Echocardiography In Cardiac Resynchronization Therapy

Viviane Cordeiro Veiga1,2, Henry Abensur1, Salomón Soriano Ordinola Rojas1,2
Real e Benemérita Associação Portuguesa de Beneficência1, São Paulo, SP; Universidade Estadual de Campinas (UNICAMP)2, Campinas, SP - Brazil

Summary

Cardiac resynchronization therapy has been an effective option in patients with advanced heart failure. However, 20 to 30% of the patients do not benefit from this therapy. Clinical, electrocardiographic and echocardiographic criteria have been studied in an attempt to select patients who will benefit from a cardiac resynchronization therapy, and the echocardiogram is important both in the selection and in the evaluation and optimization of the therapy. The objective of this review is to describe the main echocardiographic parameters used in the evaluation of the cardiac resynchronization therapy.

Introduction

Heart failure is a condition with high morbidity and mortality, which affects approximately 23 million people in the world1, approximately two million new cases are diagnosed each year2, with an annual cost estimated at US$ 198 million, according to DATASUS3.

Cardiac resynchronization therapy (CRT) has been an effective option in patients with advanced heart failure, providing clinical benefits, such as improved functional class, ability to exercise, and quality of life, as well as reduced hospitalization and mortality4.

The first clinical report of biventricular pacing is credited to Cazeau et al5 in 1994, and the therapy had its approval for clinical use by the Food and Drug Administration (FDA) in 20016.

The indication for CRT, according to the guidelines of the American Heart Association, is class I for patients in functional class III or IV (New York Heart Association), with optimized heart failure therapy, an ejection fraction of less than 35% on the echocardiogram, and QRS ≥ 120 ms and sinus rhythm on the electrocardiogram7.

However, approximately 20 to 30% of patients do not respond to CRT8,9, and various clinical, electrocardiographic and echocardiographic parameters have been used for the selection of candidates for this therapy.

Echocardiographic parameters for selecting patients for CRT

The echocardiographic evaluation before the implantation of a biventricular pacemaker consists mainly of the following: confirming the presence of left ventricular function deterioration, assessing the presence of atrioventricular, interventricular and intraventricular dyssynchrony, and evaluating associated structural abnormalities that may hinder the implantation of the pacemaker10.

Assessment of left ventricular function

The assessment of systolic function should be performed by the two-dimensional method (Simpson) to assess the left ventricle ejection fraction indication for CRT is a value of less than 35%9 (Figure 1).

Assessment of atrioventricular dyssynchrony

The atrioventricular dyssynchrony may affect ventricular function due to almost simultaneous atrial and ventricular contractions, which cause a reduction in the preload by decreasing the atrial contraction. Atrioventricular dyssynchrony is characterized when the pre-ejection aortic time exceeds 140 ms, or if the diastolic filling time is less than 40% of the cardiac cycle, by the measurement of the time interval between the beginning of the E wave and the end of the A wave in the mitral flow11-13.

Assessment of interventricular dyssynchrony

The interventricular dyssynchrony may be assessed by pulsed Doppler ultrasonography, using the difference between the left and right ventricular electromechanical delays by measuring the interval between the R wave of the electrocardiogram and the beginning of the aortic and pulmonary flow velocity curves. If the difference between the two intervals is greater than 40 ms, this is indicative of interventricular dyssynchrony12,14-17 (Figure 2). The limitation of this analysis is that the ventricles can not be assessed simultaneously. Furthermore, pathological conditions such as pulmonary hypertension may be associated with a prolongation of the pulmonary pre-ejection time interval, thus limiting its specificity.

Assessment of intraventricular dyssynchrony

The intraventricular dyssynchrony may be assessed by pulsed Doppler ultrasonography, using the difference between the left and right ventricular electromechanical delays by measuring the interval between the R wave of the electrocardiogram and the beginning of the aortic and pulmonary flow velocity curves. If the difference between the two intervals is greater than 40 ms, this is indicative of intraventricular dyssynchrony12,14-17 (Figure 2). The limitation of this analysis is that the ventricles can not be assessed simultaneously. Furthermore, pathological conditions such as pulmonary hypertension may be associated with a prolongation of the pulmonary pre-ejection time interval, thus limiting its specificity.

Tissue Doppler can also be used in the assessment of interventricular dyssynchrony. This technique is used to identify and measure the velocity of motion of myocardial
Assessment of left ventricular function by two-dimensional method (A - systole, B - diastole).

Assessment of interventricular dyssynchrony

Interventricular dyssynchrony promotes electromechanical delays between the walls of the left ventricle, and there are several ways to analyze it through an echocardiography.

Pitzalis et al21, in 2002, used the M mode for the assessment of interventricular dyssynchrony by measuring the time interval between the contraction of the septum and the posterior wall of the left ventricle. However, there is no consensus about the cut-off for this measurement.

Intraventricular dyssynchrony promotes electromechanical delays between the walls of the left ventricle, and there are several ways to analyze it through an echocardiography.

Segments. The assessment is done by measuring the difference between the time intervals characterized by the onset of the QRS complex on the electrocardiogram to the peak (or beginning) of the S-wave on the tissue Doppler recording, respectively measured in the right ventricular free wall and the left ventricular lateral wall18-20. However, there is no consensus about the cut-off for this measurement.

Assessment of intraventricular dyssynchrony

Intraventricular dyssynchrony promotes electromechanical delays between the walls of the left ventricle, and there are several ways to analyze it through an echocardiography.

Pitzalis et al21, in 2002, used the M mode for the assessment of interventricular dyssynchrony by measuring the time interval between the contraction of the septum and the posterior wall of the left ventricle.
the left ventricle. This is done in the parasternal short axis view, by measuring the time interval between the maximum systolic excursion of the two walls. More than 130ms denotes significant dyssynchrony.

This method has limitations in patients with coronary artery disease who present hypokinetic or akinetic areas, where the identification of the peak systolic excursion is often limited. Moreover, only the middle regions of the two walls are evaluated.10,12,21-23 (Figure 3).

Tissue Doppler can be used to obtain the myocardial velocities of the basal segments of septal, lateral, anterior and inferior walls in the apical plane. The time interval between the beginning of the QRS complex to the peak systolic myocardial wave (S-wave) is measured in these segments. A delay between any two segments of more than 65 ms is indicative of significant dyssynchrony.19,20,24-29,33

Yu et al30 evaluated the delay between the beginning of the QRS complex and the tissue Doppler peak systolic myocardial wave in twelve segments, concluding that there are two parameters which are indicative of intraventricular dyssynchrony: maximum time difference between 2 distinct segments greater than 100 ms, and standard deviation of time to peak systolic velocity in 12 segments exceeding 33ms.30

Another technique for the assessment of intraventricular dyssynchrony derived from tissue Doppler is tissue tracking, which expresses the full speed of myocardial motion in color, from the ventricular apex to the base. The absence of displacement is characterized by the absence of color.31,32

Tissue synchronization is a technique that uses color coding for electromechanical delay in each segment of the myocardium. The equipment measures the time interval between the beginning of the QRS complex and the peak systolic wave (S wave) at a specific point of the myocardium. If the time interval is less than 150ms (normal), the myocardium is represented in green; if it ranges between 150-300ms the myocardium is represented in yellow; and if it is greater than 300ms the myocardium is represented in red. It should be used with caution in apical segments.18 (Figure 4).

More recently, the three-dimensional echocardiography has been used for indicating and assessing patients undergoing cardiac resynchronization therapy with a biventricular pacemaker.

The three-dimensional echocardiography provides the percentage of cardiac dyssynchrony by measuring the rate of cardiac dyssynchrony (sigma). In this method, the left ventricle is studied in models of 16 or 17 parietal segments, and the regional and global contractility is analyzed (Figure 5). The sigma represents the standard deviation of the mean end-systolic contraction time of each segment compared to global end-systolic contraction (a lower index indicates lower dyssynchrony); a value of less than 8% is considered normal. The disadvantage of this method is the low number of frames.13-15,33

New techniques have been developed to evaluate intraventricular dyssynchrony, such as the two-dimensional strain, in which a computer software analyzes the deformation suffered by the muscle in two dimensions and not only toward the Doppler beam. Assessment of the ventricular electrode implant site.

Evaluation of the site of the ventricular electrode implant

Ansalone et al36 demonstrated that when the electrode was implanted in the left ventricle, in the site of greatest activation delay, a better response to CRT was obtained, and in 35% of cases the lateral wall was the most affected. Therefore, the determination by echocardiography of the region with higher electromechanical delay indicates the best place to implant the electrode.37

Echocardiographic parameters in the evaluation of patients undergoing CRT

The following are the echocardiographic criteria used in the
evaluation of patients undergoing CRT:
• Increase in ejection fraction;
• Reduction in mitral regurgitation;
• Regression of ventricular remodeling, characterized by a reduction by at least 15% in the left ventricle end systolic volume\(^{21}\);
• Presence of atroventricular, interventricular and intraventricular synchrony;
• Adjustment of the atroventricular interval (AV synchrony), performed using pulsed Doppler in mitral flow, by measuring the time interval between the onset of the E wave and the end of the A wave. The optimization of the atroventricular interval is recommended when: the A wave of mitral flow is not identified, when the E and A waves are merged, or when the E wave is truncated by mitral valve closure\(^ {14}\).

Conclusion
Echocardiography is a diagnostic method that has been widely used both in the indication and in the evaluation and optimization of post-operative patients who undergo cardiac resynchronization therapy. However, this technology is still evolving and there are no definitive echocardiographic parameters that can firmly determine or exclude the presence of significant dyssynchrony.

Potential Conflict of Interest
No potential conflict of interest relevant to this article was reported.

Sources of Funding
There were no external funding sources for this study.

Study Association
This article is part of the thesis of master submitted by Viviane Cordeiro Veiga, from Universidade Estadual de Campinas - UNICAMP.
References

