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Abstract: A study on aerosols in the Brazilian subequatorial Amazon region, Tangará 
da Serra (TS) and Alta Floresta (AF) was conducted and compared to findings in an 
additional site with background characteristics (Manaus, AM). TS and AF counties suffer 
from intense biomass burning periods in the dry season, and it accounts for high levels 
of particles in the atmosphere. Chemical characterization of fine and coarse particulate 
matter (PM) was performed to quantify water-soluble ions (WSI) and black carbon (BC). 
The importance of explanatory variables was assessed using three machine learning 
techniques. Average concentrations of PM in AF and TS were similar (PM2.0, 17±10 µg m-3 (AF) 
and 16±11 µg m-3 (TS) and PM10-2.0, 13±5 µg m-3 (AF) and 11±7 µg m-3 (TS)), but higher than the 
background site. BC and SO4

2- were the prevalent components as they represented 27%–
68% of particulates chemical composition. The combination of the machine learning 
techniques provided a further understanding of the pathways for PM concentration 
variability, and the results highlighted the influence of biomass burning for key sample 
groups and periods. PM2.0, BC, and most WSI presented higher concentrations in the dry 
season, providing further support for the influence of biomass burning. 

Key words: biomass burning, CIT, particulate matter, random forests, secondary inorganic 
aerosol.

INTRODUCTION
The Brazilian Amazon is the world’s largest 
t rop ical–fores t  reserve  represent ing 
approximately one-third of forests on the 
globe. Forest exploitation in the Amazon, has 
significantly increased in the last few decades 
since the timber supply in Southern Brazil has 
come to exhaustion. Moreover, infrastructure 
developments, such as the construction of 
roads, hydroelectric power plants, and large 
settlements, have also become increasingly 

common in the Amazon. Additionally, current 
deforestation practices, often linked to wildfire, 
degradation caused by natural resources 
extraction, and also by new settlements 
disorderly implemented, are among the main 
causes of anthropic disturbance in forest sites. 
These practices, along with natural forest events, 
have a profound impact on ecological damage 
and carbon emissions (Bullock et al. 2020).

The Amazon region has a wet tropical 
climate, with two well-defined seasons: the 
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rainy summer season and the dry winter 
season. Biomass burning is often observed 
over the Amazon in the dry season, and this is 
the main anthropogenic source of particle and 
gas emissions. Huge amounts of greenhouse 
gases and aerosol particles are released during 
wildfire events, and they threaten biodiversity 
and local population. In addition, intense carbon 
emissions have a negative impact on the Amazon 
climate by altering biogeochemical processes 
(Cammelli et al. 2020, Covey et al. 2021, Silva et 
al. 2021). Cloud droplets are formed by water 
vapor condensation in aerosol particles emitted 
from fire events. These particles can affect cloud 
properties and, consequently, atmospheric 
dynamics and radiative balance (Takeishi et 
al. 2020). Therefore, large amounts of aerosol 
particles from forest fire events contribute to 
cloud condensation nuclei (CCN) formation 
in small water-vapor volumes. This process 
decreases the possibility of large droplets’ 
formation and, consequently, contributes to 
cloud longevity (Twomey 1959, Albrecht 1989, 
Liu & Daum 2002, Takeishi et al. 2020). Aerosol 
particles have a major influence on health due 
to their size range and chemical composition 
variability. Forest wildfire in the dry season 
has an adverse effect on human health in the 
Amazon region since it increases the emission of 
PM. This air quality degradation spreads to other 
regions due to wind action raising the number of 
hospitalizations and death (especially children 
and elderlies), associated with breathing and 
cardiovascular diseases (Butt et al. 2020, Rocha 
& Sant’Anna 2022, Urrutia-Pereira et al. 2021). 
Fire events influence the biogeochemical cycles 
of trace elements, affecting essential nutrients, 
such as P, N, K, C and S, causing environmental 
imbalance. Acid deposition in ecosystems is a 
result of biomass burning, influenced by acetic 
and formic acid emissions, and associated to 
photochemical formation of NO3

- and SO4
2- (Costa 

et al. 2022). Furthermore, aerosol particles 
emission from biomass burning is not only a 
regional but also a global concern as biomass 
burning plumes are capable of traveling long 
distances affecting climate and health at the 
global scale.

Mato Grosso is among the states that are 
most affected by wildfire events in the Brazilian 
Amazon region. Since the 1970s, this state has 
been undergoing a sharp transformation in 
its territory influenced by the opening of large 
agricultural areas, which is detrimental to the 
Amazon and Cerrado biomes. This deforestation 
process drives the expansion of frontiers for 
agricultural and grazing activities, as well 
as boosts urbanization processes. However, 
deforestation and wildfire rates have not 
changed in this same proportion over the years, 
mainly the ones observed in the dry season, 
especially between July and November (De 
Oliveira et al. 2022). 

The aim of the present study was to 
determine the chemical composition of 
aerosols collected in two regions in Mato 
Grosso State: Alta Floresta (AF) and Tangará da 
Serra (TS) affected by the burning of different 
biomass types: pasture and forest, respectively. 
To ensure the objectives our methodology is 
based on aerosol chemistry and use of machine 
learning algorithms (Conditional Inference 
Trees — CIT, Random Forests, and Hierarchical 
Clustering Analysis – HCA). The current study 
also contributes about the collected data of 
these regions. Additionally, we have included 
information on a third Amazonian site (Manaus), 
which serves as a background site, to enrich the 
discussion and long-term comparison of AF and 
TS.
MATERIALS AND METHODS
Sampling sites
Sampling was carried out in Tangará da Serra (TS, 
14 ° 37’ 10” S, 57 ° 29’ 09” W, 427 m asl) and Alta 
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Floresta (AF, 9 ° 52 ‘32” S, 56 ° 5’ 10” W, 283 m asl) 
counties, Mato Grosso (MT) State, subequatorial 
Amazon region (Figure 1). These two sites belong 
to a region susceptible to drought and rain cycles 
that alter the local air pollution levels affecting 
the quality of life. These sites are located in the 
pollution dispersion path that originates from 
both the Brazilian Amazon and neighboring 
countries (Freitas et al. 2005, Martin et al. 2010). 

Tangará da Serra is located in Southwestern 
Mato Grosso State. Wildfire events influences 
the community air quality and it is partially 
attributed to sugarcane leaves burning by the 
surrounding neighborhood, typically after the 
harvest season. Tangará da Serra community 
developed from “poaia” (Cephaelis ipecacuanha) 
forest exploitation because of its medicinal 
properties. Later on, loggers were attracted to 

this region initiating the forest devastation. At 
that time, agriculture was the main activity and 
practiced on open land. Currently it remains 
as the main activity in the area with soybean 
and sugarcane being the prevailing cultures. 
Additionally, livestock is currently in expansion 
in the region. 

Alta Floresta is located in Northern 
Mato Grosso State, 800 km far from TS and 
its terrain has typical characteristics of the 
Amazon rainforest. Wildfire events in this region 
originates from pasture and forest burning. The 
local community was settled during the Amazon 
Rubber Boom in the 1970s and the region 
underwent further development during the gold 
rush in the 1980s (Hacon et al. 2000, Lacerda 
et al. 2004). Nowadays, the local economy is 
driven by cattle breeding, timber industry, and 

Figure 1. Communities of Alta Floresta and Tangará da Serra, state of Mato Grosso, subequatorial Amazon.
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dairy production. Adding to these two regions 
(AF and TS), air pollution concentrations were 
compared to samples collected in a remote area 
(Rebio Cuieiras, ZF2 - 2°35’22 “S, 60°06`55” W), 
approximately 80 km from Manaus, AM, to assess 
air pollution magnitude in AF and TS. This region 
is covered by dense rainforest, and accounts for 
low anthropogenic impact.

Particles sampling
Particulate matter (PM) samples were 
continuously collected for 24 h or 48 h, using 
stacked filter units (SFUs) fitted to PM10 inlet, 
which separates particles into coarse (2.0–10 
µm in aerodynamic diameter, PM10-2.0) and fine 
(diameter smaller than 2.0 µm, PM2.0) fractions. 
Polycarbonate filters, 47 mm in diameter 
(Millipore Corporation, Billerica, MA, USA):  coarse, 
8-µm in diameter, and fine pore size, 0.4-µm 
in diameter, were used in the aforementioned 
system. The flow rate was approximately 16 L 
min-1. In total, 99 fine and coarse samples were 
collected in Alta Floresta, 96 fine and coarse 
samples were collected in Tangará da Serra, and 
50 fine and coarse samples were collected in 
Manaus and used in the current study (Table I). 

Analyses 
Particle mass was determined through 
gravimetric analysis. Filters were weighed and 
conditioned at 21.5 °C ± 2 °C, at 42.5% ± 5% 
humidity, before and after sampling. The filters 
were weighed on an analytic scale (Mettler scale) 
every day until no more variations were found in 
the readings. The criteria was based on three 
consecutive measurements whose standard 
deviation did not vary larger than 0.00002 g. 

Black carbon (BC) concentration was 
determined through the light reflectance 
technique (Andreae et al. 1984). The BC 
concentration is proportional to the reflection 

absorbance of the light source illuminating the 
sample. Filters loaded with known amounts of 
BC resulting from acetylene combustion were 
the reference samples. 

Polycarbonate filters were extracted with 
10.0 mL ultrapure water and stirred for 10 
minutes. Subsequently, samples were filtered 
in 0.45 µm membranes and analyzed. Samples 
ionic concentrations were determined using the 
Dionex ion chromatography system (model DX-
120, for cations; and model ICS-2000, for anions). 
Six anions: CH3COO− (acetate), HCOO− (formate), 
Cl-, SO4

2-, NO3
- and PO4

3-; and five cations: NH4
+, 

Ca2+, Mg2+, K+ and Na+ were measured. Eluent KOH 
concentration ranging from 10 to 52 mmol L-1 was 
used for anions analysis by using IonPac AS-19 
(4 mm) column. IonPac CS-12A (4 mm) column, 
and H2SO4 at 10 mmol L-1 were used as eluent for 
cations. Samples were analyzed in triplicate and 
the detection limit of each ion was computed 
as the blank average, plus two times the blank 
standard deviation. A calibration check with 
external standards was performed to ensure ± 
5% accuracy for cations and anions. 

Ultrapure filtered and unfiltered water 
was analyzed before extraction to assess and 
ensure the quality control. Blank filters were 
simultaneously processed with sample filters. 
Mean values recorded for species in the blanks 
were subtracted from each sample filter. A 
calibration check was performed in intervals of 10 
samples to ensure a relative standard deviation 
not higher than 10%. Recovery efficiency rates 
were higher than 90%.

Source apportionment

Hypothesis testing

Mann–Whitney (p < 0.05) and Pearson´s tests were 
used to determine similarities and correlations 
among samples and sites, respectively. These 
statistical analysis methods were conducted in 
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GraphPad Prims 6.0 (GraphPad Software, Inc., 
San Diego, CA). 

Left-censored data
Dealing with left-censored data is a frequent 
challenge in environmental research. It is well 
known that simple number imputation or variable 
removing approaches lead to biased conclusions 
(Palarea-Albaladejo & Martín-Fernández 2015). 
Information provided by left-censored data was 
processed in R package zComposition, based on 
the compositional approach (Palarea-Albaladejo 
& Martín-Fernández 2015).

Conditional Inference Trees (CIT)
PM mass concentration may be expressed based 
on its chemical components. Undoubtedly, there 
are other factors, such as meteorology, that 
interact with chemical components (e.g., the 
effect of seasonality) and play an important role 
in PM concentration. Therefore, CIT analysis was 
carried out by considering chemical speciated 
PM components and a dichotomous variable 
called “Season” which assumes binary value (0 = 
Wet and 1 = Dry). A conditional distribution can 
be written by m-dimensional covariate X = (X1, 
X2, …, Xm) if PM mass concentration is taken as 
variable Y response:

D(Y∣X )=D(Y∣X1 , X2 ,…, Xm)=(Y∣f (X1 , X2 ,… , X m))

Wherein, is a function of the covariate. The binary 
partitioning algorithm is based on the non-
negative integer valued case weight vector, given 
a population ϕn with n cases. The case weight 
vector W assumes zero value for observations 
for each node of the tree; otherwise, they are 
not elements of the hole node and nonzero 
integer. The analysis was carried out by using 
function ctree in the R package party (Hothorn 
et al. 2006).

Random forests
Random forests are a nonlinear and 
nonparametric statistical method that is the 
further development of the so-called bagging or 
bootstrap aggregation (Breiman 2001). Random 
forests are an ensemble learning method that 
operates from a decision tree architecture. This 
technique is a major data analysis tool used in 
many scientific fields, and it can be particularly 
useful when it comes to small datasets that 
carry a large amount of information, the so-
called “small n large p” problems. However, the 
method is not reliable when predictors varies 
by different orders of magnitude or in number 
of categories (Strobl et al. 2007). In this study, 
the selection of variables was based on a CIT 
logic origin framework rather than in traditional 
classification analysis and regression trees 
(CART) (Strobl et al. 2007). The analysis was 
performed using the cforest function in the R 
package party (Hothorn et al. 2005, Strobl et al. 
2007, 2008).

Hierarchical clustering analysis (HCA)
Hierarchical clustering analysis (HCA) aims at 
finding the distance between samples that is 
represented in a two-dimensional space (i.e., 
dendogram) and based on a specified metric. It is 
of widespread use in data analysis and it provides 
a simple and intuitive graphical output. Although 
HCA have these appealing characteristics, the 
clusters accuracy and reproducibility can be 
questionable. To mitigate this drawback the 
multistep–multiscale bootstrap resampling 
was used and implemented using the pvclust 
package available in R language (Suzuki & 
Shimodaira 2006). The aim of the multistep–
multiscale bootstrap resampling is to ensure 
data structure reliability based on approximately 
unbiased (AU) p-value estimates, rather than on 
regular bootstrap probability (BP) estimates.
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RESULTS
Particulate matter concentrations
Supplementary Material - Figure S1 displays 
time series of the particulate matter. The figure 
includes two sampling sites (TS and AF) and 
both seasonal campaigns. A closer inspection 
of the aerosol frequency distributions, indicates 
that concentrations ranged between 6 and 15 
µg m-3 in both particle sizes. The mean fine 
particle concentrations at TS and AF sites were 
similar (17 ± 10 in TS and 16 ± 11 µg m-3 in AF), 
and significantly differs from the background 
site (i.e., 1.35 ± 0.93 in Manaus). However, PM10-2.0 
was slightly lower in TS (11 ± 7 µg m-3) than in AF 
(13 ± 5 µg m-3) and, again, it was higher than in 
Manaus (4 ± 2) (Table I). 

Chemical composition of particulate matter
Mean ionic compositions (the sum of cation 
and anion concentrations) in PM2.0 were 1.7 
µg m-3 (TS), 2.0 µg m-3 (AF), and 0.4 µg m-3 
(Manaus). These values represent approximately 
10%–13% of total particle mass for TS and AF, 
and approximately 29% for Manaus. Mean 
concentrations in PM10-2.0 were 0.84 µg m-3 (TS), 
0.79 µg m-3 (AF), and 0.37 µg m-3 (Manaus). These 
values accounts for 6%-10% of total particle 
mass. BC represented approximately 8%–9% of 

the total fine concentrations and 1%–2% of the 
total PM10-2.0 concentrations. The black carbon 
and SO4

2- represented 30%-68% of the total 
PM concentrations at both TS and AF sampling 
sites. Such behavior is similar to that observed 
in Manaus (27%-63%) (Figure S2).

Influence of biomass burning
PM concentrations have indicated interesting 
differences. The highest PM concentrations were 
observed in the dry season (Table I), from June 
1 to October 31 (Echalar et al. 1998). The mean 
PM2.0 concentrations, at both sampling sites, 

were approximately two times higher in the dry 
(18-20 µg m-3) compared to the wet season (7 µg 
m-3). Similarly, concentrations in Manaus were 
higher in the dry season (Table I). Despite these 
similar characteristics, the concentration levels 
at Manaus were much lower than at TS and AF. 

PM level measured in the present study 
were considerably lower than those reported 
by previous studies. The first study performed 
in AF (Aug/Set 1992-1993) recorded mean 
concentrations of 84 (± 54) µg m-3 for fine 
particles (Hacon et al. 1995). This value is four 
times higher than reported in our study. A 
second investigation (1992–1995) showed that 
fine particle concentration had decreased, 
compared to the first study, to 47 (± 41) µg m-3 
in the dry season and to 5.5 (± 3.5) µg m-3 in the 
wet season (Echalar et al. 1998). The next study 
(1996 and 1998) showed slightly higher fine 
particle concentrations compared to Echalar 
work (et al. 1998). The values were 63 (± 55) µg 
m-3 in the dry season and 9.9 (± 9.9) µg m-3 in the 
rainy season, on average (Maenhaut et al. 2002). 
Measurement performed between 2004–2005, 
showed a subsequent decrease in the average 
fine particle levels, corresponding to 33–44 µg 
m-3 during the biomass burning period, and 2.5 
µg m-3 when there were no fire events (Carmo et 
al. 2010, Ignotti et al. 2010). While these available 
studies significantly enhance our knowledge of 
the PM behavior at AF, the same does not stand 
in the same proportion at TS. The measured 
mean fine particle concentration, in the dry 
season, during the 1990s, was as high as 400 µg 
m-3 (Artaxo et al. 1988, Maenhaut et al. 1998) and 
dropped between 210–258 µg m-3 in the early 
2000s (Carmo et al. 2010, Ignotti et al. 2010). In 
2004–2005, the estimated mean fine particle 
concentration in the dry season was 31 (± 29) 
µg m-3 (Carmo et al. 2010, Ignotti et al. 2010). 
Maximum concentrations recorded in this study 
ranged from 41 to 56 µg m-3. Overall, the average 
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Table I. Average, standard deviation, and range concentrations of the aerosol samples collected in Alta Floresta, 
Tangará da Serra, and Manaus. Dry season refers to biomass burning period (June 1 to October 31) and wet season 
for the other months.

Alta Floresta Tangará da Serra Manaus

Coarse Fine Coarse Fine Coarse Fine

N

Whole 99 99 96 96 50 50

Wet 30 30 21 21 31 31

Dry 69 69 75 75 19 19

PM 
(µg m-3)

Whole 
period
Range

13.3 ±5.5
(3.5-36.0)

16.8 ±9.9
(0.8-40.9)

11.2 ±7.4
(2.4-40.5)

15.9 ±11.3
(2.7-55.9)

3.7 ±2.0
(0.6-9.0)

1.5 ± 0.9
(0.38-4.2)

Wet 
season 13.2 ±3.5 7.4 ±2.6 6.0 ±5.7 7.2 ±3.9 4.5 ±1.8 1.1 ±0.6

Dry 
season 13.4 ±6.3 19.7 ±9.2 12.7 ±11.4 18.3 ±11.5 2.3 ±1.5 2.0 ±1.1

BC* 
(µg m-3)

Whole 
period
Range

0.17 ±0.09
(0.05-0.55)

1.39 ±0.78
(0.30-2.90)

0.21 ±0.16
(0.04-0.62)

1.36 ±0.90
(0.26-3.73) 0.07±0.06 0.20±0.13

Wet 
season 0.14 ±0.03 0.68 ±0.22 0.09 ±0.08 0.61 ±0.29 0.06±0.017 0.09±0.06

Dry 
season 0.19 ±0.11 1.69 ±0.72 0.24 ±0.19 1.56 ±0.89 0.07±0.02 0.32±0.20

Acetate 
(ng m-3)

Whole 
period
Range

49.1 ±45.2
(nd-380.0)

34.0 ±29.5
(nd-300.0)

56.5 ±29.5
(nd-90.1)

55.4 ±50.5
(nd-140.2)

21.9 ±19.5
(nd-86.7)

52.9 ± 67.2
(nd – 281.1)

Wet 
season 77.9 ±76.5 50.8 ±43.8 56.5 ±29.5 76.1 ±44.1 19.5 ±16.4 60.0 ±79.1

Dry 
season 36.0 ±34.0 27.3 ±13.4 nd 3.6 ±0.5 26.9 ±24.8 44.5 ±43.6

Formate 
(ng m-3)

Whole 
period
Range

30.1 ±29.5
(nd-360.0)

43.9 ±42.9
(nd-320.1)

12.1 ±8.6
(nd-41.1)

30.3 ±20.8
(nd-80.1)

34.8 ±47.6
(nd-204.4)

67.0 ±82.1
(nd – 406.1)

Wet 
season 37.3 ±32.3 36.3 ±0.23.9 9.4 ±6.7 13.3 ±12.2 31.9 ±51.3 56.0 ±61.0

Dry 
season 28.4 ±25.4 47.0 ±41.6 13.0 ±9.0 32.5 ±20.3 38.9 ±33.7 93.0 ±113

Cl-

(ng m-3)

Whole 
period
Range

62.1 ±61.4
(nd-520.9)

59.4 ±49.5
(nd-557.0)

7.8 ±7.5
(nd-42.3)

8.6 ±7.8
(nd-60.1)

30.9 ±47.6
(nd-291.4)

4.6 ±5.8
(nd-34.3)

Wet 
season 107.0 ±99.0 126.8 ±118.5 5.2 ±4.5 5.4 ±4.0 41.8 ±56.8 3.3 ±3.1

Dry 
season 42.3 ±42.0 35.3 ±27.1 8.5 ±7.9 9.4 ±6.3 11.4 ±4.8 7.2 ±8.5

NO3
-

(ng m-3)

Whole 
period
Range

127.1 ±127.7
(nd-940.0)

59.7 ±58.5
(nd-640.0)

75.5 ±70.2
(nd-352.0)

59.4 ±50.8
(nd-530.5)

104.0 ±300.7
(nd-1958)

4.7 ±4.3
(nd-20.6)

Wet 
season 134.6 ±81.3 90.8 ±89.5 17.3 ±14.9 40.1 ±38.1 121.5 ±358.3 4.0 ±3.3

Dry 
season 124.2 ±120.5 54.1 ±46.3 91.7 ±89.5 64.6 ±48.7 6.5 ±8.4 6.4 ±6.4
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PO4
3-

(ng m-3)

Whole 
period
Range

53.1 ±40.6
(nd-190.1)

60.3 ±23.7
(nd-235.6)

16.2 ±9.9
(nd-480.2)

12.2 ±7.6
(nd-41.0)

29.7 ±16.9
(nd-84.2)

1.3 ±1.4
(nd-4.8)

Wet 
season 55.0 ±44.2 87.7 ±72.2 8.2 ±4.5 14.9 ±8.4 36.5 ±15.1 1.6 ±1.3

Dry 
season 52.1 ±32.6 48.4 ±46.3 18.5 ±9.9 11.2 ±7.2 17.6 ±12.7 0.81 ±1.43

SO4
2-

(ng m-3)

Whole 
period
Range

102.7 ±85.9
(10.0-550.2)

895.1 ±646.8
(10.2-2930)

235.2 ±225.7
(10.1-1660)

684.0 ±523.7
(10.0-1920.1)

42.3 ±41.9
(1.3-209.9)

173.8 ±97.6
(32.3-507.8)

Wet 
season 104.0 ±94.0 387.0 ±359.0 185.8 ±158.0 141.7 ±120.7 51.4 ±49.0 152.2 ±82.4

Dry 
season 102.2 ±55.4 1105.6 ±566.0 409.3 ±352.0 833.9 ±482.3 26.2 ±16.1 213.4 ±115.6

Na+

(ng m-3)

Whole 
period
Range

93.2 ±91.5
(nd-710.3)

62.0 ±61.5
(nd-351.0)

53.6 ±50.5
(nd-210.6)

72.1 ±62.5
(nd-350.7)

35.5 ±36.2
(nd-117.3)

16.3 ±10.6
(nd-49.8)

Wet 
season 75.1 ±65.7 39.2 ±36.6 36.6 ±34.6 44.8 ±21.2 37.5 ±38.3 11.9 ±5.9

Dry 
season 101.7 ±101.2 71.8 ±69.5 58.7 ±58.0 79.1 ±45.1 31.9 ±32.7 25.9 ±12.9

K+

(ng m-3)

Whole 
period
Range

86.1 ±55.5
(nd-240.4)

288.4 ±209.6
(nd-910.0)

85.1 ±70.9
(nd-420.7)

257.0 ±249.3
(10.0-600.0)

42.6 ±27.2
(1.1-95.0)

25.9 ±22.0
(3.8-86.2)

Wet 
season 110.9 ±68.0 80.0 ±69.2 108.7 ±83.0 57.0 ±41.4 54.3 ±23.0 18.0 ±16.2

Dry 
season 73.2 ±43.2 351.8 ±196.5 78.3 ±71.3 312.3 ±108.9 21.9 ±21.4 41.4 ±23.4

Mg2+

(ng m-3)

Whole 
period
Range

28.8 ±13.9
(nd-71.0)

15.7 ±12.5
(nd-70.1)

36.0 ±28.9
(nd-160.2)

21.8 ±15.8
(nd-80.7)

5.5 ±4.8
(nd-25.8)

1.5 ±1.5
(nd-6.1)

Wet 
season 20.0 ±9.0 4.8 ±1.3 11.1 ±8.9 18.6 ±11.5 6.6 ±5.3 1.3 ±1.4

Dry 
season 32.2 ±14.1 17.1 ±12.6 43.2 ±23.8 22.8 ±16.8 3.7 ±3.1 1.75 ±1.65

Ca2+

(ng m-3)

Whole 
period
Range

83.7 ±60.0
(nd-281.0)

62.0 ±43.1
(nd-290.1)

119.0 ±80.6
(nd-440.4)

49.4 ±39.5
(nd-84.5)

8.1 ±8.0
(nd-42.2)

3.7 ±4.0
(nd-21.3)

Wet 
season 33.6 ±28.6 21.2 ±18.2 53.9 ±24.6 43.6 ±22.0 9.0 ±8.7 4.0 ±4.4

Dry 
season 90.2 ±58.2 74.6 ±40.7 124.6 ±81.4 51.4 ±41.5 5.8 ±5.6 3.12 ±3.24

NH4
+

(ng m-3)

Whole 
period
Range

73.2 ±60.5
(nd-423.2)

464.3 ±321.1
(nd-1200)

146.1 ±137.8
(nd-701.5)

414.1 ±288.2
(nd-1320)

1.2 ±1.0
(nd-4.8)

43.4 ±25.8
(nd-96.6)

Wet 
season 130.6 ±102.4 121.2 ±116.5 254.2 ±152.2 176.6 ±121.6 1.4 ±1.0 37.7 ±24.6

Dry 
season 40.1 ±33.4 599.4 ±267.5 100.5 ±92.2 434.2 ±189.7 0.9 ±0.8 61.7 ±21.8

nd: below of detection limits; *from Arana & Artaxo 2014.

Table I. Continuation.
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fine particle concentrations indicate a decrease 
in the last few decades, in both AF and TS sites. 

A significant difference (p < 0.05) in PM10-2.0 

concentrations between the dry (13 ± 11 µg m-3) 
and the wet (6 ± 6 µg m-3) seasons was observed 
in TS, however, the same did not stand for AF (13.4 
and 13.2 µg m-3) (Table I). Differences between 
the dry and the wet seasons resulted from the 
fact that the dry period at 2008 in AF extended 
for longer than in TS, thus resulting in greater 
soil-particle resuspension. In 1992–1993, high 
coarse particle (260 ± 180 µg m-3) concentrations 
were measured in AF in the dry season, with 
extreme values as high as 600 µg m-3 (Hacon et 
al. 1995, Artaxo et al. 1994). Between 1992 and 
1998, mean coarse particle concentrations in AF 
ranged between 34 to 37 µg m-3 in the dry season 
and 15 to 16 µg m-3 in the wet season (Echalar et 
al. 1998, Maenhaut et al. 2002). Similar to what 
was observed for the fine fraction, there has 
been a decrease in coarse particulate matter 
concentrations in recent decades. A different 
scenario was identified in Manaus since coarse 
particle concentrations were higher in the wet 
season (4.5 µg m-3) than in the dry season (2.4 
µg m-3).

Biomass burning in Brazil is continuously 
monitored by satellites from the National 
Institute for Space Research (INPE) network. 
According to data provided by INPE, one of the 
lowest numbers of fire events in Mato Grosso 
State was registered in 2008. A biomass burning 
reduction trend has been observed in AF since 
2004, but the same trend has not been observed 
in TS (Figure S3). An increase in the number of 
fire events is also associated with longer drought 
periods, as observed in 2010. 

The mean BC concentration in PM2.0 during 
the dry season (1.6–1.7 µg m-3) was approximately 
three times higher compared to the wet 
season (0.6–0.7 µg m-3) (Table I). The mean BC 
concentration in PM10-2.0 was 0.2 µg m-3, with half 

this value accounting for the wet season and 
half for the dry season (0.1 µg m-3, each). Black 
carbon accounted for more than 40% of PM2.0 and 
20% of PM10-2.0. Furthermore, this finding showed 
a close correlation (r = 0.95) between BC and 
PM2.0. The BC:PM2.0 ratio, in average, was within 
similar range (5 to 14%): 9% ± 2% for both AF and 
TS. The BC:PM2.0 pattern in AF was different from 
that observed in previous studies that recorded 
higher variability and means (Echalar et al. 1998). 

K+ in the current study ranged from 1.6% to 
1.7%, which are similar to that found in plants 
(1.8%) (Bowen 1979). The mean recorded ratios 
ranged from 7 to 8 in the dry season and from 
0.9 to 1.1 in the wet season and there were close 
correlations between BC and K+ (r = 0.75–0.85).

Secondary inorganic aerosol and neutraliza-
tion effects
The secondary inorganic aerosol fraction 
(SIA) is an important PM component, and it is 
calculated by the sum of SO4

2-, NO3
- and NH4

+. 
SIA represented approximately 7.1% of PM2.0 at 
TS (1.1 µg m-3) and 9.2% of PM2.0 at AF (1.4 µg m-3). 
On the other hand, the mean rate for PM10-2.0 was 
4.9% at TS (0.39 µg m-3) and 1.9%at AF (0.25 µg 
m-3). SIA was more representative for PM2.0 (15%) 
in Manaus and it presented similar values to the 
ones at TS (4%), recorded for PM10-2.0. Taking into 
account the seasonal basis, SIA concentrations 
in PM2.0 were four to six times higher in the dry 
than in the wet season. No significant differences 
were observed for PM10-2.0. Manaus showed no 
seasonal variations in the two assessed particle 
sizes. SIA showed a close correlation to PM2.0 (r 
= 0.75). Ammonium sulfate (NH4)2SO4 presented 
higher concentrations (0.9-1.2 µg m-3) in PM2.0 

than ammonium nitrate, NH4NO3 (0.08 µg m-3). 
Although (NH4)2SO4 concentrations were much 
higher in the dry season than in the wet season, 
there were no significant changes in NH4NO3 
levels. SIA plays a key role in quality of the 
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air, climate change and, more specifically, in 
ecosystems’ acidification. Mean BC:SIA ratio was 
higher than 1 for PM2.0, but it was lower than 1 for 
PM10-2.0 in the current research. 

The neutralization ratio (NR) was calculated 
as [NH4

+]/[SO4
2-] + [NO3

-] to assess PM acidity. 
Annual and seasonal NRs, at both AF and TS 
sites, ranged from 0.2 to 0.5 and such finding 
indicates no neutral particles. NO3

-:SO4
2- ratios 

showed inorganic ion prevalence in acidity 
outcomes. This ratio also pointed out nitrogen 
and sulfur mobile versus stationary sources 
in the atmosphere, respectively (Arimoto et 
al. 1996). We herein observed sulfate sources 
prevalence, since mean NO3

-:SO4
2- ratios were 

lower than 1. Seasonal variation in NO3
-:SO4

2- 
ratios recorded for PM2.0 were observed, with the 
lowest ratios recorded in the dry season (0.08-
0.20) and the highest ratios in the wet season 
(0.9). The NO3

-:SO4
2- ratios for PM10-2.0 were close 

to, or higher than, 1, and seasonality was not 
observed. A similar NO3

-:SO4
2- ratios dynamics 

observed in AF and TS was also observed in 
Manaus.

Stochastic models 

Coarse Mode: Alta Floresta

CIT consisted of 7 nodes, including 4 terminal 
nodes (Figure 2). BC concentration was the most 
important splitting variable for the root node. 
However, other water-soluble ions, such as Mg2+, 
Ca2+ and K+, were also highly important, due to 
the emission of vegetation in the region. Release 
of various ions to the atmosphere in particulate 
matter occurs during transpiration. The overall 
effect of seasonality (i.e., “Season”) presented 
a low ranking, as assessed through hypothesis 
testing. This finding justifies single tree use to 
classify predictors for PM samples from both the 
dry and the wet seasons.

Three main sources have influenced 
PM concentration at AF. These sources are 
represented through nodes 1, 2 and 4. Node 
1 yielded to terminal node 7 – mean coarse 
particle mass (CPM) = 22 µg m-3 –, which is fully 
associated with dry season samples. The high 
BC content assigned to this terminal node 
reinforces the idea that biomass burning is a 
key factor to negatively modify air quality in AF. 8
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Figure 2. Conditional inference 
trees (CIT) for coarse mode 
aerosol data at Alta Floresta. 
In the CIT, n is the number of 
samples classified in a given 
node, and the coarse mode 
aerosol concentration is 
shown in the unit of µg m-3.
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Furthermore, the investigation of substructures 
in terminal node 7 points towards some degree 
of BC/ K+ correlation (Figure S4).

Node 4 yielded to terminal nodes 5 (CPM[mean] 
= 10.7 µg m-3) and 6 (CPM[mean] = 13.5 µg m-3). 
These two nodes share PO4

3- related sources as 
a common feature. part in the coarse mode is 
often attributed to primary biological aerosol 
(PBA) in the Amazon Basin. Phosphorous has a 
good association with coarse mode, which was 
supported through different statistical analyses 
(Mahowald et al. 2005). We herein found a close 
association between PO4

3- and K in terminal 
node 6 (Figure S5). There was little indicative of 
seasonality in PBA emissions if one considers the 
ratio of dry:wet season samples. However, PO4

3-

-related sources indicated by terminal node 5 
presented higher dry season ratio samples than 
the wet season (Figure S6). Although reports on 
phosphorous losses during biomass burning 
are scarce, studies carried out in situ suggested 
approximately 60% loss (Mahowald et al. 2005). 

Node 2 yielded to terminal node 3 (CPM[mean] 
= 7.9 µg m-3). Although this node presented the 

lowest CPM, high sample rates were associated 
with the dry season. According to the HCA 
approach (Figure S6), there is statistical support 
for an association between PO4

3- and coarse 
mode K+, as well as for formate and NH4

+. The 
association between PO4

3- and coarse mode K+ 

can be ascribed to PBA, whereas organic ions 
balance ammonium in the fine and coarse 
fractions. It is typically more than enough in 
both the wet and the dry seasons, in the Amazon 
Basin (Martin et al. 2010).

Coarse Mode: Tangará da Serra
CIT consisted of 9 nodes, including 5 terminal 
nodes (Figure 3). BC concentration was the 
most important splitting variable for the root 
node, as observed at AF. Ranked below the BC, 
variables Ca2+, formate and NO3

- were also highly 
important. Variable “Season” was used as proxy 
indicator of low seasonality effect, based on the 
analysis of samples from dry and wet season in 
the same CIT. Therefore, there were three main 
sources influencing PM concentration at TS. 
These sources can be understood as the nodes 8
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2, 4 and 7. Node 7 yielded to terminal nodes 9 
(CPM[mean] = 28.4 µg m-3) and 8 (CPM[mean] = 16.9 
µg m-3) , which were associated with dry-season 
samples, alone. These two nodes were the ones 
associated with the highest BC content among 
TS samples. High BC can be linked to biomass 
burning. However, it is noteworthy that they 
present different chemical signatures (Figures 
S8 and S9).

Node 4 yielded to terminal nodes 6 (CPM[mean] 
= 9.9 µg m-3) and 5 (CPM[mean] = 7.3 µg m-3). These 
two nodes shared a close association between 
Mg2+ and Ca2+ (Figures S9 and S10). Dry and wet 
season sample ratios (# of dry season samples: 
# of wet season samples) recorded for terminal 
nodes 6 and 5 were 25:2 and 6:6, respectively. 
Furthermore, Mg2+ and Ca2+ in terminal node 6 
was also associated (AU = 80) with BC (Figure 
S10), whereas the Mg2+ and Ca2+ in terminal node 
5 was associated with variables resulting from 
PBA, such as PO4

3- (Figure S11).
Node 2 yielded to terminal node 3 (CPM[mean] 

= 3.9 µg m-3). This terminal node presented equal 
dry and wet season sample ratios; it was also the 
one presenting the clearest days when it comes 
to mean coarse particle concentrations at TS. 

However, there is a close association between 
coarse particle mass concentration and BC 
(Figure S13). 

Coarse Mode: Manaus
CIT consisted of 7 nodes, including 4 terminal 
nodes (Figure 4). The two most important 
variables for coarse mode concentration 
prediction were Mg2+ and NO3

-. As observed 
in AF and TS, the “Season” variable had little 
influence on coarse particle mass prediction. BC 
omission results from the technical difficulty to 
measure it. Three sources contributed to CPM; 
they were represented by nodes 1, 2 and 3. Node 
1 yielded to terminal node 3 (CPM[mean] = 0.89 µg 
m-3), whose dry and wet season sample groups 
recorded the highest CPM values. Node 6 yielded 
to terminal node 6 (CPM[mean] = 0.34 µg m-3), 
which mostly held wet season sample groups. 
Based on HCA, associations between two sub-
groups (including acetate and formate) were the 
most important patterns in this terminal node 
(Figure S14). Node 3 yielded to terminal nodes 5 
(CPM[mean] = 0.17 µg m-3) and 4 (CPM[mean] = 0.10 µg 
m-3). Terminal node 5 was mainly represented by 
wet season samples and its chemical signature 8
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can be mostly related to PBA, due to the close 
association between CPM – Ca2+ and PO4

3- – K+ 

(Figure S15). Terminal node 4, which was the one 
accounting for the lowest CPM[mean], presented a 
similar number of dry and wet season samples.

Fine Mode: Alta Floresta
CIT consisted of 11 nodes, including 6 terminal 
node (Figure 5). As observed for coarse mode 
samples, BC concentration was the most 
important splitting variable for the root node. 
The four most important variables to predict 
fine particle mass (FPM) were BC > K+ > Formate 
> NH4

+. The overall effect of seasonality (i.e., 
“Season”) was low; only one CIT was applied 
to analyze all fine mode samples. Four main 
sources influenced fine mode PM concentration 
and they were represented by nodes 9, 2, 5 and 
3. Nodes 9 and 2 mostly grouped dry season 
samples, whereas nodes 5 and 3 mostly grouped 
wet season samples. Node 9 yielded to terminal 
nodes 11 (FPM[mean] = 30.4 µg m-3) and 10 (FPM[mean] = 
21.0 µg m-3). The first terminal node only grouped 
dry season samples, whereas the last node 
grouped 26 samples out of a total of 27. Although 
these two terminal nodes mostly grouped dry 

season samples, rather than just FPM[mean], the 
chemical signature can be taken into account to 
assess the influence of biomass-burning sources 
(Figures S18 and S19). Surprisingly, HCA recorded 
for terminal node 11 indicated a sub-group with 
high AU; at first, it was composed by variables 
associated with the coarse mode (Figure S18). 
HCA recorded for terminal node 10 seemed 
equally complex with the association between 
K+ and NH4

+ was the most significant highlight + 

(Figure S19). Node 2 yielded to terminal node 8 
(FPM[mean] = 12.8 µg m-3). Samples grouped in this 
terminal node mostly regarded the dry season 
(14 out of 18). Although the overall importance of 
Ca2+ was not high in the fine fraction, there was 
clear evidence of Ca2+, K+ and NH4

+ association 
(Figure S20). Such a finding can be associated 
with biomass burning.

Terminal nodes 7, 6 and 4 showed a similar 
characteristic, that is, the higher the number 
of wet season samples reflected in lower the 
FPM[mean]. Node 5 yielded to terminal nodes 7 
(FPM[mean] = 8.9 µg m-3) and 6 (FPM[mean] = 6.5 µg 
m-3). Terminal node 7 showed strong evidence 
of NH4

+ – SO4
2- – K+, and NO3

- – Mg2+ associations 
(Fig. S21). This node may represent either a mix 
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of sources or a transition between seasons 
since there was a slight difference between the 
number of wet and dry season samples. Node 3 
yielded to terminal node 4 (FPM[mean] = 4.2 µg m-3), 
which presented the lowest BC concentration (< 
0.57 µg m-3) among all terminal nodes. This node 
grouped 11 wet season samples (out of 13), and 
such finding can be related to Amazon Basin 
background concentrations. According to the 
HCA analysis, the SO4

2- – Ca2+ – FPM – K+ – NH4
+ 

association was strongly supported by the data 
collected herein. 

Fine Mode: Tangará da Serra
CIT consisted of 11 nodes, including 6 terminal 
nodes (Figure 6). BC concentration was the most 
important splitting variable for the root node 
followed by formate, K+ and NH4

+. BC and formate 

were key variables for both the coarse and fine 
modes. The overall importance of “Season” was, 
once again, very low. FPM concentration can be 
attributed to three main sources represented by 
nodes 9, 6 and 3. Node 9 yielded terminal nodes 
11 (FPM[mean]= 35.0 µg m-3) and 10 (FPM[mean]= 23.0 
µg m-3), which were associated with dry season 

samples. Although terminal node 11 presented 
the highest FPM[mean], AU p-values recorded for 
terminal node 10 were more significant (Figures 
S24 and S25). Apart from differences between 
the two terminal nodes, both presented FPM – 
Formate, Mg2+ – Ca2+ and NH4

+ – SO4
2- associations. 

Therefore, terminal nodes 11 and 10 can be 
associated to biomass burning. 

Node 6 yielded terminal nodes 8 (FPM[mean]= 
15.0 µg m-3) and 7 (FPM[mean]= 10.4 µg m-3), which 
presented 10 and 25 dry season samples, 
respectively. Although terminal node 8 presented 
a lower number of dry season samples, it 
presented the highest BC content. With regard 
to chemical signatures, the two nodes were very 
similar (Figures S26 and S27).

Node 3 yielded terminal nodes 5 (FPM[mean]= 
8.0 µg m-3) and 4 (FPM[mean]= 4.7 µg m-3), which 
presented 2 and 7 dry season samples, 
respectively. Terminal node 4 presented close 
FPM – BC association, as well as the lowest 
FPM[mean]. This finding may suggest that either the 
biogenic aerosol-related samples (wet season) 
have light-absorbing features or the existence 
of small biomass burning.
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fine mode aerosol data 
at Tangará da Serra. In 
the CIT, n is the number 
of samples classified in 
a given node, and the 
coarse mode aerosol 
concentration is shown 
in the unit of µg m-3.



ADRIANA GIODA et al. BIOMASS BURNING INFLUENCE IN THE AMAZON  

An Acad Bras Cienc (2023) 95(Suppl. 2) e20220932 15 | 20 

Fine Mode: Manaus
CIT consisted of 5 nodes, including 3 terminal 
nodes (Figure 7). K+ and SO4

2 were the two most 
important variables for fine mode aerosol 
concentration prediction, followed by Mg2+. 
Seasonality relevance as an FPM predictor 
in Manaus is a surprising finding taking into 
account the results obtained from AF and TS. 
Despite the technical difficulty to measure 
BC in Manaus, this observation may indicate 
environmental conservation at the site, since all 
CITs related to fine aerosol were more complex 
than the ones related to coarse aerosol, except 
for Manaus. 

Two sources, represented by nodes 1 and 
2, have contributed to FPM in Manaus. Node 1 
yielded to terminal node 5 (FPM[mean] = 2.98 µg 
m-3), which mostly grouped dry season samples 
(7 out of 9). At least two distinct groups were 
presented in HCA in this terminal node, namely: 
one group more related to biogenic emissions 
and one group that seemed associated with 
biomass burning due to close FPM – K+ association 
(Figure S30). Node 2 yielded to terminal nodes 
4 (FPM[mean] = 1.42 µg m-3) and 3 (FPM[mean] = 0.63 
µg m-3). The first one was mostly related to wet 

season samples (21 out of 25) and the last one 
was closely related to the wet season. According 
to BP value, Cl- – NO3

- and Acetate – Formate are 

the most important associations in terminal 
node 4 (Figure S31). The Cl- – NO3

- association can 
represent important processes to turn HNO3 into 
nitrate salts, such as reactions with ammonia, 
dust, and sea salt (Figure S32). On the other 
hand, the Acetate – Formate association may be 
related to the importance of biogenic volatile 
organic compounds (BVOCs) in the wet season. 
Terminal node 3 highlighted the importance of 
BVOCs in the wet season, as well as Acetate – 
Formate association, other biomass-burning 
tracers, and SO4

2- – NH4
+ – FPM – K+ association 

(Figure S33). Basin wildfire events and Atlantic-
transported pollution plumes are reasonable 
sources of particles in the wet season (Martin 
et al. 2010).

DISCUSSION
Regions where biomass burning is a constant 
activity are featured by high fine particle 
concentrations in comparison to the coarse ones, 
as observed in some Amazonian sites (Freitas et 8
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al. 2005, Echalar et al. 1998). According to other 
PM studies carried out in the Amazon, there 
is compatibility of mean values recorded for 
concentrations of both fine and coarse particles 
if one considers that inorganic components 
corresponded to 10%-20% of the fine fraction, 
and the lower fraction thick rates (Martin et al. 
2010).

The driest months, in their turn, are marked 
by higher PM concentrations, since biomass 
burning is more intense in all regions, including 
regions that are indirectly influenced by this 
practice happening elsewhere (e.g., Manaus). 
In addition, gold production accounts for 
particles’ generation - it mostly happened in 
the 1980s and 1990s, in the AF region. However, 
over the last few decades, it was possible 
to observe these activities’ depletion. This 
new scenario had a positive response on PM 
concentrations, mainly in the dry season since 
heavy rains make it difficult to work along the 
rivers.  Manaus region showed the highest 
coarse particle concentrations in the rainy 
season, in comparison to the dry season, due to 
larger biogenic aerosols production. Thus, the 
presence of high coarse particle concentrations 
was associated with soil affected by fire events, 
mostly by fire outbreaks, whereas fine particles 
were linked to biomass burning.

Low BC concentrations was primarily found 
in Manaus region due to its environmental 
characteristics. Furthermore, the close 
correlation between BC and PM2.0 confirmed the 
overall biomass origin of both pollutants. PM 
emitted during biomass burning is active cloud 
condensation nuclei (CCN), and it directly affects 
climate and precipitation patterns. The strong 
radioactive absorption properties of BC particles 
also drive climate change. It was confirmed 
through BC: PM2.0 ratios in all assessed regions, 
that the amount of light absorbing material in 

the atmosphere was statistically similar during 
the sampling period.

Potassium is a well-established biomass 
burning chemical marker (Galvão et al. 2019), 
given its volatility in the combustion process. 
Thus, K+ concentration ratio between fine and 
coarse fractions is a proxy for fire events, so 
its enrichment in the fine fraction suggests the 
direct influence of biomass burning (Ryu et al. 
2007). Correlations and mean ratios between BC 
and K+ in the dry and rainy seasons confirmed 
biomass burning influence on PM chemical 
composition. However, high K+ concentrations in 
coarse particles associated with the rainy season 
at both AF and TS indicate the contribution 
of biogenic aerosol emissions by plants, as 
observed in Manaus.

Low NO3
- concentration and unfavorable 

conditions for NH4NO3 formation, such as high 
temperatures, justified the concentration values 
recorded for other substances accountable for 
making up the particles found in the Amazon. 

SIA was associated with direct and indirect 
effects on climate change, such as the dispersion 
of yield solar radiation and acting as a CCN, 
respectively (IPCC, 2013). While SIA is a light-
scattering species, BC is light-absorbing species, 
and it justifies the BC:SIA concentration ratio 
to better understand climate effects. The AF 
and TS regions showed the prevalence of light 
absorbing species (BC) over the light scattering 
ones (SIA) recorded for PM2.0. The opposite was 
observed for PM10-2.0. The comparison between 
effects from BC and SIA provided evidence of 
the most pronounced impacts of BC compared 
to SIA. It is so, because BC is an important fine 
aerosol fraction component, in addition to 
the fact that fine aerosol concentrations are 
higher than the coarser ones.  Factors such 
as the long-term residence of fine aerosols in 
the atmosphere, likewise, their likelihood of 
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traveling long distances must also be taken into 
consideration in future analysis.

Regarding neutralization ratios, neither the 
sulfate nor the nitrate found in fine and coarse 
particles was neutralized by ammonium. Thus, 
the acidic properties presented by particles 
could increase their hygroscopicity, i.e., their 
ability to act as CCN, as well as the formation of 
secondary organic aerosols (Pathak et al. 2004, 
Zhang et al. 2007).

Furthermore, the low NO3
-:SO4

2- ratio found 
in PM2.0 in the dry season was associated with the 
fact that vehicle emissions were less important 
than other sources, such as biomass burning. 
However, the opposite result was recorded for 
PM10-2.0.

The vegetation type observed in each 
of the assessed regions contributed to the 
differences found in particle concentrations. 
While tropical forest prevails in AF, TS showed 
Cerrado (Brazilian savannah) prevalence. Thus, 
PM2.0 and BC concentrations were consistent with 
the determined emission factors, so much that 
higher BC emissions and fine particles could be 
observed in AF in biomass burning season in 
comparison to TS. However, other possible local 
sources may also have influenced PM chemical 
composition. Biogenic emissions, for example, 
contributed to Cl- in both AF and TS. Oceanic air 
masses raised mean ion concentrations.

A balance between organic ions and 
ammonium, commonly observed in Amazon 
Basin’s Atmospheric Chemistry explained the 
close formate and NH4

+ association (Martin et al. 
2010). The influence of biomass burning sources 
can be explained by the presence of K+ and SO4

2-

, although low BC content, high ratio of rainy 
season samples and Ca2+ presence were mainly 
associated with biogenic emissions (Echalar et 
al. 1998, Santanna et al. 2016). There was a close 
association between chemical species, mainly 
in TS, due to processes of converting HNO3 into 

nitrate salts, the presence of biogenic volatile 
organic compounds and to biomass burning 
markers. Fires in the region and air masses from 
the Atlantic contributed to the composition of 
these particles.

Overall findings provided by CIT and 
Random Forests complied with other simpler 
techniques applied in the current study. 
However, we provided more robust solutions 
based on the interpretation of the last two 
algorithms, according to, at least, three groups: 
1) dry season-associated samples, 2) wet 
season-associated samples; 3) groups that have 
provided the combination of both the dry and 
the wet seasons. Based on the HCA recorded 
for each node, in separate, further exploration 
revealed associations among variables, which 
were compared to previous studies carried out 
in the Amazon Basin.

CONCLUSIONS
PM, BC and WSI concentrations in fine and 
coarse fractions measured at AF and TS 
changed between seasons. The measured 
PM concentrations of the present study were 
lower than those measured in previous studies 
(from the 1990s and early 2000s). The lowest 
concentrations measured in 2008 derived from 
the smaller number of wildfire events detected 
at both sites. It has been observed noticeable 
biomass burning reduction since 2004, in AF. 
However, no reduction was observed in TS, since 
sugarcane production has been increasing in 
the last few decades. 

Overall, PM, BC, and ion concentrations 
recorded the same order of magnitude in both 
AF and TS sites. Notably, there were significant 
differences amongst their characteristics, which 
suggest that the type of burned vegetation 
along with other sources may have influenced 
PM chemical composition. In our analysis, 
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SO4
2- and BC have affected climate, with the 

latter suggesting more prominent effects. 
PM presented acidic features: SO4

2- had more 
influence than NO3

- or organic acids.
PM concentrations and most water-

soluble inorganic ion species recorded higher 
concentrations in the dry season than in the wet 
season, in both size fractions (concentrations 
were approximately two to three times higher). 
K+, SO4

2-, SIA and BC were the most prominent 
components in the fine fraction, they presented 
close correlation amongst them, and such 
finding indicates biomass burning as the main 
associated source. 

CIT, Random Forests and HCA based on 
multistep – multiscale bootstrap resampling 
- addressed an important part of intrinsic 
challenges faced by source apportionment in the 
Amazon Basin. The specific use and combination 
of these algorithms allowed us to study in more 
detail the relevance and relationship between 
the different variables that compose or may 
contribute to particles’ mass and its further 
association with biomass burning seasons in 
these key sites. 
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