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ABSTRACT

Secretory processes play an important role on the biology and life cycles of parasitic protozoa. This review

focus on basic aspects, from a cell biology perspective, of the secretion of (a) micronemes, rhoptries and

dense granules in members of the Apicomplexa group, where these organelles are involved in the process of

protozoan penetration into the host cell, survival within the parasitophorous vacuole and subsequent egress

from the host cell, (b) the Maurer’s cleft in Plasmodium, a structure involved in the secretion of proteins

synthesized by the intravacuolar parasite and transported through vesicles to the erythrocyte surface, (c) the

secretion of macromolecules into the flagellar pocket of trypanosomatids, and (d) the secretion of proteins

which make the cyst wall of Giardia and Entamoeba, with the formation of encystation vesicles.
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INTRODUCTION

The protozoa kingdom comprises a large number

of species, including some which are agents

of human and veterinary diseases such as malaria,

leishmaniasis, Chagas’ disease, African trypanoso-

miasis, amebiasis, trichomoniasis, giardiasis, tox-

oplasmosis, coccidiosis, theileriosis, and babesio-

sis, to mention only those more important. Some

of these protozoa, as is the case of Trichomonas,

present a simple life cycle. For others, however,

as occurs with Apicomplexa (which includes Plas-

modium, Toxoplasma, Eimeria, etc), and some try-

panosomatids, the life cycle is relatively complex,

displaying several developmental stages in the ver-

tebrate host and, in some cases, in invertebrate

hosts. These protozoa are also of interest from the

cell biology point of view since they present spe-
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cial cytoplasmic structures and organelles, which

have been studied in some detail in the last years

providing new information of general biological in-

terest. In a previous review we analyzed organelles

involved in the metabolic pathways (De Souza

2002). Here, we intend to review, from a cell bi-

ology perspective, organelles involved in secretory

processes. We will not emphasize aspects well cov-

ered in a previous review (Becker and Melkonian

1996).

CELL SECRETION IN APICOMPLEXA

Since the first studies on the fine structure of pro-

tozoa belonging to the Apicomplexa group, espe-

cially studies carried out with T. gondii, Eimeria

and Plasmodium, it became clear that the anterior

region of the infective forms (trophozoites, mero-

zoites, sporozoites) was highly specialized, form-

ing what is generally known as the apical complex
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(Fig. 1). In addition to cytoskeleton components,

such as the conoid-sub-pellicular microtubules com-

plex, two organelles were initially recognized and

designated as micronemes and rhoptries. Later on

another structure, which can be found in other re-

gions of the protozoan body, was recognized and

designated as dense granules.

Apicomplexan protozoa present a typical en-

doplasmic reticulum with associated ribosomes. In

T. gondii the ER is distributed throughout the cell

and the nuclear envelope itself provides a signifi-

cant fraction of the ER. Vesicles with a fuzzy coat

bud off from the nuclear envelope and the ER. In

Plasmodium the ER is less well developed. Several

cisternae of the Golgi complex are observed in the

anterior region, just above the nucleus of T. gondii.

Vesicles with a clathrin-like coat bud off from the

trans portion of the Golgi complex. Proteins such

as COP I and II, Arf 1 and Sar 1, involved in vesi-

cle formation at the ER-Golgi complex system, have

been found in T. gondii (Review in Joiner and Roos

2002, Ngô et al. 2000).

THE MICRONEMES

Micronemes are small, cigar-shaped organelles that

are restricted to the apical third of the protozoan

body. Their number varies according to the species

and the developmental stages. In some species are

hardly seen while in others are so numerous that

correspond to the most abundant organelle found in

the cell (Fig. 2). The organelle is surrounded by

a typical unit membrane and presents an electron

dense matrix due to its large protein content. Indeed

the organelle is intensely stained when the protozoa

are submitted to the ethanolic phosphotungstic acid

technique, which reveals basic proteins (De Souza

and Souto-Padrón 1978). At present, we still do

not have a clear explanation for this labeling pattern

since the known micronemal proteins have isolec-

tric points lower than 7.0. All proteins found in

the micronemes are synthesized with an N-terminal

signal sequence that mediates their entrance into the

secretory pathway by translocation across the endo-

plasmic reticulum membrane. A mutagenesis anal-

ysis of the C-terminal portion of MIC2 showed the

presence of two conserved amino acid motifs me-

diating the target of this protein to the micronemes

(Di Cristina et al. 2000). One motif is a tyrosine-

based signal and the other one consists of a stretch

of acidic residues.

Many of the micronemal proteins are glycosy-

lated as seen by labeling of the micronemes when

thin sections of T. gondii are incubated in the pres-

ence of gold-labeled lectins (Carvalho et al. 1991).

It has been shown that when the infective

forms of Apicomplexan parasites touch the host

cell surface they trigger a process of Ca2+ release

and the discharge of the content of the micronemes

at the junction between the parasite and the host

cell (Carruthers et al. 1999a, Bouchot et al. 1999,

Vieira and Moreno 2000) which then mediates par-

asite attachment (Carruthers et al. 1999a, b, Car-

ruthers and Sibley 1999). This process takes place

in a few seconds and the released proteins are not

incorporated together with the parasites but instead

are capped and released from the posterior end of

the protozoan (Carruthers et al. 1999a). During re-

distribution on the parasite surface, transmembrane

MICs are thought to connect external recep-

tors to the submembranous acto-myosin motor that

provides the power for parasite motility. Chelat-

ing of parasite intracellular Ca2+ inhibited both mi-

croneme release and invasion of host cells. What is

the origin of the Ca2+ used by the protozoan? There

is enough data indicating that the Ca2+ used for

protozoan motility, micronemal secretion and cell

invasion comes from organelles found in the proto-

zoan. Fluorescence microscopy of protozoa labeled

with the calcium indicator fluo-4 showed that cy-

tosolic calcium levels underwent dramatic and rapid

fluxes (Lovett and Sibley 2003). Several protozoan

organelles, such as the endoplasmic reticulum, the

Golgi complex, the mitochondrion and the acido-

calcisomes may store calcium (Moreno and Zhong

1996, Review in Arrizabalaga and Boothroyd

2004). It has been shown that there is an intracel-

lular calcium release channel with properties of the

inositol 1,4,5-triphosphate/ryanodine receptor su-
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Fig. 1 – Transmission electron microscopy of a tachyzoites of Toxoplasma gondii submitted to the

ethanolic phosphotungstic acid technique, which labels structures containing basic proteins. In addition

to the nucleus (N), staining of the dense granules (G), Rhoptries (R), Micronemes (M) and the Conoid

(C) is observed. Bar, 0.3µm. After De Souza and Souto-Padrón 1978.

perfamily (Lovett et al. 2002).

It has been shown that isoforms of phospho-

glucomutase, a cytosolic enzyme, are implicated

in Ca2+-mediated signaling events. One isoform,

known as parafusin, plays an important role dur-

ing exocytic activity in ciliated protozoa (Zhao and

Satir 1998). A protein called parafusin-related pro-

tein has been identified in T. gondii and showed to

be localized to an apical subpopulation of mi-

conemes and to be redistributed during invasion of

the host cell by the protozoan (Matthiesen et al.

2001a, b).

Several micronemal proteins contain one or

more adhesive motifs found in mammalian proteins

such as Epidermal Growth Factor, integrins, throm-

bospondin and kallikrein. Four of them, all desig-

nated as MIC (MIC1-4, from micronemal proteins),

have been studied in some detail.

MIC1 has a size of 60 kDa and contains two

degenerate repeats similar to an adhesive sequence

found in thrombospodin and known as type I

repeats (TSP-I), and is able to bind to the

host cell surface (Fourmaux et al. 1996). It has been

shown that it is a lactose-binding lectin (Lourenço et

al. 2001). It was also shown that its N-terminal por-

tion functions as an independent adhesin and pro-

motes association with TgMIC4. A galectin-like

domain interacts and stabilizes TgMIC6 (Saouros et

al. 2005). Single deletion of MIC1 gene decreased

invasion of fibroblasts and slightly reduced viru-

lence of the parasite to mouse (Cérède et al. 2005).

MIC2 has a size of 115 kDa and comprises

an adhesive N-terminal integrin-like A domain that

has been implicated in binding ICAM 1 (Barragan

et al. 2005) and glycosaminoglycans (Harper et al.

2004), which are ubiquitous sulfated proteoglycans

found in the extracellular matrix. MIC2 also dis-

plays six thrombospodin type-1 repeats that also

have the potential to bind glycosaminoglycans

(Wan et al. 1997). It has been shown that a second

micronemal protein, known as M2AP, facilitates the

transport of MIC2 through the secretory pathway

(Huynh et al. 2003, Rabenau et al. 2001). These

two proteins seem to form stable hexamers consist-
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Fig. 2 – Routine transmission electron microscopy showing a trophozoite of Cyrilia lignieresi,

a haemogregarine found in erythrocytes of a fresh-water fish. Structures such as lipidic in-

clusions (Li), amilopectin granules (A), dense granules (D), rhoptries (R) and a large number

of micronemes (M) are observed. Spherical bodies are seen within the flagellar pocket (small

arrowheads). HCN, host cell nucleus. Bar, 1µm. After Diniz et al. 2002.

ing of three αβ dimmers (Jewett and Sibley 2004).

Following discharge MIC2 is proteolitically

cleaved by proteases with release of its ectodomain

from the parasite surface, a process that seems to

be involved on parasite invasion (Carruthers et al.

2000, Brossier et al. 2003). Recently, proteins be-

longing to the rhomboid family of intramembrane-

cleaving serine proteases, designated as TgROMs,

were detected (Brossier et al. 2005, Dowse et al.

2005).

The binding of MIC2 to the host cell surface

may establish connection between the host cell sur-

face receptor and the cytoskeleton machinery of the

parasites activating the gliding process necessary

for the penetration of the parasite into the host cell.

It has been shown that Plasmodium sporozoites,

which do not express a homologue of MIC2, known

as TRAP, fail to glide or invade host cells (Sultan et

al. 1997).

MIC3 has a size of 90 kDa and possesses

five partially overlapping epidermal growth factor

(EGF) domains and an NH2 terminal chitin binding-

like domain, which probably are also involved in

the process of parasite association to the host cell

surface (Fourmaux et al. 1996, Soldati et al. 2001).

It is a disulfide-linked heterodimer comprised of

two 38 kDa isoforms (Achbarou et al. 1991). Sin-

gle substitution of two critical amino acids in the

chitin binding-like domains of this protein abolished

its binding to cells and decrease parasite virulence

(Cérède et al. 2005).

MIC 4 contains six domains and it binds to

host cells (Brecht et al. 2001). In the case of Eime-

ria tenella MIC4 is a transmembrane protein with

a molecular weight of 240 kDa, containing 31 tan-

demly arranged EGF-like repeats in the extracellu-

lar domain. These repeats have calcium binding

consensus that seem to be involved in make the
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molecule to adopt a protease-resistant, rigid struc-

ture that could favor its interaction with host cell

ligands (Periz et al. 2005).

MIC 6, which is a transmembrane protein,

forms trimeric complexes with soluble micronemal

proteins such as MIC1 and MIC 4, functioning as an

escort protein. Deletion of MIC 6 prevents targeting

of these two proteins to the microneme (Reiss et al.

2001). MIC 8 also seems to work as a escort protein

to MIC 3 (Meissner et al. 2002).

In Plasmodium falciparum a micronemal pro-

tein, known as EBA 175, has been shown to bind

to sialic acid (Sim 1995) a molecule, which plays a

fundamental role on the process of parasite-erythro-

cyte interaction.

More recently several other proteins which do

not present recognizable adhesive motifs have been

identified in the micronemes of T. gondii. TgMIC

5 has homology to the parvulin family of peptidyl

prolyl cis-trans isomerases and may assist in the

folding of other micronemal proteins (Brydges et al.

2000). Other proteins, including Tg MIC10 entirely

devoid of cysteines, were recently identified (Hoff

et al. 2001). MIC 11, a 16 kDa protein, was recently

identified in several coccidian parasites. During its

traffic through the secretory pathway it is proteoliti-

caly cleaved with removal of an internal propeptide,

resulting in a mature form containing a α-chain and

a ß-chain tethered by a single disulfide bond (Harper

et al. 2004).

Members of the genus Plasmodium present

several developmental stages, which are able to in-

vade different cells in both vertebrate and inverte-

brate cells. For instance, merozoites invade verte-

brate red blood cells, the ookinete invades epithe-

lial cells of the insect vector while sporozoites in-

vade the salivary gland epithelial cells of the insect

and when inoculated into the vertebrate host, tra-

verse several cellular barriers until invade hepatic

cells. Recent studies have shown that Plasmodium

presents several genes coding for proteins, which

present a membrane-attack complex/perforin-like

domain. One of these proteins (PLP1/SPECT2)

found in sporozoites was shown to be localized in

the micronemes (Kaiser et al. 2004) and is necessary

for cell traversal (Ishino et al. 2005). Genes encod-

ing proteins with similar properties were identified

in the genome of Eimeria and Toxoplasma.

THE RHOPTRIES

Rhoptries are long, club-shaped organelles con-

nected by thin necks to the extreme apical pole of

the parasite (Figs. 1-4). At their basal portion the

matrix of the organelle shows a spongeous appear-

ance while the neck region is uniformly electron

dense making it difficult the distinction from the

micronemes. Their number varies according to the

species. Several can be seen in T. gondii whereas

only two, often designated as paired organelle, are

found in Plasmodium. The organelle is surrounded

by a typical unit membrane and is heavily stained

with ethanolic phosphotungstic acid (Fig. 1) (De

Souza and Souto-Padrón 1978). Cytochemical

studies have shown the presence of glycconjugates

and lectin-like molecules (Carvalho et al. 1991) and

Ca2+ (Pezzela et al. 1997) in the rhoptries. All

proteins found in the rhoptries were synthe-

sized in the endoplasmic reticulum and passed

through the Golgi complex. Members of the ROP2

family contain multiple independent targeting sig-

nals (Bradley and Boothroyd 2001, Striepen et al.

2001). ROP 2 displays both YXX� and LL motifs.

Deletion or alteration of these motifs abolishes pro-

tein delivery to the rhoptries, with its accumulation

in a post Golgi compartment (Review in Joiner and

Roos 2002). There is some evidence that rhoptry

proteins after leaving the Golgi complex are first ac-

cumulated in an intermediate compartment, a type of

immature rhoptry which is a acidic organelle, with

a pH of 3.5 to 5.5 whereas the mature organelle has

a pH of 5.0 to 7.0 as determined using the DAMP

technique (Metsis et al. 1995, Shaw et al. 1998).

Based on this fact and the involvement of both se-

cretory and endocytic pathways in the rhoptry for-

mation it has been considered that this organelle is

equivalent to a lysosome (Metsis et al. 1995, Ngô

et al. 2004). More recently, a novel Na+/H+ ex-

changer, designated as TgNEH2, was localized in
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Fig. 3 – Two trophozoites of Toxoplasma gondii within the parasitophorous vacuole.

C, conoid; HC, host cell; M, mitochondrion; N, nucleus; R, rhoptries. Bar, 0.4 µm.

the rhoptry of T. gondii (Karasov et al. 2005). This

protein may be involved in rhoptry pH regulation.

This organelle presents as a characteristic feature

the fact that when its lipids and proteins are exo-

cytosed through the duct the organellar membrane

is retained and an empty organelle, which can be

easily identified by electron microscopy, remains.

Immunocytochemistry provided evidence that

the rhoptry content is not homogeneous. For in-

stance, some proteins are localized in the basal re-

gion of the organelle whereas others are located in

its apical portion (Review in Blackman and Ban-

nister 2001).

Secretion of rhoptry proteins takes place im-

mediately after adhesion of the parasites to the host

cell surface. In the case of T. gondii kinetic studies

showed that release of the proteins is completed in

about 1 minute and that the proteins are internalized

and will make part of the membrane lining the para-

sitophorous vacuole (Sam-Yellowe et al. 1988, Saf-

fer et al. 1992, Carruthers and Sibley 1997). Several

rhoptry proteins have been identified and character-

ized. ROP1 has a size of 60 kDa and exhibits an

extreme charge asymmetry with a highly acidic N-

terminal domain and a basic C-terminal domain sug-

gesting that it participates in protein-protein interac-

tions (Ossorio et al. 1992). It has been suggested

(Schwartzman 1986) that ROP1 corresponds to the

penetration enhancing factor previously character-

ized in T. gondii (Lycke et al. 1968) and for some

time it was considered as a key molecule for the

penetration of host cells by this parasite. However,

it was shown that ROP1 null mutants invade host

cells normally (Kim and Boothroyd 1993). ROP2,

which has a size of 54 kDa, ROP3, ROP4 and ROP8

are antigenically cross-reactive and may have over-

lapping functions. ROPs 2 and 8 have been charac-

terized in some detail and cDNA sequences have

shown that although they are highly homologous

with one another they share no significant homol-
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ogy with any other proteins in the databases (Beck-

ers et al. 1994, 1997). Both possess single puta-

tive transmembrane segments 75 amino acids from

their respective C-termini. OP2 is secreted during

the process of penetration of T. gondii into the host

cell and is found in association with the membrane

lining the parasitophorous vacuole. Its N-terminal

domain is exposed on the cytoplasmic face of the

parasitophorous vacuole and may be involved in

the association of the vacuoles with cytoplasmic

organelles of the host cell such as the endoplas-

mic reticulum and mitochondria (Sinai et al. 1997,

Sinai and Joiner 2001). Little is known about the

other ROP proteins, which have been identified us-

ing monoclonal antibodies (Leriche and Dubre-

metz 1991). A novel rhoptry protein, designated as

BRP1, was recently identified in nascent organelles

found during the first division of bradizoites, but

not in tachyzoites (Schwarz et al. 2005).

The rhoptries of T. gondii have been isolated

by subcellular fractionation procedures and bio-

chemical analysis showed a lipid to protein ratio of

0.26, thus indicating their richness in proteins. The

cholesterol to phospholipid ratio was 1.48. Phos-

phatidylcholine was the major phospholipid (Fous-

sard et al. 1991). Proteomic analysis using mass

spectrometry of the fraction identified 38 novel pro-

teins. At least 11 of them were localized in the rhop-

tries, as shown by immunofluorescence microscopy.

Some are localized in the bulbous basal portion of

the organelle while others are restricted to the neck

portion, an observation which points to the existence

of different domains in the rhoptries. In addition

other proteins such as toxofilin, Rab 11, kinases

and phosphatases were also found in the rhoptry

(Bradley et al. 2006).

The rhoptries isolated from P. falciparum

merozoites showed a large number of proteins

(Etzion et al. 1991). A large number of rhoptry pro-

teins have been identified in Babesia, Plasmodium

and Eimeria (Review in Sam-Yellowe 1999). Many

of them present as a special feature the ability to bind

to erythrocytes.

DENSE GRANULES

The dense granules are spherical organelles distri-

buted throughout the cell rather than localized at

the apical complex, with a mean diameter of 0.2µm

(Fig. 4). Its matrix is uniformly electron dense due

to the high concentration of protein. Kinetic studies

have shown that secretion of the dense granule con-

tent takes place after parasite invasion and localiza-

tion within the parasitophorous vacuole persisting

for several minutes (Carruthers and Sibley 1997).

In contrast to secretion of micronemes and rhop-

tries, which takes place in the apical region, dense

granule secretion occurs at the lateral regions of the

protozoan. The secreted proteins associate with the

membrane of the parasitophorous vacuole and with

the parasite derived intravacuolar membranous net-

work. Proteins are delivered to the dense granule

by the bulk flow pathway (Coppens et al. 1999).

Proteins from which specific targeting signals for

other organelles have been deleted are localized in

the dense granules (Striepen et al. 2001, Reiss et al.

2001).

Several proteins have been identified in the

dense granules. GRA1 has a size of 22-27 kDa is rel-

atively abundant and remains either soluble within

the vacuole or loosely associated to the membra-

nous network. It binds Ca2+ with two EF hand

motifs and therefore has been considered to be in-

volved in homeostasis of this ion within the vacuole

(Cesbron-Delauw et al. 1989). GRA2 has a size

of 28.5 kDa and after secretion is tightly associated

with the membranous network (Mercier et al. 1993,

1998a) through two amphiphatic alpha-helical do-

mains (Mercier et al. 1998a, Sibley et al. 1995).

The expression of an HA9 epitope-tagged form of

GRA2 by stable transformation of T. gondii showed

that it is correctly packaged secreted and targeted.

Expression of deletion mutants lacking either of two

amphiphatic alpha helices resulted in the produc-

tion and secretion of proteins, which did not asso-

ciate in a stable way to the membranous network

(Mercier et al. 1998b). Based on the observation

that a GRA2 null mutant of T. gondii presents an
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Fig. 4 – Secretion of the dense granule content (arrows) in the lateral side of the tachyzoite form

of Toxoplasma gondii. D, dense granules; R, rhoptries. Bar, 0.35 µm. Courtesy of JF Dubremetz.

attenuated virulence to mice it has been suggested

that this protein plays some role in the virulence

of the parasite (Mercier et al. 1998b). GRA3 has

a size of 30 kDa and forms multimeric complexes

that associate with the membrane lining the vac-

uole through hydrophobic interactions (Ossorio et

al. 1994), although there is no predicted membrane-

spanning domain for it. However, it was recently

shown that GRA3 is actually an artificial chimera of

2 proteins. One, with a molecular weight of 65 kDa,

shares the C-terminus of GRA3 and the other, with

a predicted molecular weight of 24 kDa, shares the

N-terminal region and is recognized by antibodies

previously shown to label the dense granules. The

corrected GRA3 has a N-terminal secretory signal

sequence and a transmembrane domain, which ex-

plains its insertion into the membrane lining the par-

asitophorous vacuole (Henriquez et al. 2005).

GRA 4, 5, 6, 7 and 8 each have one putative

transmembrane segment and it has been suggested

that they may constitute the molecular sieve

that allows the passage of molecules smaller than

1900 Da across the vacuolar membrane (Schwab et

al. 1994). These proteins have a size in the range

of 21 to 32 kDa. The level of GRA 7 expression

is lower in a less virulent strain of T. gondii. An

additional form of GRA 7 with reduced mobility,

probably due to some modification of the protein

after exocytosis, was detected on the surface of in-

tact host cells (Neudeck et al. 2002). How this

protein reaches the host cell surface is not yet clear.

More recently a new protein, designated as GRA 9,

was identified. It is a 41 kDa protein, which as-

sociates with the tubular network found within the

PV (Adjogble et al. 2004). In addition to the GRA

series the dense granules also contain two closely

related isoenzymes of the nucleotide triphospha-

tase NTPase which are involved in breaking down

host-supplied di- and triphosphate nucleotides par-

ticipating in the purine salvage pathway, for which

T. gondii is auxotrophic (Asai et al. 1983, 1995, Sib-

ley et al. 1994) and in the initiation of the release

of the parasites from the vacuole (Stommel et al.

1997, Silverman et al. 1998) in a process which in-
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Fig. 5 – Stack of flattened lamellae (arrows), which form the Maurer’s cleft found in erythrocytes,

infected with Plasmodium falciparum. P, parasite. Bar, 0.25µm. After Przyborski et al. 2003.

volves depletion of ATP and increase in Ca2+ con-

centration (Stommel et al. 1997, Silverman et al.

1998). Two protease inhibitors have also been iden-

tified in the dense granules (Morris et al. 2002,

Pszenny et al. 2002).

THE MAURER’S CLEFT IN PLASMODIUM

Erythrocytes infected by P. falciparum show the

presence of a cytoplasmic structure, which is la-

beled when the cells are incubated in the presence

of anti-malaria antibodies, and observed by fluores-

cence microscopy (Tobie and Coatney 1961). Trans-

mission electron microscopy of thin sections of in-

fected erythrocytes revealed the presence of stacks

of flattened lamelae of long slender membranes with

a translucent lumen, usually located below the ery-

throcyte plasma membrane, and designated as Mau-

rer’s cleft (Fig. 5) (Trager et al. 1966, Langreth et

al. 1978). Variable aspects of this structure have

been extensively described in several Plasmodium

species (Review in Przyborski et al. 2003, Lanzer

et al. 2006). This structure has not been observed

in other members of the Apicomplexa group.

Several parasite proteins have been shown to

be localized in the Maurer’s cleft. They are syn-

thesized in the parasite ER and then transferred to

the cleft (Blisnick et al. 2005, Marti et al. 2005).

Subsequently they are transported to the erythro-

cyte surface. For some authors the Maurer’s cleft

is a well defined structure continuously supplied

with vesicles budding of from the membrane lining

the parasitophorous vacuole. Subsequently, vesi-

cles bud of from the cleft and migrate towards the

erythrocyte cell surface, with secretion of their con-

tents into the medium and incorporation of some

proteins in the erythrocyte plasma membrane. Vesi-

cles with a diameter of 100 nm have been identified

in infected erythrocytes. Homologues of COPI and

COPII proteins, which have been shown to play an

important role in transport of vesicles in mammalian

cells, were identified in P. falciparum (Adisa et al.

2002, Wickert et al. 2003). Other groups consider

that the Maurer’s cleft is part of a continuous net-

work that connects the PV to the erythrocyte cell

surface. This view, based on images obtained by

confocal laser scanning microscopy, has been con-

firmed by three-dimensional reconstruction of thin

sections (Wickert et al. 2003). According to this

view the secretory route would include insertion of

proteins in the PV membrane, which then would

move along the membrane network by lateral dif-

fusion. Only at the end of these tubular network

vesicles would they bud and fuse with the erythro-

cyte plasma membrane. A recent review covers
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well the process of protein transport and trafficking

in Plasmodium falciparum - infected erythrocytes

(Przyborski and Lanzer 2005). Another recent re-

view (Marti et al. 2005) analyses the functional role

played by several parasite proteins which concen-

trates in the Maurer’s cleft and are involved in pro-

cesses such as cytoadherence and import of serum

proteins.

CELL SECRETION IN TRYPANOSOMATIDS

Members of the Trypanosomatidae family present

a well developed endoplasmic reticulum-Golgi

complex system with the formation of coated and

uncoated vesicles which subsequently migrate to-

wards a specialized and polarized region of the cell

surface, known as the flagellar pocket, where they

fuse with the membrane (Figs. 6-7) (Reviews in De

Souza 1984, Landfear and Ignatushchenko 2001).

The flagellar pocket corresponds to a specialized re-

gion where most of the endocytic and exocytic ac-

tivities take place in the trypanosomatids. It is im-

portant to point out that the secretory vesicles do not

present a dense content and for this reason they are

not easily distinguished from the endocytic vesicles

which form at the flagellar pocket region and are in-

volved in the uptake of important macromolecules or

macromolecular complexes such as transferring and

LDL. At least three distinct groups of secretory prod-

ucts have been identified in trypanosomatids based

on their fate: (a) one group contains integral or pe-

ripheral proteins which are inserted into the flagellar

pocket and subsequently migrates to other regions

of the plasma membrane. The most evident exam-

ples include the synthesis and secretion of the variant

surface proteins (VSGs) found in bloodstream forms

of Trypanosoma brucei and which is involved in the

process of antigenic variation (Review in Borst et al.

1998) and cysteine proteinase (cruzin or cruzipain)

T. cruzi (Fig. 8) (Souto-Padrón et al. 1990); (b) The

second group are accumulated in special organelles,

as the megasomes of Leishmania (Figs. 9-10); (c)

the third group includes proteins that are released

into the flagellar pocket where they remain as sol-

uble proteins, as is the case of cysteine proteinase

(Fig. 11) and proteophosphoglycans in Leishmania

(Duboise et al. 1994, Foth et al. 2002), while oth-

ers polymerize within the pocket, as is the case of

acid phosphatase found in Leishmania (Stierhof et

al. 1994). How these different proteins are sorted is

not yet clarified. Studies carried with T. brucei have

shown that VSG lacking its GPI anchor is not effi-

ciently secreted. The proteins may be then mistar-

geted to the lysosome and is subsequently degraded

(Triggs and Bangs 2003).

CELL SECRETION IN GIARDIA

As in all eukaryotic cells, trophozoites of Giardia

lamblia synthesize proteins, which are incorporated

into its plasma membrane as well as are secreted

into the medium. These proteins are synthesized in

the endoplasmic reticulum. Ultrastructural and cy-

tochemical studies have shown that this protozoan

does not present a typical Golgi complex system,

although structures resembling this organelle can be

occasionally seen (Lujan et al. 1995a, Lanfredi-

Rangel et al. 1999, Marti et al. 2003, McCaffery

et al. 1994). Certainly the more elaborated secre-

tory system in Giardia occurs during the process of

transformation of the trophozoites into cystic forms,

when there is formation of a cyst wall (Review in

Marti and Hehl 2003). This process plays a funda-

mental role in the life cycle of the parasite allow-

ing the development of forms which resist to dras-

tic environmental conditions. Several studies have

shown that cyst wall proteins are synthesized in an

area of the endoplasmic reticulum where the cister-

nae is modified, forming a dilated region known as

the cleft (Lujan et al. 1995b, Lanfredi-Rangel et al.

2003, Gillin et al. 1996) (Figs. 12-13). Apparently

there is no participation of the Golgi complex in this

process. The cleft is continuous with the endoplas-

mic reticulum and lacks an electron dense content.

Gradually the cleft widen and become filled with a

homogeneously dense material formed by the con-

centration of the cyst wall proteins (CWP) (Figs.

13-14), as can be shown by immunocytochemical
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Fig. 6 – Anterior region of an amastigote form of Trypanosoma cruzi showing the flagellar

pocket (FP), two short flagella (F), the basal body (BB) and the kinetoplast (K). Vesicles

are seen close to the flagellar pocket (arrow). Bar, 0.25µm.

localization of these proteins. Although continuity

of this structure with the ER is evident, glucose-6-

phophatase, a classical enzyme marker of the ER, is

no more found in this structure (Lanfredi-Rangel et

al. 2003). Subsequently the dense vesicle, which

is now designated as an encystation vesicle (ESV),

increases in density (Figs. 15-17) and migrates to-

wards the periphery of the cell (Figs. 18-19). An-

other view of the process suggests that ER vesicles

containing CWP use to each other to form the ESV

(Marti and Hehl 2003, Marti et al. 2003). Analysis

of the genome data on G. lamblia led to the iden-

tification of orthologs to factors involved in vesicle

tethering and fusion, as soluble N-ethyl-maleimide-

sensitive fusion proteins, Sec-1 adapters, Rabs and

the COPI complex. Two syntaxin homologs and two

Rab GTPases, designed as Rab 1 and Rab 2, were

identified (Marti et al. 2003).

At the cell periphery, the ESV establishes con-

tact both with the inner portion of the plasma mem-

brane of the trophozoites as well as with the periph-

eral vesicles, acidic organelles that correspond to

an endosome-lysosome system (Lanfredi-Rangel et

al. 1998). The observation that cyst wall proteins

are processed by a cysteine proteinase localized in

the peripheral vesicles (Touz et al. 2002), suggests

that fusion of the ESV with the peripheral vesicles

takes place immediately before or simultaneously

An Acad Bras Cienc (2006) 78 (2)
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Fig. 7 – Freeze-fracture view of the anterior region of a promastigote forms of Herpetomonas. A

large number of vesicles (arrows) are seen within the flagellar pocket (FP). F, flagellum. Small

arrows point to an aggregation of intramembranous particles, which form the flagellar-cell body

adhesion structure. Bar, 0.12 µm. After De Souza et al. 1979.

Fig. 8 – Immunocytochemical localization of cysteine proteinase in epimastigotes of Trypanosoma

cruzi. This protein is synthesized in the ER and concentrated in structures which are part of the

endocytic pathway of this protozoan (asterisks) and in the plasma membrane (arrows). Bar, 0.5µm.

After Souto-Padrón et al. 1990.

with the fusion of the ESV with the cell surface.

It is important to point out that the cyst wall pro-

teins are not glycosylated but they have potential

N- and O-glycosylation sites (Lujan et al. 1995b,

Mowatt et al. 1995). It has been considered that

the cyst wall, which is formed by interconnected fil-

aments containing peptides and carbohydrate moi-

eties (Manning et al. 1992), is assembled as con-

sequence of exocytosis of the encystation vesicles

(Erlandsen et al. 1996, Gillin et al. 1991, 1996). For

some authors there is a dispersal of ESV into small

secretory vesicles before secretion (Marti and Hehl
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Figs. 9-11 – Immunocytochemical localization of cysteine proteinase in amastigotes of Leishmania

amazonensis. This protein is stored in the megasomes (M) and secreted into the flagellar pocket.

Labeling of the cell surface (arrow in figure 11) and of the cisternae of the endoplasmic reticulum

is observed. FP, flagellar pocket; K, kinetoplast; L, lipidic inclusion; M, megasome. Bar, 0.25µm.

Micrographs from T Ueda-Nakamura and W de Souza.

2003). More recently it was suggested that a typical

exocytosis does not occur. During membrane fusion

some membrane segments appeared to be disrupted

and released into the extracellular medium where

could be resealed forming empty vesicles (Benchi-

mol 2004).

During the period of encystation G. lamblia

maintains a constitutive pathway for the synthesis

of the variant surface proteins. These proteins are

not mixed with the ESV proteins. Therefore, the

protozoan may have sorting mechanisms to distin-

guish these two export pathways.

CELL SECRETION IN ENTAMOEBA

Members of the Entamoeba genus synthesize sev-

eral proteins, which are secreted. Cisternae of the

endoplasmic reticulum and a putative Golgi have

been identified by confocal microscopy of cells

labeled with NBD-ceramide ands by transmission

electron microscopy (Mazzuco et al. 1997). Bio-

chemical and molecular studies have shown

the presence of an endoplasmic reticulum retention

receptor ERD2, a cis-Golgi-associated transmem-

brane protein (Sanchez-Lopez et al. 1998). BiP,
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Figs. 12-19 – Different stages of the process of biosynthesis of cyst wall proteins during encystation of

Giardia lamblia. The process starts with the formation of clefts in the endoplasmic reticulum (arrows in

figure 12), accumulation of dense material within the clefts (arrows in Figs. 13-14), with the formation

of encystation vesicles (Figs. 14-17) which then migrates towards the cell periphery (Figs. 17-19).

N, nucleus. Bars, 0.4µm. After Lanfredi-Rangel et al. 2003.
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a known marker of the ER, has also been identi-

fied in E. histolytica (Ghosh et al. 1999). Proteins

present on the surface of E. histolytica, as the Ser-

rich protein and the Gal or GalNAc lectin are in-

serted into the plasma membrane via fusion of secre-

tory vesicles to the membrane. During the process

of encystation, which has been studied mainly in

E. invadens, proteins such as chitinase, localized

using an immunocytochemical approach, were seen

in many secretory vesicles (Ghosh et al. 1999). Dur-

ing encystation of E. histolytica trophozoites large

vacuoles with a densely packed filamentous content

were observed. They contained chitin since were

labeled when cells were incubated in the presence

of calcofluor (Chávez-Munguía et al. 2004). It

was suggested that these vacuoles are equivalent to

the encystation vesicles described during encysta-

tion of G. lamblia.
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RESUMO

Processos de secreção celular desempenham papel rele-

vante na biologia e no ciclo de vida de protozoários pato-

gênicos. A presente revisão analisa, sob uma perspec-

tiva de biologia celular, o processo de secreção em (a)

micronemas, roptrias e grânulos densos encontrados em

membros do grupo Apicomplexa, onde essas estruturas

participam da penetração do protozoário no interior da

célula hospedeira, na sua sobrevivência intravacuolar e

no posterior egresso da célula hospedeira, (b) a fenda de

Maurer, encontrada em Plasmodium, uma estrutura en-

volvida na secreção de proteínas sintetizadas pelo proto-

zoário intravacuolar e transportada, através de vesículas,

para a superfície do eritrócito, (c) a secreção de macro-

moléculas na bolsa flagelar de tripanosomatídeos, e (d) a

secreção de proteínas que fazem parte da parede cística de

Giardia e Entamoeba e que se concentram nas vesículas

de encistamento.

Palavras-chave: protozoários parasitas, secreção celu-

lar, apicomplexa, tripanosomatídeos, vesículas de encis-

tamento.
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