet of the Red-backed Hawk (Buteo polyosoma) in a forested area of the Chilean Patagonia and its relation to the abundance of rodent prey. El Hornero 18(1): 43-52., Baladrón et al. 2006Baladrón AV, Bó MS, Malizia AI (2006) Winter diet and time-activity budgets of the Red-backed Hawk (Buteo polyosoma) in the coastal grasslands of Buenos Aires province, Argentina. Journal of Raptor Research 40: 65-70. https://doi.org/10.3356/0892-1016(2006)40[65:WDATBO]2.0.CO;2, Travaini et al. 2012Travaini A, Santillán MA, Zapata SC (2012) Diet of the Red-backed Hawk (Buteo polyosoma) in two environmentally contrasting areas of Patagonia. Studies on Neotropical Fauna and Environment 47(1): 25-32. https://doi.org/10.1080/01650521.2011.649948
https://doi.org/10.1080/01650521.2011.64...
, Baladron 2014Baladrón AV, Cavalli M, Martínez G (2014) Dieta del aguilucho común (Geranoaetus polyosoma) en pastizales costeros y zonas periurbanas de la región pampeana. Nótulas Faunísticas 143 (2014): 1-5., Valladares et al. 2015Valladares P, Álvarez-Henríquez N, Urrutia N, Olivares F, Alvarado S (2015) Dieta del aguilucho común Geranoaetus polyosoma (Quoy & Gaimard 1824) en la Región de Atacama, Chile. Gayana 79(2): 121-127., Ponce et al. 2018Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
https://doi.org/10.1080/03014223.2017.13...
). Its dietary selectivity is subjected to geographical variations; for example, it is a generalist in Argentinean Patagonia (Monserrat et al. 2005Monserrat AL, Funes MC, Novaro AJ (2005) Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Revista Chilena de Historia Natural 78: 425-439. https://doi.org/10.4067/S0716-078X2005000300006
https://doi.org/10.4067/S0716-078X200500...
), and a specialist on the south-east coast of the Province of Buenos Aires (Baladrón et al. 2006Baladrón AV, Bó MS, Malizia AI (2006) Winter diet and time-activity budgets of the Red-backed Hawk (Buteo polyosoma) in the coastal grasslands of Buenos Aires province, Argentina. Journal of Raptor Research 40: 65-70. https://doi.org/10.3356/0892-1016(2006)40[65:WDATBO]2.0.CO;2). Its trophic ecology has been insufficiently studied in the central and northern part of its range (Travaini et al. 2012Travaini A, Santillán MA, Zapata SC (2012) Diet of the Red-backed Hawk (Buteo polyosoma) in two environmentally contrasting areas of Patagonia. Studies on Neotropical Fauna and Environment 47(1): 25-32. https://doi.org/10.1080/01650521.2011.649948
https://doi.org/10.1080/01650521.2011.64...
, Ponce et al. 2018Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
https://doi.org/10.1080/03014223.2017.13...
), and its dietary response to prey supply is unknown.

The Atacama Desert is one of the largest hyperarid deserts in the world. Desertification of the region began 14,000 years ago during the aridification of the world’s climate. Sedimentological data from the Middle Miocene to the Upper Pliocene successions in the modern Atacama Desert indicate that a semi-arid climate persisted from 8 to 3 kyr, punctuated by a more arid phase around 6 kyr. Hyperaridity therefore began only in the Late Pliocene (Hartley and Chong 2002Hartley AJ, Chong G (2002) A late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30: 43-46.). Climatic conditions in this desert are extreme and primary production is low, limiting the supply of prey for top predators like birds of prey (Polis 1991Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. The American Naturalist 138(1): 123-155., Megías et al. 2011Megías AG, Sánchez-Piñero F, Hódar JA (2011) Trophic interactions in an arid ecosystem: from decomposers to top-predators. Journal of Arid Environments 75: 1333-1341. https://doi.org/10.1016/j.jaridenv.2011.01.010
https://doi.org/10.1016/j.jaridenv.2011....
, Carevic et al. 2013Carevic F, Carmona SR, Muñoz-Pedreros A (2013) Seasonal diet of the Burrowing Owl Athene cunicularia Molina, 1782 (Strigidae) in a hyperarid ecosystem of the Atacama Desert in northern Chile. Journal of Arid Environments 97: 237-241. https://doi.org/10.1016/j.jaridenv.2013.07.008
https://doi.org/10.1016/j.jaridenv.2013....
). Under these conditions, subsidiary sources are important for maintaining predator populations (Megías et al. 2011Megías AG, Sánchez-Piñero F, Hódar JA (2011) Trophic interactions in an arid ecosystem: from decomposers to top-predators. Journal of Arid Environments 75: 1333-1341. https://doi.org/10.1016/j.jaridenv.2011.01.010
https://doi.org/10.1016/j.jaridenv.2011....
, Kristan et al. 2004Kristan WB III, Boarman WI, Crayon JJ (2004) Diet composition of common ravens across the urban-wildland interface of the West Mojave Desert. Wildlife Society Bulletin 32: 244- 253.). Urban areas can offer a greater variety of food, independent of the natural supply in the area (Kristan et al. 2004Kristan WB III, Boarman WI, Crayon JJ (2004) Diet composition of common ravens across the urban-wildland interface of the West Mojave Desert. Wildlife Society Bulletin 32: 244- 253.), and this new supply and consumption may be important for human health if these allochthonous prey are health pests like rodents of the genera Rattus and Mus (Bordes et al. 2015Bordes F, Blasdell K, Morand S (2015) Transmission ecology of rodent-borne diseases: new frontiers. Integrative Zoology 10(5): 424-435. https://doi.org/10.1111/1749-4877.12149
https://doi.org/10.1111/1749-4877.12149...
).

In this study we report the trophic ecology of G. polyosoma in a sub-urban area of an oasis in the Atacama Desert, Chile, describing its diet quantitatively and determining its dietary selectivity in response to the supply of prey and the consumption of allochthonous prey species.

MATERIAL AND METHODS

Ojo Opache (22°29’S; 69°01’W) is a suburban oasis located by the Loa River, 5 km south-west of Calama (Fig. 1). It lies in the central valley of the Antofagasta Region of Chile. The Atacama Desert covers most of the Region, with a prevailing desert climate varying between coastal desert, normal desert and high-altitude marginal desert (Köppen 1948Köppen W (1948) Climatología: con un estudio de los climas de la tierra. Fondo de Cultura Económica, México, 478 pp.). The climate of the region is very arid, with scarce precipitation and almost no rivers. The desert climate is absolute, with relief formations and high soil salinity. The river Loa is the only important watercourse in the area. The vegetation belongs to the flash-flood desert type of the Andean desert sub-region (Gajardo 1994Gajardo R (1994) La Vegetación Natural de Chile. Clasificación y Distribución Geográfica. Editorial Universitaria, Santiago, 165 pp.).

Figure 1
Map showing the location of Ojo Apache at Antofagasta region, Chile; and the type of habitat present in the area. Satellite view of the Ojo Apache (top left); broad view of the valley, showing the topography and main phytophysiognomy (in the centre); and detailed view of the local vegetation (bottom left).

We collected 201 pellets from a G. polyosoma nesting site in a ravine in Ojo Opache during August 2002. Considering the meal-to-pellet interval reported by Houston and Duke (2007Houston D, Duke G (2007) Physiology: Gastrointestinal. In: Bird DM, Bildstein KL (Eds) Raptor Research & Management Techniques. Raptor Research Foundation, Washington, DC, 267-277.), we estimate that 201 pellets correspond to pellets accumulated under nest during 41-55 days for two hawks. Pellets were measured with a caliper, accuracy 0.1 mm, and dry weight was obtained in a digital scale, accuracy 0.01 gr. Prey items were identified to species level in micro-mammals, and family and genus level in birds and insects when the species could not be identified. We used as identification guides Reise’s key (1973Reise D (1973) Clave para la determinación de los cráneos de marsupiales y roedores chilenos. Gayana, Zoología 27: 1-20.) and the insect guides of Peña (1986Peña L (1986) Introducción al estudio de los insectos de Chile. Editorial Universitaria Santiago, Santiago, 4th ed., 253 pp.) and Arias (2000Arias E (2000) Coleópteros de Chile. Fototeknika, Santiago, 209 pp.), as well as reference material from zoological collections. The contribution of each prey species to the biomass consumed was estimated following Marti (1987Marti C (1987) Raptor food habits studies. In: Pendleton BA, Millsap BA, Cline KW, Bird DM (Eds) Raptor management techniques manual. National Wildlife Federation, Washington, DC, 67-79.): Bi=100SpiNi/SpiNi, where Spi is the weight of species i, Ni is the number of individuals of species i consumed and Bi is the percentage of the total biomass contributed by species i. Mass values of mammals were obtained from the databases of the Chilean National History Museum and from the values documented by Muñoz-Pedreros (1992Muñoz-Pedreros A (1992) Ecología del ensamble de micromamíferos en un agroecosistema forestal de Chile central: una comparación latitudinal. Revista Chilena de Historia Natural 65: 417-428.), Jaksic (2001Jaksic FM (2001) Ecología de comunidades. Ediciones Universidad Católica de Chile, Santiago, 233 pp.) and Muñoz-Pedreros and Gil (2009Muñoz-Pedreros A, Gil C (2009) Orden Rodentia. In: Muñoz-Pedreros A, Yáñez J (Eds) Mamíferos de Chile. CEA Ediciones, Valdivia, 2nd ed., 93-157.). Mass values of birds were obtained from the literature (Morgado et al. 1987Morgado E, Gunther B, González U (1987) On the allometry of wings. Revista Chilena de Historia Natural 60: 71-79., Egli 1996Egli G (1996) Biomorfología de algunas aves de Chile Central. Boletín Chileno de Ornitología 3: 2-9.). To estimate the diversity and abundance of rodents at the same area we used Sherman traps with an effort of 1,077 trap/nights.

The following trophic analysis were used to characterize diet: (a) diversity of prey consumed through the Shannon-Wiener index, being influenced by two main components: richness and equity. The formula for this index is: H'=-pi×log2pi, where pi is the proportion of the total number of individuals of the species in the sample. Its value ranges from zero, when there is only one species represented, to the maximum (H’max) which corresponds to log2 S. (b) Pielou’s evenness index (J) was also calculated according to the equation: J=H'/H'max. The values of this index fluctuate between 0 (minimum heterogeneity) and 1 (maximum heterogeneity, i.e. the species are equally abundant) (Magurran 1998Magurran AE (1998) Ecological diversity and its measurement. Princeton University Press, New Jersey , 179 pp.). (c) Simpson’s reciprocal measure (Simpson 1949Simpson EH (1949) Measurement of diversity. Nature 163: 688.) or Levin’s (1968Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, New Jersey, 132 pp.) index: B=1/i=1npi2, where pi is the relative occurrence of prey taxon i in the diet of a given species. This formula was used for the smaller taxonomic categories of prey. The trophic niche breadth values range from 1 (when only one category of prey is consumed) to n (when all categories of prey are consumed in equal amounts). (d) The dietary selectivity was calculated for more than 2 kinds of prey in the diet (Jaksic 1979Jaksic FM (1979) Técnicas estadísticas simples para evaluar selectividad dietaria en Strigiformes. Medio Ambiente (Chile) 4(1): 114-118.) using: χ2=ƒo-ƒe/ƒe, where ƒo observed frequency of prey items found in the pellets and ƒe expected frequency of prey items obtained in the field. The supply of prey in the study area was obtained from a synchronic study of mammals in the Ojo Opache area, using a grid of 215 Sherman traps baited with crushed oats. The frequency and relative abundance data of the micromammals captured in Ojo Opache were used to calculate the dietary selectivity. The information was processed using Biodiversity Professional software, version 2 (McAleece et al. 1998Mcaleece N, Gage JDG, Lambshead PJD, Paterson GLJ (1998) BioDiversity professional statistics analysis software V2. The Natural History Museum and Scottish Association for Marine Science, London.).

RESULTS

Morphometry of pellets and diet composition. The 201 compact, measurable pellets were subjected to morphometric analysis. Mean values recorded were length 26.6 mm (SD ± 7.94), breadth 19.5 mm (SD ± 5.68) and height 16.1 mm (SD ± 5.23). The number of prey remains recorded was 290, (1.44 per pellet), of which 287 were vertebrates and only three were invertebrates (Table 1).

Table 1
Description of the diet of Geranoaetus polyosoma in Ojo Opache, central valley of the Antofagasta Region, Chile. (N) Number of individual, (%F) percentage frequency, (%B) percentage biomass, (B) Levins’ Index, (Bsta) Standardised Levins’ Index, (H’) Shannon-Wiener Index.

Rodents made up most of the diet (97.2%) of G. polyosoma, while marsupials (0.7%) and birds represented only a marginal contribution (1.0%). The most frequent prey species, in descending order, were Mus musculus Linnaeus, 1758, Eligmodontia pueru lus (Philippi, 1896), Phyllotis xanthopygus (Waterhouse, 1837) and Rattus rattus (Linnaeus, 1769). The rodents which contributed most to the diet by biomass, in descending order, were: R. rattus, Rattus sp., P. xanthopygus, Rattus norvegicus (Berkenhout, 1769) and M. musculus. Exotic rodent species (Rattus spp. and M. musculus) together contributed more than half the biomass (57.7%) of the diet of G. polyosoma in the Ojo Opache (Table 1). The equity was high (H’ = 0.82, Hmax = 0.954, J = 0.86), meaning that the prey frequency tends towards heterogeneity.

Trophic niche breadth and diet selectivity. During field sampling, 84 specimens collected were from four species (Table 2). The χ2 test indicated that, for this location, G. polyosoma did not consume all the vertebrate prey species in the same proportion as their presence in the area (χ2 = 15.507, p = 0.05); significant selectivity was detected in favor of R. rattus, P. xanthopygus, E. puerulus, R. norvegicus and Rattus sp. (Table 2). No statistically significant differences were detected for the consumption of M. musculus and the marsupial Thylamys pallidior Thomas, 1902 (Table 2). The trophic niche breadth value for G. polyosoma in Ojo Opache was 5.913 (maximum 10).

Table 2
Frequency and relative abundance of micromammals in Ojo Opache and χ2 values for vertebrate prey consumed by G. polyosoma2 = 15.507, p = 0.05). In bold statistical significance p < 0.05.

DISCUSSION

The general composition of the diet of G. polyosoma in the study area agrees with reports for different eco-regions (Schlatter et al. 1980Schlatter R, Yáñez J, Jaksic F (1980) Food-niche relationships between Chilean Eagles and Red-backed Buzzard in Central Chile. Auk 97: 897-898. https://doi.org/10.1093/auk/97.4.897
https://doi.org/10.1093/auk/97.4.897...
, Fuentes et al. 1993Fuentes MA, Simonetti JA, Sepúlveda MS, Acevedo PA (1993) Diet of the Red-backed Buzzard (Buteo polyosoma exsul) and the Short-eared Owl (Asio flammeus suinda) in the Juan Fernández Archipielago of Chile. Journal of Raptor Research 27: 167-169., Jiménez 1995Jiménez JE (1995) Historia natural del aguilucho común Buteo polyosoma: una revisión. El Hornero 14: 1-8., Figueroa et al. 2003Figueroa RA, Corales SE, Alvarado S (2003) Diet of the Red-backed Hawk (Buteo polyosoma) in a forested area of the Chilean Patagonia and its relation to the abundance of rodent prey. El Hornero 18(1): 43-52., Baladrón et al. 2006Baladrón AV, Bó MS, Malizia AI (2006) Winter diet and time-activity budgets of the Red-backed Hawk (Buteo polyosoma) in the coastal grasslands of Buenos Aires province, Argentina. Journal of Raptor Research 40: 65-70. https://doi.org/10.3356/0892-1016(2006)40[65:WDATBO]2.0.CO;2, 2014Baladrón AV, Cavalli M, Martínez G (2014) Dieta del aguilucho común (Geranoaetus polyosoma) en pastizales costeros y zonas periurbanas de la región pampeana. Nótulas Faunísticas 143 (2014): 1-5., Travaini et al. 2012Travaini A, Santillán MA, Zapata SC (2012) Diet of the Red-backed Hawk (Buteo polyosoma) in two environmentally contrasting areas of Patagonia. Studies on Neotropical Fauna and Environment 47(1): 25-32. https://doi.org/10.1080/01650521.2011.649948
https://doi.org/10.1080/01650521.2011.64...
, Ponce et al. 2018Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
https://doi.org/10.1080/03014223.2017.13...
), in the sense that rodents are the most important prey item. However, our findings in the oasis of Ojo Opache, Calama, in the Atacama Desert, differ from those of Valladares et al. (2015Valladares P, Álvarez-Henríquez N, Urrutia N, Olivares F, Alvarado S (2015) Dieta del aguilucho común Geranoaetus polyosoma (Quoy & Gaimard 1824) en la Región de Atacama, Chile. Gayana 79(2): 121-127.), also an arid environment, who reported a high consumption of lizards (Liolaemus and Callopistes) (57.1%) and a low consumption of rodents (19.8%). The same finding is reported in Pampa del Tamarugal, where the lizard Microlophus theresioides (Donoso-Barros, 1966) was the most frequent species (45.3%) in the diet, followed by the native rodent Phyllotis darwini (Waterhouse, 1837) (40.4%, Ponce et al. 2018Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
https://doi.org/10.1080/03014223.2017.13...
). The low consumption of invertebrates also differs from findings in another semi-arid environment (Las Chinchillas National Reserve) by Jiménez (1995), who documented a high consumption of insects (27.6%). The equity and trophic niche breadth are greater than in the Chilean matorral eco-region (e.g. La Dehesa, Metropolitan Region) (H’ = 0.82 versus H’ = 0.6; Bsta = 0.532 versus Bsta = 0.187). To summarize, in Ojo Opache G. polyosoma acts as a selective predator of rodents, preferring native rodents (P. xanthopygus and E. puerulus) and allochthonous species of Rattus and Mus, with a prey frequency tending towards equity. Considering that our data correspond to the winter period (June to August) the differences in relation to the other studies in the Atacama Desert (i.e. Ponce et al. 2018Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
https://doi.org/10.1080/03014223.2017.13...
) may also be due to seasonality in the supply of prey or energy requirements of the species.

Geranoaetus polyosoma is considered a highly flexible generalist predator (Thiollay 1994Thiollay JM (1994) Family Accipitridae (Hawks and Eagles). In: del Hoyo J, Elliott A, Sargatal J (Eds) Handbook of the birds of the world. Lynx Edicions, Barcelona, 52-205.), with a diet that has been shown to vary geographically and seasonally (Schlatter et al. 1980Schlatter R, Yáñez J, Jaksic F (1980) Food-niche relationships between Chilean Eagles and Red-backed Buzzard in Central Chile. Auk 97: 897-898. https://doi.org/10.1093/auk/97.4.897
https://doi.org/10.1093/auk/97.4.897...
, Fuentes et al. 1993Fuentes MA, Simonetti JA, Sepúlveda MS, Acevedo PA (1993) Diet of the Red-backed Buzzard (Buteo polyosoma exsul) and the Short-eared Owl (Asio flammeus suinda) in the Juan Fernández Archipielago of Chile. Journal of Raptor Research 27: 167-169., Jiménez 1995Jiménez JE (1995) Historia natural del aguilucho común Buteo polyosoma: una revisión. El Hornero 14: 1-8., Figueroa et al. 2003Figueroa RA, Corales SE, Alvarado S (2003) Diet of the Red-backed Hawk (Buteo polyosoma) in a forested area of the Chilean Patagonia and its relation to the abundance of rodent prey. El Hornero 18(1): 43-52., Baladrón et al. 2006Baladrón AV, Bó MS, Malizia AI (2006) Winter diet and time-activity budgets of the Red-backed Hawk (Buteo polyosoma) in the coastal grasslands of Buenos Aires province, Argentina. Journal of Raptor Research 40: 65-70. https://doi.org/10.3356/0892-1016(2006)40[65:WDATBO]2.0.CO;2, Travaini et al. 2012Travaini A, Santillán MA, Zapata SC (2012) Diet of the Red-backed Hawk (Buteo polyosoma) in two environmentally contrasting areas of Patagonia. Studies on Neotropical Fauna and Environment 47(1): 25-32. https://doi.org/10.1080/01650521.2011.649948
https://doi.org/10.1080/01650521.2011.64...
, Valladares et al. 2015Valladares P, Álvarez-Henríquez N, Urrutia N, Olivares F, Alvarado S (2015) Dieta del aguilucho común Geranoaetus polyosoma (Quoy & Gaimard 1824) en la Región de Atacama, Chile. Gayana 79(2): 121-127.) and is influenced by the type of habitat occupied (Monserrat et al. 2005Monserrat AL, Funes MC, Novaro AJ (2005) Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Revista Chilena de Historia Natural 78: 425-439. https://doi.org/10.4067/S0716-078X2005000300006
https://doi.org/10.4067/S0716-078X200500...
, Baladrón et al. 2006Baladrón AV, Bó MS, Malizia AI (2006) Winter diet and time-activity budgets of the Red-backed Hawk (Buteo polyosoma) in the coastal grasslands of Buenos Aires province, Argentina. Journal of Raptor Research 40: 65-70. https://doi.org/10.3356/0892-1016(2006)40[65:WDATBO]2.0.CO;2, Travaini et al. 2012Travaini A, Santillán MA, Zapata SC (2012) Diet of the Red-backed Hawk (Buteo polyosoma) in two environmentally contrasting areas of Patagonia. Studies on Neotropical Fauna and Environment 47(1): 25-32. https://doi.org/10.1080/01650521.2011.649948
https://doi.org/10.1080/01650521.2011.64...
, Valladares et al. 2015Valladares P, Álvarez-Henríquez N, Urrutia N, Olivares F, Alvarado S (2015) Dieta del aguilucho común Geranoaetus polyosoma (Quoy & Gaimard 1824) en la Región de Atacama, Chile. Gayana 79(2): 121-127.). Although some works do not consider prey availability (e.g. Schlatter et al. 1980Schlatter R, Yáñez J, Jaksic F (1980) Food-niche relationships between Chilean Eagles and Red-backed Buzzard in Central Chile. Auk 97: 897-898. https://doi.org/10.1093/auk/97.4.897
https://doi.org/10.1093/auk/97.4.897...
, Fuentes et al. 1993Fuentes MA, Simonetti JA, Sepúlveda MS, Acevedo PA (1993) Diet of the Red-backed Buzzard (Buteo polyosoma exsul) and the Short-eared Owl (Asio flammeus suinda) in the Juan Fernández Archipielago of Chile. Journal of Raptor Research 27: 167-169., Jiménez 1995Jiménez JE (1995) Historia natural del aguilucho común Buteo polyosoma: una revisión. El Hornero 14: 1-8., Figueroa et al. 2003Figueroa RA, Corales SE, Alvarado S (2003) Diet of the Red-backed Hawk (Buteo polyosoma) in a forested area of the Chilean Patagonia and its relation to the abundance of rodent prey. El Hornero 18(1): 43-52.), the marked geographical variation in the diet of this species suggests that it is basically an opportunistic predator (cf. Jaksic 1989Jaksic FM (1989) Opportunist, selective and other often-confused terms in the predation literature. Revista Chilena de Historia Natural 62: 7-8.), preying on the most locally abundant items and alternating prey species according to their distribution.

In extreme environments like deserts, where productivity and prey supply are low, any subsidiary contribution to the diet of a top predator like G. polyosoma may determine the presence or absence of that predator in the community. A functional response occurs when predators respond to changes in the availability of their prey by varying their diet; thus, the functional response of a predator measures its consumption rate as a function of prey availability (Monserrat et al. 2005Monserrat AL, Funes MC, Novaro AJ (2005) Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Revista Chilena de Historia Natural 78: 425-439. https://doi.org/10.4067/S0716-078X2005000300006
https://doi.org/10.4067/S0716-078X200500...
). In theory, every functional response curve reaches saturation level with high prey densities. Three main types of functional response are recognized: linear, convex and sigmoid (Holling 1959Holling CS (1959) Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91: 385-398.); raptors that easily consume allochthonous prey tend to present a sigmoid response, and may even stabilize the populations of these alternative prey species (Korpimäki and Norrdahl 1989Korpimäki E, Norrdahl K (1989) Predation of Tengmalm’s owls: numerical responses, functional responses and dampening impact on population fluctuations of microtines. Oikos 54: 154-164. https://doi.org/10.2307/3565261
https://doi.org/10.2307/3565261...
, Norrdahl and Korpimäki 2000Norrdahl K, Korpimäki E (2000) Do predators limit the abundance of alternative prey? Experiments with vole-eating avian and mammalian predators. Oikos 91: 528-540. https://doi.org/10.1034/j.1600-0706.2000.910315.x
https://doi.org/10.1034/j.1600-0706.2000...
, Salamolard et al. 2000Salamolard M, Butet A, Leroux A, Bretagnolle V (2000) Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81: 2428-2441. https://doi.org/10.1890/0012-9658(2000)081[2428:ROAAPT]2.0.CO;2, Monserrat et al. 2005Monserrat AL, Funes MC, Novaro AJ (2005) Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Revista Chilena de Historia Natural 78: 425-439. https://doi.org/10.4067/S0716-078X2005000300006
https://doi.org/10.4067/S0716-078X200500...
).

Jaksic et al. (1992Jaksic FM, Jiménez JE, Castro SA, Feinsinger P (1992) Numerical and functional response of predators to a long-term decline in mammalian prey at semi-arid Neotropical site. Oecologia 89: 90-101. https://doi.org/10.1007/BF00319020
https://doi.org/10.1007/BF00319020...
) found no significant functional response in birds of prey studied in Chile, but they did find a strong numerical response to fluctuations in small mammals. Other authors (e.g. Pavez et al. 1992Pavez E, González CA, Jiménez JE (1992) Diet shifts of Black-chested Eagles (Geranoaetus melanoleucus) from native prey to European Rabbits in Chile. Journal of Raptor Research 26: 27-32., Hiraldo et al. 1995Hiraldo F, Donázar JA, Ceballos O, Travaini A, Bustamante J, Funes MC (1995) Breeding biology of the grey eagle-buzzard population in Patagonia. Wilson Bulletin 107: 675-685., Monserrat et al. 2005Monserrat AL, Funes MC, Novaro AJ (2005) Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Revista Chilena de Historia Natural 78: 425-439. https://doi.org/10.4067/S0716-078X2005000300006
https://doi.org/10.4067/S0716-078X200500...
) have suggested the existence of a functional response in the black-chested buzzard-eagle, Geranoaetus melanoleucus (Vieillot, 1819), with respect to allochthonous prey; however they found no significant functional response in G. polyosoma in the Patagonia eco-region to an allochthonous prey, Lepus europaeus Pallas, 1778 (Monserrat et al. 2005Monserrat AL, Funes MC, Novaro AJ (2005) Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Revista Chilena de Historia Natural 78: 425-439. https://doi.org/10.4067/S0716-078X2005000300006
https://doi.org/10.4067/S0716-078X200500...
). We documented a different situation for the Calama oasis in the Atacama Desert, where most of biomass consumed (> 55%) came from three allochthonous rodent species. Our study represents only a fraction of what the species’ diet might be in the region (see Valladares et al. 2015Valladares P, Álvarez-Henríquez N, Urrutia N, Olivares F, Alvarado S (2015) Dieta del aguilucho común Geranoaetus polyosoma (Quoy & Gaimard 1824) en la Región de Atacama, Chile. Gayana 79(2): 121-127., Ponce et al. 2018Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
https://doi.org/10.1080/03014223.2017.13...
), since the sampling covered only 1-2 months (July-August) and suggest that a larger study should be carried out to verify whether the observed result corresponds to a seasonal variation, as observed in other studies (Figueroa et al. 2003Figueroa RA, Corales SE, Alvarado S (2003) Diet of the Red-backed Hawk (Buteo polyosoma) in a forested area of the Chilean Patagonia and its relation to the abundance of rodent prey. El Hornero 18(1): 43-52., Baladrón et al. 2006Baladrón AV, Bó MS, Malizia AI (2006) Winter diet and time-activity budgets of the Red-backed Hawk (Buteo polyosoma) in the coastal grasslands of Buenos Aires province, Argentina. Journal of Raptor Research 40: 65-70. https://doi.org/10.3356/0892-1016(2006)40[65:WDATBO]2.0.CO;2, Travaini et al. 2012Travaini A, Santillán MA, Zapata SC (2012) Diet of the Red-backed Hawk (Buteo polyosoma) in two environmentally contrasting areas of Patagonia. Studies on Neotropical Fauna and Environment 47(1): 25-32. https://doi.org/10.1080/01650521.2011.649948
https://doi.org/10.1080/01650521.2011.64...
, Ponce et al. 2018Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
https://doi.org/10.1080/03014223.2017.13...
). In future studies it will be important to explore the functional response of G. polyosoma to these three allochthonous rodents in view of the implications that it might have for the biological control of these species, which are also health and farm pests (see Ostfeld and Holt 2004Ostfeld RS, Holt RD (2004) Are predators good for your health? evaluating evidence for top-down regulation of zoonotic disease reservoirs. Frontiers in Ecology and the Environment 2(1): 13-20. https://doi.org/10.1890/1540-9295(2004)002[0013:APGFYH]2.0.CO;2, Muñoz-Pedreros et al. 2010Muñoz-Pedreros A, Gil C, Yáñez J, Rau R (2010) Raptor habitat management and its implication on the biological control of the Hantavirus. European Journal of Wildlife Research 56(5): 703-715. https://doi.org/10.1007/s10344-010-0364-2
https://doi.org/10.1007/s10344-010-0364-...
, Bordes et al. 2015Bordes F, Blasdell K, Morand S (2015) Transmission ecology of rodent-borne diseases: new frontiers. Integrative Zoology 10(5): 424-435. https://doi.org/10.1111/1749-4877.12149
https://doi.org/10.1111/1749-4877.12149...
, Kosoy et al. 2015Kosoy M, Khlyap L, Cosson JF, Morand S (2015) Aboriginal and invasive rats of genus Rattus as hosts of infectious agents. Vector-Borne and Zoonotic Diseases 15(1): 3-12. https://doi.org/10.1089/vbz.2014.1629
https://doi.org/10.1089/vbz.2014.1629...
).

ACKNOWLEDGEMENTS

The authors are grateful for the support of CONAMA/FNDR/CEA project ‘Analysis of the biodiversity of the Antofagasta Region’ executed by the Centro de Estudios Agrarios y Ambientales (CEA), Valdivia. HVN thanks to Fondecyt-Postdoctorado 3190618. We also thank two anonymous reviewers that greatly improved the final version of this manuscript.

LITERATURE CITED

  • Arias E (2000) Coleópteros de Chile. Fototeknika, Santiago, 209 pp.
  • Baladrón AV, Bó MS, Malizia AI (2006) Winter diet and time-activity budgets of the Red-backed Hawk (Buteo polyosoma) in the coastal grasslands of Buenos Aires province, Argentina. Journal of Raptor Research 40: 65-70. https://doi.org/10.3356/0892-1016(2006)40[65:WDATBO]2.0.CO;2
  • Baladrón AV, Cavalli M, Martínez G (2014) Dieta del aguilucho común (Geranoaetus polyosoma) en pastizales costeros y zonas periurbanas de la región pampeana. Nótulas Faunísticas 143 (2014): 1-5.
  • Bordes F, Blasdell K, Morand S (2015) Transmission ecology of rodent-borne diseases: new frontiers. Integrative Zoology 10(5): 424-435. https://doi.org/10.1111/1749-4877.12149
    » https://doi.org/10.1111/1749-4877.12149
  • Carevic F, Carmona SR, Muñoz-Pedreros A (2013) Seasonal diet of the Burrowing Owl Athene cunicularia Molina, 1782 (Strigidae) in a hyperarid ecosystem of the Atacama Desert in northern Chile. Journal of Arid Environments 97: 237-241. https://doi.org/10.1016/j.jaridenv.2013.07.008
    » https://doi.org/10.1016/j.jaridenv.2013.07.008
  • Dinerstein E, Olson DM, Webster AL, Primm SA, Brookbinder MP, Ledec G (1995) A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean. The World Bank, Washington, DC, 129 pp.
  • Egli G (1996) Biomorfología de algunas aves de Chile Central. Boletín Chileno de Ornitología 3: 2-9.
  • Ferguson-Lees J, Christie DA (2001) Raptors of the world. Christopher Helm, London, 320 pp.
  • Figueroa RA, Corales SE, Alvarado S (2003) Diet of the Red-backed Hawk (Buteo polyosoma) in a forested area of the Chilean Patagonia and its relation to the abundance of rodent prey. El Hornero 18(1): 43-52.
  • Fuentes MA, Simonetti JA, Sepúlveda MS, Acevedo PA (1993) Diet of the Red-backed Buzzard (Buteo polyosoma exsul) and the Short-eared Owl (Asio flammeus suinda) in the Juan Fernández Archipielago of Chile. Journal of Raptor Research 27: 167-169.
  • Gajardo R (1994) La Vegetación Natural de Chile. Clasificación y Distribución Geográfica. Editorial Universitaria, Santiago, 165 pp.
  • Hartley AJ, Chong G (2002) A late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30: 43-46.
  • Hiraldo F, Donázar JA, Ceballos O, Travaini A, Bustamante J, Funes MC (1995) Breeding biology of the grey eagle-buzzard population in Patagonia. Wilson Bulletin 107: 675-685.
  • Holling CS (1959) Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91: 385-398.
  • Houston D, Duke G (2007) Physiology: Gastrointestinal. In: Bird DM, Bildstein KL (Eds) Raptor Research & Management Techniques. Raptor Research Foundation, Washington, DC, 267-277.
  • Jaksic FM (1979) Técnicas estadísticas simples para evaluar selectividad dietaria en Strigiformes. Medio Ambiente (Chile) 4(1): 114-118.
  • Jaksic FM (1989) Opportunist, selective and other often-confused terms in the predation literature. Revista Chilena de Historia Natural 62: 7-8.
  • Jaksic FM (2001) Ecología de comunidades. Ediciones Universidad Católica de Chile, Santiago, 233 pp.
  • Jaksic FM, Jiménez JE, Castro SA, Feinsinger P (1992) Numerical and functional response of predators to a long-term decline in mammalian prey at semi-arid Neotropical site. Oecologia 89: 90-101. https://doi.org/10.1007/BF00319020
    » https://doi.org/10.1007/BF00319020
  • Jiménez JE (1995) Historia natural del aguilucho común Buteo polyosoma: una revisión. El Hornero 14: 1-8.
  • Köppen W (1948) Climatología: con un estudio de los climas de la tierra. Fondo de Cultura Económica, México, 478 pp.
  • Korpimäki E, Norrdahl K (1989) Predation of Tengmalm’s owls: numerical responses, functional responses and dampening impact on population fluctuations of microtines. Oikos 54: 154-164. https://doi.org/10.2307/3565261
    » https://doi.org/10.2307/3565261
  • Kosoy M, Khlyap L, Cosson JF, Morand S (2015) Aboriginal and invasive rats of genus Rattus as hosts of infectious agents. Vector-Borne and Zoonotic Diseases 15(1): 3-12. https://doi.org/10.1089/vbz.2014.1629
    » https://doi.org/10.1089/vbz.2014.1629
  • Kristan WB III, Boarman WI, Crayon JJ (2004) Diet composition of common ravens across the urban-wildland interface of the West Mojave Desert. Wildlife Society Bulletin 32: 244- 253.
  • Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, New Jersey, 132 pp.
  • Magurran AE (1998) Ecological diversity and its measurement. Princeton University Press, New Jersey , 179 pp.
  • Marti C (1987) Raptor food habits studies. In: Pendleton BA, Millsap BA, Cline KW, Bird DM (Eds) Raptor management techniques manual. National Wildlife Federation, Washington, DC, 67-79.
  • Mcaleece N, Gage JDG, Lambshead PJD, Paterson GLJ (1998) BioDiversity professional statistics analysis software V2. The Natural History Museum and Scottish Association for Marine Science, London.
  • Megías AG, Sánchez-Piñero F, Hódar JA (2011) Trophic interactions in an arid ecosystem: from decomposers to top-predators. Journal of Arid Environments 75: 1333-1341. https://doi.org/10.1016/j.jaridenv.2011.01.010
    » https://doi.org/10.1016/j.jaridenv.2011.01.010
  • Monserrat AL, Funes MC, Novaro AJ (2005) Respuesta dietaria de tres rapaces frente a una presa introducida en Patagonia. Revista Chilena de Historia Natural 78: 425-439. https://doi.org/10.4067/S0716-078X2005000300006
    » https://doi.org/10.4067/S0716-078X2005000300006
  • Morgado E, Gunther B, González U (1987) On the allometry of wings. Revista Chilena de Historia Natural 60: 71-79.
  • Muñoz-Pedreros A (1992) Ecología del ensamble de micromamíferos en un agroecosistema forestal de Chile central: una comparación latitudinal. Revista Chilena de Historia Natural 65: 417-428.
  • Muñoz-Pedreros A, Gil C (2009) Orden Rodentia. In: Muñoz-Pedreros A, Yáñez J (Eds) Mamíferos de Chile. CEA Ediciones, Valdivia, 2nd ed., 93-157.
  • Muñoz-Pedreros A, Gil C, Yáñez J, Rau R (2010) Raptor habitat management and its implication on the biological control of the Hantavirus. European Journal of Wildlife Research 56(5): 703-715. https://doi.org/10.1007/s10344-010-0364-2
    » https://doi.org/10.1007/s10344-010-0364-2
  • Norrdahl K, Korpimäki E (2000) Do predators limit the abundance of alternative prey? Experiments with vole-eating avian and mammalian predators. Oikos 91: 528-540. https://doi.org/10.1034/j.1600-0706.2000.910315.x
    » https://doi.org/10.1034/j.1600-0706.2000.910315.x
  • Ostfeld RS, Holt RD (2004) Are predators good for your health? evaluating evidence for top-down regulation of zoonotic disease reservoirs. Frontiers in Ecology and the Environment 2(1): 13-20. https://doi.org/10.1890/1540-9295(2004)002[0013:APGFYH]2.0.CO;2
  • Pavez E (2004) Descripción de las rapaces chilenas. In: Muñoz-Pedreros A, Rau J, Yáñez J (Eds) Aves Rapaces de Chile. CEA Ediciones, Valdivia , 29-106.
  • Pavez E, González CA, Jiménez JE (1992) Diet shifts of Black-chested Eagles (Geranoaetus melanoleucus) from native prey to European Rabbits in Chile. Journal of Raptor Research 26: 27-32.
  • Peña L (1986) Introducción al estudio de los insectos de Chile. Editorial Universitaria Santiago, Santiago, 4th ed., 253 pp.
  • Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. The American Naturalist 138(1): 123-155.
  • Ponce C, Carevic FS, Carmona ER (2018) Seasonal diet by a generalist raptor: the case of the variable hawk (Geranoaetus polyosoma) at Atacama Desert, northern Chile. New Zealand Journal of Zoology 45: 171-179. https://doi.org/10.1080/03014223.2017.1395750
    » https://doi.org/10.1080/03014223.2017.1395750
  • Reise D (1973) Clave para la determinación de los cráneos de marsupiales y roedores chilenos. Gayana, Zoología 27: 1-20.
  • Salamolard M, Butet A, Leroux A, Bretagnolle V (2000) Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81: 2428-2441. https://doi.org/10.1890/0012-9658(2000)081[2428:ROAAPT]2.0.CO;2
  • Schlatter R, Yáñez J, Jaksic F (1980) Food-niche relationships between Chilean Eagles and Red-backed Buzzard in Central Chile. Auk 97: 897-898. https://doi.org/10.1093/auk/97.4.897
    » https://doi.org/10.1093/auk/97.4.897
  • Simpson EH (1949) Measurement of diversity. Nature 163: 688.
  • Thiollay JM (1994) Family Accipitridae (Hawks and Eagles). In: del Hoyo J, Elliott A, Sargatal J (Eds) Handbook of the birds of the world. Lynx Edicions, Barcelona, 52-205.
  • Travaini A, Santillán MA, Zapata SC (2012) Diet of the Red-backed Hawk (Buteo polyosoma) in two environmentally contrasting areas of Patagonia. Studies on Neotropical Fauna and Environment 47(1): 25-32. https://doi.org/10.1080/01650521.2011.649948
    » https://doi.org/10.1080/01650521.2011.649948
  • Valladares P, Álvarez-Henríquez N, Urrutia N, Olivares F, Alvarado S (2015) Dieta del aguilucho común Geranoaetus polyosoma (Quoy & Gaimard 1824) en la Región de Atacama, Chile. Gayana 79(2): 121-127.

Publication Notes

  • Available online:

    December 7, 2020
  • Zoobank Register:

    http://zoobank.org/BC05BD3B-60A5-4848-A585-1EA15373F119
  • Publisher:

    © 2020 Sociedade Brasileira de Zoologia. Published by Pensoft Publishers at https://zoologia.pensoft.net

Edited by

Editorial responsibility:

Claudia Hermes

Publication Dates

  • Publication in this collection
    18 Jan 2021
  • Date of issue
    2020

History

  • Received
    19 June 2020
  • Accepted
    02 Oct 2020
  • Published
    04 Dec 2020
Sociedade Brasileira de Zoologia Caixa Postal 19020, 81531-980 Curitiba PR Brasil, Tel./Fax: (55 41) 3266-6823 - Curitiba - PR - Brazil
E-mail: sbz@sbzoologia.org.br