Surgical Revascularization of Posterior Coronary Arteries without Cardiopulmonary Bypass

Fortaleza, CE - Brazil

Objective – To assess the results observed during the early postoperative period in patients who had the posterior coronary arteries revascularized without cardiopulmonary bypass (CPB), in regard to the following parameters: age, sex, bypass grafts types, morbidity and mortality.

Methods – From January 1995 to June 1998, 673 patients underwent myocardial revascularization (MR). Of this total, 607 (90.20%) MR procedures were performed without CPB. The posterior coronary arteries (PCA) were revascularized in 298 (44.27%) patients, 280 (93.95%) without CPB. The age of the patients ranged from 37 to 88 years (mean, 61 years). The male gender predominated, with 198 men (70.7%). The revascularization of the posterior coronary arteries had the following distribution: diagonalis artery (31 patients, 10%); marginal branches of the circumflex artery (243 patients, 78.7%); posterior ventricular artery (4 patients, 1.3%); and posterior descending artery (31 patients, 10%).

Results – Procedure-related complications without death occurred in 7 cases, giving a morbidity of 2.5%. There were 11 deaths in the early postoperative period (mortality of 3.9%).

Conclusion – Similarly to the anterior coronary arteries, the posterior coronary arteries may benefit from myocardial revascularization without CPB.

Keywords: myocardial revascularization, cardiopulmonary bypass, minimally invasive surgery
vein and the inferior vena cava. The traction of these threads caused the mediastinum to rotate to the left, displacing the heart to the right. This procedure does not usually result in hemodynamic abnormalities, thus providing an excellent approach for PCAs (fig. 1).

Heparin sodium, 2mg/kg of body weight, was used for anticoagulation. This anticoagulation was maintained, with the hourly administration of half of the initial dose of heparin. Interruption of the blood flow to the coronary areas, where the anastomoses must be performed, was achieved using a 4-0 or 5-0 polypropylene thread in a figure-eight shape with delicate tourniquets placed in the areas located proximal and distal to the site of the anastomosis. In order to protect the coronary artery bed, a small segment (1.0cm) of Foley catheter #8 is interposed between the tourniquets and the coronary artery (fig. 2). The anastomosis was performed using a single 7-0 or 8-0 polypropylene thread.

The use of beta-blockers during the preoperative period was contraindicated, whenever possible. Patients who received beta-adrenergic blockade tended to develop episodes of refractory hypotension when the heart was manipulated during the anastomoses.

The revascularized posterior arteries had the following distribution: 243 for MCX (78.7%), 31 for DIA (10%), 31 for PDA (10%) and 4 for PVA (1.3%).

The most frequently used bypass graft was the vena saphena magna, employed in 302 (97.7%) anastomoses; the radial artery was used in 4 cases (1.3%), but the LITA was used in only 3 cases (1.0%).

Statistical analysis of the frequency of stenosis in the anastomoses of randomly assessed patients was performed using the rank sum test.

Results

In our clinic, morbidity is represented by patients with the following complications in the early postoperative period (POP): acute myocardial infarction (AMI), stroke, cardiac tamponade, bleeding requiring reoperation, sternal dehiscence, mediastinitis, acute renal failure and infection of the wall. We had 7 nonfatal complications in the early POP in our series (tab. II), giving a total morbidity of 2.5%. Also,

Table II - Major complications during the early postoperative period

<table>
<thead>
<tr>
<th>Complication</th>
<th>#of cases</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sternal Dehiscence</td>
<td>1</td>
<td>0.36</td>
</tr>
<tr>
<td>Bleeding</td>
<td>1</td>
<td>0.36</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>1</td>
<td>0.36</td>
</tr>
<tr>
<td>Stroke</td>
<td>2</td>
<td>0.71</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>2</td>
<td>0.71</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Fig. 1 – Exposure of the posterior coronary arteries after right mediastinal rotation through traction of the threads inserted to the left of the posteroinferior area of the pericardium.

Fig. 2 – Protection of the coronary arterial bed with a small (1.0cm) segment of Foley catheter #8 during coronary clamping.
in this period, we had a 3.9% mortality, with 11 deaths. The causes of these deaths are shown in Table III.

In relation to permeability of anastomoses, which is a controversial aspect for those who are not familiar with this technique, we believe that the very low incidence of AMI in the early POP, the marked clinical improvement shown by the patients, the minimally traumatic nature of the anastomoses and the results of the tests conducted at the end of these procedures make these grafts largely safe, when permeability is taken into account.

As we were still not satisfied with this evidence, from January to June 1998, we conducted random angiographic studies in 34 out of the 45 patients (75%) who underwent MR without CPB and received PCA grafting. This study showed no evidence of stenosis in 100% of the anastomoses (Fig. 3). This result was highly statistically significant according to the rank sum test, with \(p = (1/2)^{34} = 6 \times 10^{-11} \). Thus, the efficacy of this procedure could be demonstrated. The patients were studied during a period that ranged from 5 to 120 days (mean, 32 days).

Discussion

Currently, increasingly critical patients are being referred for the MR procedure. This has stimulated heart surgeons worldwide to search for less invasive and more effective techniques. At the same time, more cost-effective procedures are being developed, without compromising the quality of the results.

Within the global scenario of heart surgery, we consider that minimally invasive surgery should be, above all, a procedure that does not use CPB, as CPB is considered the most important factor in the genesis of most surgical complications, especially in those individuals regarded as high-risk patients. In addition to all the systemic damage caused by CPB, it is worth noting that CPB imposes additional costs on the procedures, as a result of the elevated costs of its circuits, of the use of blood derivatives and of the prolonged hospital stay in the POP.

In the last 3 years, our group has refined some techniques that allow us, at the moment, to perform 95% of the MR procedures, including revascularization of PCA, without the use of CPB, as reported here. In the remaining 5%, CPB was employed as a circulatory support, because the anastomoses were performed with a beating heart, that is, without aortic clamping. This amount of procedures without CPB is much higher than the average figures shown in other studies.

Several reports have shown that the MR procedure without CPB may bring benefit to the anterior arteries of the heart. The latest literature on this topic, particularly the publications from national and international referral centers, does not mention the systematic use of PCA grafting without CPB, in spite of the increased number of patients who had these arteries bypassed and benefited from this technique. In those studies, PCA grafting is seldom employed. Overall, according to our experience with the use of the technique described above, only patients with cardiomegaly and low ejection fraction cannot receive PCA grafting without CPB.

In this series, we did not use retractors with the so-called stabilizers, or intracoronary perfusion device. However, we believe that the increased use of this technology, mainly in relation to stabilizers, would undoubtedly ease and simplify this procedure, so that it could be performed by a larger number of teams and benefit a larger number of patients.

In view of the data presented and discussed in this report, we believe that, currently, the use of MR surgery without CPB, including patients who need PCA grafting, is not a futurist prediction, but, instead, a realistic scenario. The simplicity of this technique, coupled with the good results achieved and the lower costs, make this procedure an increasingly frequent option in the treatment of coronary heart disease, both in its acute and chronic phases.

Finally, we would like to note that “The limits of human capacity and knowledge are unpredictable. The objective of technology and science is to allow the development of these qualities.”
References